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ABSTRACT The response to light of one ommatidium is reduced or sup-
pressed by simultaneous illumination of neighboring ommatidia. The mech-
anism of this lateral inhibition may be chemical synaptic transmission, based
on the physiological findings of a number of investigators and on the following
evidence. The fine structure of the neuropil of the lateral plexus exhibits
numerous clear vesicles (ca. 400 A), dense-core vesicles (ca. 700-1400 A),
Golgi regions, and other morphological features of neurochemical synapses.
The indolealkylamine, serotonin (5-HT), even in nanomolar concentrations,
has a potent inhibitory action. An initial, potent inhibitory dose of 5-HT
produces a long lasting densensitization to subsequent doses. The desensitiza-
tion affects lateral inhibition evoked by light stimulation of neighboring recep-
tors, i.e. crossed-desensitization. Eye tissue extracts contain 5-HT and melatonin
(MLT) at a level greater than 1 ag/g wet tissue and perhaps as high as 20-30
,ug/g, as determined by two-dimensional thin-layer chromatography (TLC)
and o-phthaldialdehyde fluorescence assay techniques. Subcellular fractionation
on sucrose gradient indicates a peak in 5-HT and MLT content associated
with an intermediate density fraction. 5-HT may be an inhibitory transmitter
for lateral inhibition. One pathway for metabolism of 5-HT in the lateral eye
may be via N-acetylserotonin and melatonin.

The lateral eye of Limulus has long served as the prototypal visual receptor
(Hartline, 1968; Wolbarsht and Yeandle, 1967). Among the interesting fea-
tures of this eye is the lateral inhibition between neighboring ommatidial
receptors. The response to light of one ommatidium is reduced or suppressed
by simultaneous illumination of neighboring ommatidia. The mechanism of
lateral inhibition has been extensively studied from the physiological view-
point (Hartline et al., 1961; Wolbarsht and Yeandle, 1967, Hartline, 1968)
and these studies provide strong physiological evidence that the mechanism
of lateral inhibition is some form of chemical synaptic transmission. Among
this evidence is the following: lateral inhibition produces in the inhibited cell
a membrane potential hyperpolarization accompanied by a conductance
increase to an ionic species having a negative intracellular equilibrium po-
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tential (Purple and Dodge, 1965). There is a significant delay between the
occurrence of a burst of spikes in neighboring axons and the inhibition of
spikes in a test receptor's axon (Ratliff et al., 1966). This delay is too long to
be accounted for by conduction times in the various axons. Lateral inhibition
exhibits facilitation phenomena (Ratliff et al., 1966) as well as fatigue effects
(Lange, 1965).

The pharmacology and neurochemistry of the possible chemical synaptic
basis of lateral inhibition has, nonetheless, received relatively little study
(Adolph, 1966; Behrens and Wulff, 1970). There have only been a few studies
of its histology (Hartline et al., 1961; Gur et al., 1972), as well. This paper
reports the results of our recent work especially in these latter two areas, on
the lateral inhibitory mechanism.

METHODS

1. Animals Adult Limuluspolyphemus, 10-12 inches or larger across the carapace,
were obtained from the Marine Biological Laboratory, Woods Hole, Mass. The
animals were maintained in a 150 gallon aquarium (Instant Ocean, Aquarium
Systems, Inc., Eastlake, Ohio) at 17°C. The aquarium light environment was not
controlled; for part of the time of the experiments, fluorescent lighting during a
"working day" on, nighttime off, cycle was used. Most of the experiments, however,
were done during a period when the animals were under conditions of natural illu-
mination through windows adjacent to the aquarium, and consequently subject to
seasonal variations in light-dark ratios.

2. Optical A large (ca. 1.5 mm diameter) and a small (ca. 70 um diameter)
light spot were transmitted directly to the corneal surface by two individual fiber
optic bundles (American Optical Corp., Bedford, Mass.). The corneal ends of the
two bundles were held in an adjustable two-electrode holder (Narashige, Labtron
Scientific Corp., Farmingdale, N. Y.) which allowed their relative positions to be
adjusted. The two-electrode holder was further manipulated by a microdrive with
four degrees-of-freedom of movement (Narashige) so that the two fiber optic bundles
could be ultimately positioned with eight degrees-of-freedom movement. The light
source for the larger bundle was a 50 watt tungsten-halogen lamp (Klinger Scientific
Apparatus Corp., Jamaica, N. Y.) whose filament image was focused on the fiber
bundle end through a heat-absorbing filter, any desired neutral density filters, and an
electromagnetic shutter (Uniblitz, Velmex, Inc., Holcomb, N. Y.). An 18 watt
tungsten lamp, beamed through a similar filter and shutter chain, illuminated the
aperture of a microscope substage condenser which focused the filament image on
the smaller fiber bundle. Either bundle alone, or both combined, could be used as
the stimulus source in experiments on single receptors, a group of receptors, or the
interaction between a group and a single receptor. Both lamps were operated at
nominal ratings and without modification of their visible spectra.

3. Electrophysiological A thin (ca. 1 or 2 mm) slice of lateral eye, including the
bulk of optic nerve fibers in a bundle 1-2 cm long, was mounted with its corneal
surface accessible to optical stimulation, in a 10 ml perfusion chamber. The chamber
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could be drained and refilled in 20-30 sec. The vascular sheath was removed from
the optic nerve and bundles with several nerve fibers were teased from the optic
nerve. Extracellular responses were recorded from fibers within a bundle by means
of a drawn-glass capillary suction electrode and AC preamplifier (Grass P-15, Grass
Instrument Co., Quincy, Mass.). The output of the preamplifier was displayed along
with stimulus indicator signals on a multitrace CRO (Tektronix 565, Tektronix,
Inc., Beaverton, Oreg.) and recorded on an FM data recorder (H-P Sanborn 3917B,
Hewlett-Packard Co., Waltham, Mass.). Spikes were counted either manually from
filmed records made with a Grass C-4 camera or electronically by a gated event-
counter (Heath EV-805, Heath Co., Benton Harbor, Mich.). Occasionally, thicker
slices of eye were used (up to 5 mm) in the experiments on light-evoked lateral
inhibition where some searching of the cornea for suitable fiber optic locations was
necessary.

4. Pharmacological The bathing medium in the perfusion chamber was artificial
sea water (ASW), pH ca. 8, prepared from a commercially available salt mix (In-
stant Ocean, Aquarium Systems, Inc.). The ASW was also used as the carrier me-
dium for the 5-HT creatinine sulfate (Sigma Chemical Co., St. Louis, Mo.) and
melatonin (Sigma) drug solutions. The final bath concentrations of perfused drug
solutions were usually at a level between 1 and 100 /M. 25 experiments form the basis
of the electrophysiological and pharmacological findings presented in subsequent
sections.

5. Neurochemical Lateral eyes were rapidly excised using a cast-cutting saw
and the eye tissue between cornea and internal chitin margin was frozen, in small
glass vials, in liquid nitrogen. For each TLC procedure, the tissue from eight eyes was
pooled. The pooled tissue was homogenized in 3 ml of 0.05 N NaOH (Miller and
Maickel, 1970), centrifuged, floating and sedimented impurities removed, and
reduced in volume to about 20 ul by drying in vacuo. The extract was applied to a
TLC plate (Eastman Silica Gel 6060, Eastman Organic Chemicals, Rochester,
N. Y.) and developed together with several standard concentrations of serotonin-
creatinine sulfate and melatonin (Sigma Chemical Co.) as position markers in an
n-butanol:glacial acetic acid:water (60:15:25) solvent system. The appropriate
spots were scraped from that primary, one-dimensional TLC, eluted with 95%
ethanol, and rechromatographed on secondary TLC. The secondary TLC was run
in two dimensions with the solvent system for one of the dimensions the same as the
primary TLC and the second dimension solvent system consisting of methyl acetate:
isopropanol:25% ammonia (9:7:4). Spot locations were determined by fluorescence
under UV light. The method used for quantitative assays of tissue indolealkylamines
evolved through several stages. Initially the method of Maickel et al. (1968) was used
as an indication of 5-HT content. When the presence of significant amounts of
indolealkylamines other than 5-HT was suspected, we employed the procedure of
Miller and Maickel (1970), incorporating more sophisticated differential solvent
extraction techniques. Quay's (1963, 1969) fluorimetric procedure was used in at-
tempting to compare the assay levels of 5-HT and its possible metabolites N-acetyl-
serotonin (NAS) and 5-hydroxyindole-3-acetic acid (5-HIAA). The possibility of
cross-contamination and quenching effects discussed by Fischer and Aprison (1972)
were also considered, finally leading to our present technique, a modification of the
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TLC identification method, which combines solvent extraction, preparative-layer
chromatography, spot elution and o-phthaldialdehyde fluorimetry. In the last step
of the combination method, the eluted spots are reacted with o-phthaldialdehyde in
10 N HC1 at 110C for 10 min, and fluorescence measured in a Turner 110 fluorom-.
eter (G. K. Turner Associates, Inc., Palo Alto, Calif.) at 360 nm excitation and 470
nm emission. For the sucrose gradient fractionation, the homogenate was centrifuged
8 min at 1000 rpm (Sorvall GLC-1, Ivan Sorvall, Inc., Norwalk, Conn.) and super-
natant applied to a 1.0-1.7 M sucrose gradient in 10 m tris(hydroxymethyl)amino-
methane (Tris) buffer, pH 7.0-7.5. This was centrifuged 45 min at 30,000 rpm
(Beckman L3-50, SW50L rotor Beckman Instruments, Inc., Fullerton, Calif.).
Fractions were collected from punctured tubes and extracted with diethyl ether,
spotted and developed on TLC plates. The relative amounts of identified components
of each fraction was determined from their spot intensities. The neurochemical data
presented in the paper is representative of 12 of the best TLC, sucrose gradient, and
assay experiments from a total of 128 thin-layer, column, and paper chromatography,
solvent extraction, isotope, and sucrose gradient experiments.

6. Histological Tissue was fixed in 4% glutaraldehyde (buffered by either
phosphate or Earle's buffer), postfixed in 1% osmium tetroxide, embedded in
Araldite-Epon (Ladd Industries, Burlington, Vt. and Fisher Scientific Co., Pitts-
burgh, Pa.) and sectioned 600-900 in an LKB Ultratome (LKB Instruments, Inc.,
Rockville, Md.). Sections were stained with uranyl acetate/lead citrate and viewed
with a Philips 300 electron microscope (Philips Electronic Instruments, Mount
Vernon, N. Y.).

RESULTS

The extracellular spike response of a single receptor, optically isolated
through stimulation by a 70 As fiber optic bundle is illustrated in Fig. 1. After
an initial period of 5 sec during which the receptor alone is stimulated, a group
of neighboring receptors is activated for 3 sec. It is a relatively large group of
neighbors underlying a fiber optic bundle 1.5 mm in diameter. There is an
initial silent period produced by the strong transient phase of the group's
response, followed by a steady response at a frequency lower than the firing
rate during the initial 5 sec test period. After the 3 sec inhibitory period, the
illumination of the group of neighboring ommatidia is removed and the test
receptor remains stimulated in isolation for 2 sec more. The sequence in Fig. I
illustrates the effect produced by a constant intensity of inhibitory stimulation
on test responses to a series of decreasing intensity stimuli. The inhibitory
decrement is a constant percentage of test frequency, i.e., the absolute decre-
ment in response to constant inhibitory stimulation is a linearly decreasing
function of test response.

This electrophysiological evidence of lateral inhibition is hardly novel
(Hartline, 1968) but is included here to illustrate the effect as an aspect of
identification of a putative inhibitory neurotransmitter. In addition, the
methodology is combined with pharmacological techniques in studying cross-
desensitization effects and those results are presented later in this section.
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FIGURE 1. Lateral inhibition of the spike response of a single, optically isolated, om-
matidium by a group of neighboring ommatidia. Test receptor stimulated for 10 sec.
Inhibitory group stimulated for 3 sec beginning 5 sec after test stimulus onset. Numbers
to left of records indicate log-attenuation of test stimulus intensity by neutral density
filters. Inhibitory stimulus constant for each run. Upper trace, shutter signals (down:
test, up: inhibitors); lower trace, optic nerve response of test receptor.
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The morphological locus of the mechanism of lateral inhibition is believed
to be the neuropil of the lateral plexus formed by branches of the eccentric
cell axons (Hartline et al., 1961; Gur et al., 1972). The fine structure of this
region exhibits a number of features associated with chemical synapses seen
in a wide variety of neural tissue (Erank6, 1971). Fig. 2 shows a cross-section
through a neuropilar region with numerous collaterals containing prominent
mitochondria and vesicles. These vesicles are primarily clear type of 400-
500 A diameter. Other structures, relatively devoid of vesicles but containing
occasional mitochondria, endoplasmic reticulum, and vacuoles, are probably
glial cell processes. The neuropilar structures are shown at a somewhat
greater magnification in Fig. 3. Basement membrane surrounding the group of
neural elements is quite obvious. Large pigment granules, within what are
probably proximal pigment cells, can be clearly seen. A Golgi region, from
which newly formed vesicles are thought to arise, indicates vesicular synthetic
capability within the neuropil region.

A new feature is apparent in Fig. 3: dense-core vesicles. A longitudinal
section of neuropil in Fig. 4 shows numerous dense-core vesicles and neuro-
fibrillar structures within the neural process. Basement membrane and glial
cell components are also apparent. There is a broad range of dense-core
vesicle sizes from less than 700 A to more than 1400 A in diameter, although
they appear to be separated into two distinct size groups: one group with a
mean diameter of 825 90 A and the other of 1300 100 A. The smaller
vesicles constituted about one-third, and the larger group, two-thirds of the
rather limited sample of dense-core vesicles. It is conceivable that the dif-
ferent sizes are due to tangential sections of large vesicles, although such an
artifact would more likely result in a continuous distribution of vesicle diam-
eters rather than the essentially nonoverlapping subgroups seen thus far.

The relative number of small (400 A), clear vesicles greatly exceeds the
number of dense-core vesicles in a region such as shown in Fig. 2. There are
many membrane-enclosed structures of neural, glial, and supporting-cell
type, tightly packed. In contrast, regions illustrated by Figs. 3 and 4, show
many fewer membrane-enclosed structures, they are less tightly packed and
frequently separated by distinct basement membrane borders. There are
fewer vesicles of either type in these regions although the dense-core type
predominate. One might speculate that Fig. 2 illustrates one of the highly
branched regions of the neuropil while Fig. 3 and 4 show relatively un-
branched neuropil (Gur et al., 1972).

Pharmacological studies show that serotonin (5-HT), among a number of
putative neurotransmitters which includes y-aminobutyric acid (GABA), 3-
alanine, and glycine, has the most potent inhibitory action (Adolph, 1966;
Behrens and Wulff, 1970). Fig. 5 shows the effect of perfused 5-HT on light-
evoked spike responses, recorded from single ommatidia in thin slices of
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FIGURE 5. Inhibitory effect of serotonin (5-HT) at different molar concentrations on
light-evoked spikes from single ommatidium in lateral eye of Limulus.

lateral eyes by extracellular suction electrodes. 1 ml portions of 5-HT, at the
concentrations indicated on Fig. 5, were perfused into the 10 ml of ASW
bathing the slice; the actual 5-HT concentrations finally acting on the recep-
tive regions of the ommatidia were most likely further diluted. The inference
is that 5-HT, even in nanomolar concentrations, is a strongly effective in-
hibitor of spike activity. The rate of initial action is approximately the same
for the different 5-HT concentrations; the primary differences in effectiveness
appear to be in absolute level of inhibition and recovery time. If one defines
the inhibitory effect as the area under the inhibition-time curve, then in-
hibitory effect is an approximately linear function of log 5-HT concentration.

An initial, potent, inhibitory dose of 5-HT produces a long lasting de-
sensitization to subsequent and equal 5-HT doses, as shown in Fig. 6. Directly
perfused 5-HT also desensitizes the natural, light-evoked, inhibitory mech-
anism mediating lateral interaction between neighboring receptors. This cross-
desensitization effect is illustrated in Fig. 7. Conditions similar to those used
in the experiment shown earlier in Fig. 1, were used in crossed-desensitization
experiments. The additional factor involved was the perfusion of the eye slice
with 5-HT. The inhibitory decrement does not recover in parallel with the
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FIGURE 6. Desensitization effect of initial dose of 5-HT on subsequent 5-HT doses.
ASW, artificial seawater; 5-HT, 100 }M serotonin-creatinine sulfate in ASW.
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FIGURE 7. Crossed-densensitization of light-evoked lateral inhibition by perfused
5-HT. Control-test receptor response without lateral inhibition. Inhibitory decrement-
difference between control test response and test response during lateral inhibition, i.e.
reduction in firing rate produced by inhibition.

recovery of the control response which suggests that the perfused 5-HT
specifically desensitized the inhibitory synaptic mechanism (cf. Fig. 6), in

addition to directly decreasing the light-evoked response of both test and
inhibitory receptors, as previously illustrated by Fig. 5. If perfused 5-HT has

only a direct effect of inhibiting spike firing in ommatidia, perhaps via a non-
specific action on the cell membrane, then there is no reason a priori to expect

differential rates of recovery from 5-HT inhibition of inhibiting ommatidia or
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inhibited ommatidium. These desensitization and crossed-desensitization ef-
fects may be related to the so-called "inhibitory fatigue" described by Lange
(1965) and others, in which continued and repeated natural or antidromic
inhibition becomes less effective or "desensitized" with time.

Another aspect to identifying a putative neurotransmitter in addition to the
physiologically proper pharmacological action, is its presence in the eye tissue
and the presence of a metabolic mechanism capable of its synthesis and in-
activation. Identification of the indoleamine was accomplished by two-
dimensional thin-layer chromatography (TLC). One identified component
was 5-HT, as illustrated in the TLC reproduction in Fig. 8. Authentic 5-HT,
which was spotted over the element to be identified, moved to the exact same
location on the TLC as did the eluent spot, with the result that identification
was unambiguous. A second component of the tissue extract, and an initially
unsuspected one, was identified by similar technique as melatonin (MLT). A
representative TLC identification of melatonin is depicted in Fig. 9. In this
case, the overspotting of authentic MLT was done for only one dimension of
separation. The serotonin and melatonin appear to be morphologically
localized in eye tissue structures possessing densities intermediate between
1.0 and 1.7 M sucrose, after fractionation and centrifugation in a continuous

=.5 HT
It . i' -h

Qo

"

Iq

i3

IT
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5HT = 5HT- Creatinine Sulfate Complex

FIGURE 8. Identification of 5-HT in eye tissue extract by two-dimensional thin-layer
chromatography. Rechromatograph of material from putative 5-HT location on primary
one-dimension TLC separation, with overspotting of authentic 5-HT. See text for details
of technique. Two right-hand and two upper tracks, mixture of seven authentic indole-
alkylamines (5-HT, 5-HIAA, 5-MIAA, 5-HTP, 5-MT, NAS, MLT), and authentic
5-HT only.
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FIGURE 9. Identification of melatonin (MLT) in eye tissue extract by TLC. Rechroma-
tograph of material from putative MLT location on primary one-dimension TLC
separation, with overspotting of authentic MLT. See text for details of technique.

sucrose gradient (Fig. 10). The fine structure of the fragments in the ap-
propriate region of the gradient has not yet been characterized.

In contrast to the consistent and reproducible qualitative results obtained
by the chromatographic techniques and described above, the results of quanti-
tative assays were variable and dependent on the specific fluorimetric pro-
cedure employed. According to the Maickel et al. (1968) procedure, nine
measurements indicated an average 5-HT content of 3.5 /Ag/g wet tissue, with
a range of 1.1-7.7 M/g. In eight determinations of 5-HT level using the Miller
and Maickel (1970) method, an average of 60 pg/g was found, with a range
of 16-132 /g. This method did not detect melatonin. The Quay (1963, 1969)
procedures did extract melatonin, but did not detect 5-HT. The combination
technique described in the Methods section, which utilized solvent extraction,
chromatographic separation/identification, and OPT-fluorimetry, gave 23
/zg/g 5-HT and 31 ,ug/g MLT.

It should be noted that most of the techniques in the literature dealing with

the measurement of indolealkylamines have been developed and applied to
mammalian central nervous tissue rather than nerve tissue in marine in-
vertebrates. This may have caused some of the indicated difficulties in quanti-
tative assay. There is also the possibility that this primitive eye contains an,

as yet, unidentified indoleamine which cross-reacts in one of the assay methods
but not the others. In addition, these determinations were made on extracts
from animals coming from a loosely controlled environmental milieu: a
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FIGURE 10. Sucrose gradient fractionation of eye tissue homogenates. Each of the 12
fractions was developed by TLC and the relative concentrations of the identified 5-HT
and MLT components gauged by spot intensity. See text for details of technique.

natural light/dark cycle via building windows, and at different times of the
year and thus different light/dark cycles. The tentative nature of the quantita-
tive assays must therefore be emphasized.

The pharmacological effect of MLT on light-evoked spike activity is
characteristically different from the effect of 5-HT and is illustrated in Fig. 11.
Perfusion with 100 AM MLT is essentially ineffective on spike frequency; an
unphysiologically concentrated 100 mM dose of MLT produces a moderate
inhibitory effect which is quickly reversed by a seawater flush. Subsequent
perfusion of the eye by 5-HT produces the typical, potent inhibition of spike
activity. It is apparent that MLT is effective in inhibiting spike activity only
in high concentration and that it does not desensitize the receptor to sub-
sequent 5-HT action.

Two alternative metabolic pathways for 5-HT are shown in Fig. 12. The
common pathway in mammals is oxidation, catalyzed by a monoamine
oxidase (MAO) to 5-hydroxyindole acetic acid (Erspamer, 1966). In such a
system, MAO inhibitors such as iproniazid and nialamid, for example, sup-
press the metabolism of 5-HT and increase its concentration in the tissue. We
have found that a wide variety of MAO inhibitors, indicated in Table I, are
essentially ineffective in either prolonging or increasing natural lateral in-
hibition or the effect of perfused 5-HT, or in raising the assay level of en-
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FIGURE I 1. Comparative inhibitory effect of melatonin and serotonin on light-evoked
spike activity. Response of several receptors simultaneously recorded by extracellular
suction electrode pick-up from their optic nerve fibers. Multifiber spike frequency of
the composite spike record.
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FIGURE 12. Schematic representation of possible inhibitory neurotransmitter me-
tabolism in Limulus lateral eye.
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TABLE I

MAOI EXPERIMENTAL CONDITIONS

Type experiment MAOI Concentration Method Period

Pharmaco- Iproniazid 0.2-2 mg/g eye tissue In bath Up to 2 hr during
logical Pargyline 2 mg/g eye tissue In bath experimental run

(Average weight of eye slice
about 50 mg)

Neurochem- Pargyline 2 mg/g eye tissue Homogenate Varied with different ex-
ical Pargyline 100 mg/kg whole animal Intracardiac periments and MAOI

Iproniazid 100 mg/kg whole animal Intracardiac from 2 to 24 hr
Nialamid 10 mg/kg whole animal Intracardiac
Tranylcypro- 2 mg/kg whole animal Intracardiac

mine
Dibenamine 100 mg/kg whole animal Intracardiac

(antisym-
pathetic)

(Average weight of whole
animal about 1 kg)

dogenous 5-HT, in lateral eye tissue. Furthermore, we have not found the 5-
hydroxyindole acetic acid (5-HIAA) metabolite in our TLC identification
procedures, nor have we found isotope-labeled 5-HIAA in response to eye
tissue incubation with 5-HT-14 C.

Another pathway for 5-HT metabolism is the one associated with pineal
melatonin synthesis and also shown in Fig. 12. It has N-acetylserotonin
(NAS) as a metabolic intermediate (Erspamer, 1966). One possible interpre-
tation of the electrophysiological action of high concentrations of MLT is that
MLT is exerting its effect here not directly on the synaptic receptor, but
indirectly by reversing or inhibiting a rate-limiting step in the catabolism of
5-HT by a feedback action on hydroxyindole-o-methyl transferase (HIOMT)
or N-acetylase. Another possibility is that MLT stimulates 5-HT release.
Administration of MLT in rats markedly increases midbrain 5-HT concen-
tration although the mechanism of this action is not definitely known (Ant6n-
Tay, 1971). Speculation concerning a metabolic relationship between the
identified 5-HT and MLT in lateral eye tissue, cannot be resolved without
further pharmacological and neurochemical studies.

DISCUSSION

A number of criteria, applicable at the cellular and subcellular levels, and
useful for distinguishing synaptic transmitters in invertebrates have been
proposed by Gerschenfeld (1966). Included among these criteria are the
requirements that (a) the putative transmitter substance be present and
stored in bound form in the neural tissue, (b) synthesizing enzymes be pre-
sent, (c) inactivating or metabolizing enzymes be present, (d) the substance
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can be collected after nerve stimulation, e.g. by superfusion, (e) receptors to
the substance exist in the postsynaptic cell, and (f) the substance and the
transmitter induce identical physiological actions. The results presented in
our paper either directly satisfy a number of the criteria or are strong indica-
tions that the results of further experimentation will meet the requirements.

The ultrastructural identification of numerous vesicles, of clear and dense-
core type, suggests the presence and storage sites of a neurotransmitter
in the neuropil of the lateral eye. This is all that can be said based on the
data presented here. There has been some work on vesicles in mammalian
nervous tissue which may eventually prove relevant to Limulus eye. H6kfelt
(1971) presents good evidence that intraneuronal monoamines in both the
peripheral and central nervous system, including the pineal, of mammals are
localized mainly to granular (dense-core) vesicles of small and large type.
Synaptic boutons containing small (ca. 400 A), clear vesicles show isotope
labeling after administration of tritiated 5-hydroxytryptophan, a 5-HT
precursor, in rat medulla (Hashimoto, 1971). Perhaps one, or both, of these
types of vesicles is the storage site for a putative 5-HT transmitter in Limulus
eye tissue.

Although MLT in the eye tissue does not in itself prove that the 5-HT is
inactivated by metabolism to MLT (requirement c), it is a strong indication
of such a mechanism. Wurtman et al. (1968) indicate that the enzymatic
mechanism for producing melatonin from 5-HT, i.e. HIOMT, is found in
the retina in lower vertebrate forms such as fish and amphibia. Further
study of the possible intermediate step involving N-acetylserotonin in Limulus
eye, including the quantitative aspects of metabolic turnover, is necessary.
The crossed-desensitization between 5-HT and light-evoked lateral inhibition,
and the inhibitory action of perfused 5-HT, directly satisfy the requirement
(e) that postsynaptic receptors exist. Finally, some aspects of the identity of
physiological action induced by 5-HT and the actual transmitter (J), such
as the inhibition of spike activity, action in highly diluted concentrations,
desensitization vis-a-vis inhibitory fatigue, are further indirect evidence that
5-HT, or a related indolealkylamine, may be the inhibitory transmitter in
Limulus lateral eye.

Serotonin metabolism via a pathway similar to the one found in vertebrate
pineals is suggestive of several possible hypotheses. First, the Limulus lateral
eye has evolved into an invertebrate analog of the vertebrate pineal organ.
The photoreceptor structural and electrophysiological properties of verte-
brate pineals, especially those of amphibia and reptilia, may be evidence for
such an analogy (Wurtman et al., 1968). The relationship between light
sensitivity, pineal activity, and neurohumoral control of reproductive be-
havior in vertebrates is vaguely understood at present. In Limulus, the role
of vision in affecting behavior has been difficult to discern. Much of the
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animal's ordinary activity appears to be in response to chemical sensory
inputs, i.e. gustatory and olfactory. However, its annual reproductive activity
seems highly correlated to patterns of daylight and darkness in its environ-
ment and may reflect neurohumoral control mediated through visual input.

A second hypothetical aspect of a serotonin-melatonin system in Limulus
involves the mechanism of light and dark adaptation, at least in this in-
vertebrate. Melatonin is a substance known to exert humoral control of
pigment migration in animals, especially fish and amphibia (Wurtman et al.,
1968). One phase of dark/light adaptation in invertebrates is controlled by
the dynamics of shielding pigment migration within rhabdomeric regions of
retinular cells (H6glund, 1966). It is tempting to postulate a scheme in which
incident light level, by controlling the level of inhibitory activity in the eye
and the metabolism of the inhibitory transmitter, i.e. 5-HT, regulates the
level of melatonin and ultimately controls shielding pigment mobilization
and adaptation.
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