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Abstract: Deep learning-based methods, especially convolutional neural networks, have been devel-
oped to automatically process the images of concrete surfaces for crack identification tasks. Although
deep learning-based methods claim very high accuracy, they often ignore the complexity of the
image collection process. Real-world images are often impacted by complex illumination conditions,
shadows, the randomness of crack shapes and sizes, blemishes, and concrete spall. Published litera-
ture and available shadow databases are oriented towards images taken in laboratory conditions.
In this paper, we explore the complexity of image classification for concrete crack detection in the
presence of demanding illumination conditions. Challenges associated with the application of deep
learning-based methods for detecting concrete cracks in the presence of shadows are elaborated on
in this paper. Novel shadow augmentation techniques are developed to increase the accuracy of
automatic detection of concrete cracks.

Keywords: concrete crack detection; deep learning; convolution neural networks; image classification;
image augmentation

1. Introduction

Concrete structures like bridges, beams, columns, and highways are often subjected to
high levels of stress and strain. The stress in the concrete structures is caused by continuous
cyclic loading, changes in temperature, and effects of weathering, which could result in
the origination and propagation of cracks in concrete structures. Sometimes these cracks
become connected and can increase in size [1,2]. Early detection of a failure in concrete
structures in offshore and onshore environments, bridges, concrete pillars, and concrete
pipelines helps to put preventive measures in place to avoid failures, which can save assets
and lives.

Crack detection is done by using invasive or non-invasive techniques. Invasive tech-
niques, which usually involve surveying using specialized equipment, like infrared light,
thermal testing, ultrasonic techniques, and testing concrete samples in the laboratory,
are often time-consuming and complex processes. All the invasive and non-invasive
methods require structural experts to analyze and interpret the available data [3]. The find-
ings of such methodologies are often subjected to human interpretation and knowledge.
With advent of improved imaging capabilities and increased computational power, other
non-invasive techniques using digital image analysis of concrete structures have gained
a lot of momentum. In the last few decades, more than 50 articles discussed the prob-
lems of concrete crack identification using pre-processing and post-processing techniques.
A comprehensive overview of such methods (including advantages and disadvantages) are
presented by Mohan et al. [4].

More recently, deep learning-based methods using ANNs (artificial neural networks)
and CNNs (convolutional neural networks) have been applied to automatically process
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the images for crack/failure identification in onshore concrete installations [5–9]. Several
applications based on the use of CNN-type neural networks to identify surface concrete
cracks have recently emerged with the development of artificial intelligence and deep
learning technologies. Many of these methods could be characterized by high classification
accuracy. Most of the published data spans the last decade. Kim et al. [5] presented
a conference paper in 2011 in which they used a backpropagation neural network for
225 concrete images. The network was trained using 105 images, and the trained network
was tested for 120 new images. The recognition rate of the crack image was 90% and
non-crack image was 92%. Choudhary et al. [10] published a methodology for crack
identification and detection using an object detection method. In their work, they have
utilized over 205 256 × 256 resolution images, claiming a high crack detection accuracy
reaching 96%. Ha [11] published their work in 2016 in which they have used an image
segmentation method for automatic peak detection enabling concrete crack identification.

The first extensive data set of over 40,000 images of 256 × 256 resolution is used
by Cha et al. [6] in their 2017 paper. They have applied a CNN-based deep learning
method for concrete crack detection achieving very high accuracy of over 98%. A series
of papers published in 2019 using deep learning methods for crack identification and
detection. Papers published by Chen et al. [12] and Cao et al. [13] use CNN-based methods
on the same set of 40,000 images of 227 × 227 resolution, both presenting good recognition
accuracy of over 99% and 90%, respectively. The 2019 paper published by Lee et al. is
distinguishable as they have used very high resolution (3120 × 4160) data set comprising
60,000 images for training and testing of their CNN-based crack identification method with
a very high prediction accuracy of about 99%. A series of papers published in 2019 by
Moon et al. [14] and Kim et al. [15] also use convolution neural networks.

More recently, Kim et al. [5] have used the same data set [6,13] and have further
improved the accuracy of the CNN to 99.9%. Jitendra et al. [16] and Wenming et al. [13]
have presented a comparison of different deep learning networks in their papers published
in 2020. They have also used over 20,000 images of 1024 × 1024 higher resolution images.
Long-short term memory (LSTM) based deep learning convolutional neural networks have
also been applied for crack identification [17]. This paper is unique in the sense that the use
of the CNN-LSTM type method has not been presented before in literature for problems of
crack identification.

A recent paper was published in 2021 where thermal image-based crack identification
and detection is performed using a U-net type learning network [8]. However, the predic-
tion accuracy of the U-net based on thermal images is rather low and reaches only 78%.
In 2021, a paper presented by Yang et al. [18] shows a comparison of three neural networks,
Alexnet, VGGNet13, and ResNet18, to recognize and classify crack images. This paper also
shows that the trained YOLOv3 model detects the crack area with a satisfactory accuracy.

Although all these methods claim very high accuracy, they often ignore the complexity
of the image collection process itself. Almost all published papers deal with images cap-
tured in ideal laboratory-based conditions. None of the published papers have specifically
considered the challenge of identifying concrete cracks in the presence of shadows. One pos-
sible approach for dealing with this problem is shadow detection and its removal. However,
shadow removal is far from being a straightforward task. Early papers on shadow detection
and removal have been presented by Finlayson et al. [19,20]. A comprehensive detail of the
various shadow detection and removal methods is presented by Murali et al. [21]. More
recently, ANN-based deep learning methods have also been deployed for shadow detection
and removal [22–24]. Although several researchers have tried to solve the problem of
shadow removal; this task still remains a complex topic with moderate to good success [21].
Shadow removal in concrete crack images often severely impacts the quality of the digital
image, which makes further crack detection very challenging [25].

A new approach for realistic crack detection using the augmentation of existing crack
data sets by complex shadow shapes is proposed in this paper. The presented methodology
helps to automate the crack detection in real environmental settings. Moreover, it enables
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the use of the deep learning-based crack identification methodology for broader real-world
applications, including the use of camera-carrying areal unmanned vehicles.

This paper is organized as follows: Section 2 presents concrete crack detection chal-
lenges in the presence of shadows and the proposed concrete crack identification framework.
Results are presented in Section 3. Section 4 presents discussions. Finally, conclusions
follow in Section 5.

2. Materials and Methods

This section, first, presents the details of challenges associated with crack detection
using image analysis. Second, details of the methodology proposed in this paper to help
improve crack detection with improved image classification algorithms follow next. Finally,
the implementation of the algorithm is presented.

2.1. Concrete Crack Detection Challenges in the Presence of Shadows

Crack identification and characterization in images containing concrete cracks is a
demanding task. Images of concrete surfaces containing cracks taken in real-life conditions
are impacted by complex illumination conditions, including shadows and shading. An ex-
ample of concrete images containing cracks and shadows is shown in Figure 1. Current
state-of-the-art image analysis methodologies that are applied to real-world images of
concrete structures in the presence of shadows can result in misleading results, which is
further discussed and shown in this Section.

(a) (b) (c)

Figure 1. Sample images of concrete surfaces in the presence of shadows. Parts (a,b) show concrete
surfaces without cracks. Part (c) shows concrete crack surface with crack.

Some sample images are used to demonstrate crack detection challenges in the pres-
ence of shadows using existing deep-learning-based methods. For this purpose, we will
use the published data set of concrete crack images from Ozgenel [26], which consists of
40,000 images of surfaces with and without concrete cracks. A set of sample images is
shown in Figure 2. This database of images has been widely used by researchers for the
training and testing of multiple deep learning models for concrete crack detection.

The test case based on the paper by Byunghyun et al. [27] (which uses a classification
network AlexNet [28]) is used in the following experiments. The network is trained on a
subset of “Positive” and “Negative” images of 227 × 227 resolution and then tested on a
subset of test images for accuracy. Testing results of sample images of different scenarios are
shown in Figure 3. Images without shadows and without cracks are shown in Figure 3a,b.
Model accuracy is perfect, as expected for this kind of image. The same accuracy is also
achieved in Figure 3c,d. These images contain cracks, but shadows are absent. Images
with shadows and without cracks are shown in Figure 3e,f. These images demonstrate
False-Positive cases—shadow patterns are incorrectly identified as cracks. Finally, images
with shadows and with cracks are shown in Figure 3g,h. It has been found that images
having large shadow areas of high intensity can result in False-Negative errors. Thus, it
is clear that a classification network trained on images captured in laboratory conditions
without shadows can result in the wrong classification of images with shadows.
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(a) (b) (c)

(d) (e) (f)

Figure 2. Some typical images from the Mendeley’s data set of “Concrete crack images for classifica-
tion” [26]. Shadows are absent in all images. Parts (a–c) show concrete surfaces without cracks. Parts
(d–f) show concrete surfaces with cracks.
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Figure 3. The model trained on the original Mendeley “Concrete Crack Images for Classification”
produces wrong results in the presence of shadows. Images without cracks and shadows in parts (a,b)
and with cracks and without shadows in parts (c,d) are classified correctly. Images without cracks
but with shadows in parts (e,f) and images with cracks and shadows in parts (g,h) are classified
incorrectly. Figure highlights the deficiencies of the standard image classification algorithms.
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This test example shows the disadvantages of training deep learning models on ideal
images of cracked concrete surfaces. It raises an important question of whether these
models could be generalized for real-life images, which are often impacted by varying
illumination conditions. The first approach that comes to mind would be to improve
the classification and segmentation accuracy of concrete images containing shadows by
applying shadow removal pre-processing techniques. However, shadow removal is not a
straightforward task. It has been shown that pre-processing of concrete crack images for
shadow removal could lead to severe deterioration in image quality, leading to incorrectly
classified images [25].

2.2. The Concrete Crack Identification Framework

Examples presented in the previous section clearly demonstrate that the deep learning
methods trained on images containing concrete surfaces without shadows cannot correctly
classify concrete crack images in the presence of shadows. In order to overcome this
challenge, it is necessary to re-train the network on large data sets of concrete crack images
containing shadows. However, the creation of such a database is not an easy task as it
requires diligent image collection of concrete surfaces with different shadow shapes. We
propose a shadow augmentation technique that allows reusing existing data sets of concrete
crack images. We also provide details on the deep learning image classification network,
which is further used to test the accuracy of the model that is trained using augmented data.

2.3. The Proposed Shadow Augmentation Technique

We propose a three-step shadow augmentation technique: (1) ray-tracing of shadows,
(2) augmentation of shadow masks, and (3) shadow blending. The whole augmentation
process is depicted in Figure 4.

Firstly, the computational ray-tracing of shadows is performed in a virtual optical
environment. A wide variety of realistic shadow images are generated using the 3D
computer graphics software Blender with the Cycles rendering engine [29]. Cycles is
an unbiased physically-based render engine that utilizes path tracing to represent real-
world optical phenomena accurately. Path tracing is a type of ray tracing technique used to
simulate the physical behavior of light. This family of algorithms is based on approximating
the solution to the rendering equation, which describes the light propagation in a scene via
the following integral equation [30]:

Lo(x, ωo) = LE(x, ωo) +
∫

Ω
Li(x, ωi) fr(x, ωi, ωo)(ωi · n)dωi, (1)

where x is the space variable, ωo is the direction of the outgoing ray of light, Lo is the total
spectral radiance directed from the point x along the direction ωo, Lo is emitted spectral
radiance, Ω is the unit hemisphere in direction of normal vector n at x, ωi is the direction
of the incoming ray of light, Li is spectral radiance coming inward to x from the direction
ωi and fr(x, ωi, ωo) is the bidirectional reflectance distribution function (the proportion of
light reflected from the direction ωi to ωo at x).

As solving Equation (1) is a computationally extensive task, it is common to approxi-
mate the integral in Equation (1) by utilizing the Monte Carlo simulation as follows [30]:∫

Ω
f (x)dΩ ≈ 1

N ∑
X

f (x), (2)

where f (x) is an arbitrary function and X is a set consisting of N samples uniformly
distributed in Ω. In order to improve the convergence speed of this method, path tracing
techniques apply a methodology based on deterministic sampling, called the Quasi-Monte
Carlo method.
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3D objects

(bridges, cars, trees, etc.)

Figure 4. A schematic diagram for synthetic augmentation of complex shadow patterns—ray-tracing
of shadows, shadow data set augmentation, and shadow blending.

The short outline of the path-tracing algorithm used in the Cycles rendering engine is
as follows: multiple rays are cast from each pixel of the camera into the scene in random
directions. The produced rays reflect, refract, or get absorbed by the objects in the scene
until they either reach a light source or the user-defined bounce limit, forming a set of
paths from the camera to the light. The amount of light per pixel is then calculated for
each ray, the value is averaged and assigned to that specific pixel. In our case, multiple 3D
objects are used to render 50 images. The individual size of each rendered shadow image is
2270 × 2270, which is then automatically spitted into 100 different shadow masks. This has
been demonstrated in the first block of Figure 4.
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One approach would be to generate a separate shadow mask for each image in
Mendeley Concrete Crack Images for Classification dataset containing 40,000 images.
However, we propose using standard image transformation techniques to augment the
shadow mask data set (in our case, this data set contains 5000 unique shadow masks). This
is demonstrated in the second block of Figure 4. Transformations, such as random rotation
(0 < θ < 360 deg), random zoom (0.2), height (0.2), width (0.2), shear (0.2), and opacity
(0.6 < x < 0.8) has been applied to generate 40,000 unique shadow masks. The parameter
used for random rotation is between 0 and 360 deg as shadows can be cast over concrete
images at any angle. Other parameters were selected experimentally to prevent divergence
from original shadow forms.

Finally, augmentation of concrete crack images is performed by image combination
through superposition techniques, where one image (shadow mask) is blended with another
image (concrete surface) to create an illusion of a single image containing features from both
source images. This effect is achieved by using a multiply blending operation. Multiply
blending takes values from 0 to 1 of each pixel in the first image and multiples them with
the values for the corresponding pixel from the second image. Wherever either layer was
brighter than black, the composite is darker because each value is less than 1. The product
will be less than each initial value that was greater or equal to zero. This operation (as
shown in Figure 4) is performed for the whole data set of 40,000 images (once for images
with and once for images without cracks). Typical resulting images of the augmented
Mendeley Concrete Crack Images for Classification data set are shown in Figure 5.

(c) (d)

(a) (b)

Figure 5. Typical images after the application of shadow augmentation technique for images in
Mendeley Concrete Crack Images for Classification data set: (a,b) depicts images without cracks;
(c,d) depicts images with cracks.

2.4. Neural Network for Concrete Crack Detection

In this section, we provide details and architecture of a deep learning image clas-
sification network AlexNet [28], which we use to train the classification model using
augmented data. AlexNet is a convolutional neural network developed in 2012 by A.
Krizhevsky et al. [28]. It was the winning entry in the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC 2012) which involved classifying images (227 × 227 pixels) into
1000 different classes (e.g., cats, dogs) [31]. AlexNet is a large neural network comprising
25 layers (input and output layers, 5 convolutional layers, 3 max-pooling layers, 3 fully
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connected layers, 7 ReLU layers, 2 normalization layers, 2 dropout layers, and 1 1000-way
softmax layer), 60 million parameters and 650,000 neurons. Its architecture is given in
Table 1.

Table 1. Architecture of AlexNet deep learning classification network.

Layer No. Layer Name Layer No. Layer Name

1 Image input layer 14 Convolutional layer
2 Convolutional layer 15 ReLU layer
3 ReLU layer 16 Max-pooling layer

4 Cross-channel
normalization layer 17 Fully connected layer

5 Max-pooling layer 18 ReLU layer
6 Convolutional layer 19 Dropout layer
7 ReLU layer 20 Fully connected layer

8 Cross-channel
normalization layer 21 ReLU layer

9 Max-pooling layer 22 Dropout layer
10 Convolutional layer 23 Fully connected layer
11 ReLU layer 24 Softmax layer
12 Convolutional layer 25 Classification output layer
13 ReLU layer

Compared to previous neural networks, there were several advanced techniques used
in AlexNet, which significantly enhanced its performance. Firstly, the rectified linear unit
(ReLU) function (ReLU(x) = max(x, 0)) was utilized in order to eliminate the gradient
vanishing problem which often follows the traditional activation functions (for example
the logistic function). As the gradient of ReLU is always equal to one when the input
is larger or equal to zero, it has been shown that the convergence speed of deep neural
networks with ReLU as the activation function is faster than traditional activation functions,
which greatly accelerates the training procedure. Next, two-dimensional convolutional
layers with trainable kernels were used to produce a feature map and max-pooling was
utilized for feature reduction. Max-pooling is a common technique that considers a group of
neighboring pixels in the feature map and computes their maximum value. Moreover, local
response normalization was introduced to aid generalization [28]. The dropout technique
was used to avoid overfitting and accelerate the training process. Dropout freezes neurons
at random with a set dropout probability preventing their engagement in forward and
backward passes during the training phase. Finally, a 1000-way Softmax activation was
utilized to produce a distribution over the 1000 class labels.

As mentioned in the previous sections, the concrete image classification problem this
paper analyzes involves only two classes—“with cracks” and “without cracks”. Thus,
the last layer of the original AlexNet architecture (see Table 1) must be modified: 2-way
Softmax activation needs to be used at the output. Due to the reduced number of outputs,
the two fully connected layers right before the last layer may also be modified by reducing
the number of neurons in them if severe overfitting or a very slow convergence is observed
during the training of the network. Next, the learning rate factor for weights and biases as
well as the initial learning rate are adjusted to slow down the learning speed of the new
network and increase its prediction capabilities. Finally, the new network is retrained with
the augmented data set of concrete images.

The training of the network using the augmented data set of concrete images was
performed by using the stochastic gradient descent optimizer. The batch size was set to
15 samples of augmented concrete images. The number of training epochs was limited
to 25. Training and testing samples comprised 85% and 15% of the augmented data set
accordingly. The initial learning rate was fixed to 0.01. All these parameters were tuned
after carrying out extensive numerical computations.
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The training dynamics are depicted in Figure 6. Note that the network starts to overfit
after epoch 9 (although the optimization process still continues). This is true both for the
original and the augmented data sets. Thus, it is possible to conclude that only 9 epochs
are sufficient to train the network.

Figure 6. The training dynamics of the network: (a,b) depicts the accuracy and loss functions using
the original data set; (c,d) correspond to the training dynamics of the network with the augmented
data set.

3. Results

The results of the deep learning model are trained on the augmented Mendeley
Concrete Crack Images for Classification data set (see Section 2.3), and then tested on a
subset of test images. Testing of sample images taken in different scenarios are shown in
Figure 7. Images without shadows are shown in Figure 7a–d. The accuracy of the model
is perfect for both situations—images with and without cracks. The important factor is
that the introduction of shadows in the training data set does not result in lower accuracy,
and results are comparable with tests shown in Figure 3. Images with shadows and without
cracks are shown in Figure 7e,f. Those images demonstrate that False-Positive cases of
shadow patterns (that were incorrectly identified as cracks in Figure 3) are no longer
present. Finally, images with shadows and cracks are shown in Figure 7g,h. Images with
large shadow areas of high intensity are now identified correctly. This demonstrates that
the classification using a network trained on the augmented images containing concrete
surfaces with shadows results in accurate classification.

Confusion matrices showing different network accuracy in different scenarios are
shown in Figure 8. First, a confusion matrix for a model trained and tested on the data
sets without shadows is given in Figure 8a. The model achieves 0.9978 accuracy and is
comparable with most state-of-the-art deep learning-based concrete crack identification
models. Test results show 15 False-Positive and 11 False-Negative errors, which is totally
acceptable for most applications. Next, a confusion matrix for a model which is trained
on the original Mendeley Concrete Crack Images for Classification data set (same as in
the previous case) but tested on concrete crack images containing complex shadows of
varying intensity is shown in Figure 8b. A noticeable drop in accuracy (0.9045 compared
to 0.9978 in the previous case) is observed. The larger part of this drop in accuracy is
caused by False-Positive errors. In this case, shadows are incorrectly identified as cracks.
Finally, a confusion matrix for a model trained on the augmented Mendeley Concrete
Crack Images for Classification data set and tested on concrete crack images containing
complex shadows of varying intensity is shown in Figure 8c. In this scenario, the accuracy
returns to an acceptable level of 0.9941 and can be considered as a big improvement in
comparison to Figure 8b. The presented results prove that the proposed approach based on
the augmentation of the original data set with synthetically generated complex shadows
proves to be beneficial for real-life applications which require high classification accuracy.
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Figure 7. The model trained on the augmented Mendeley “Concrete Crack Images for Classification”
produces correct results in the presence of shadows. Images without cracks and shadows in parts
(a,b) and with cracks and without shadows in parts (c,d) are classified correctly. Images without
cracks but with shadows in parts (e,f) and images with cracks and shadows in parts (g,h) are now
also classified correctly. Figure shows the improvement achieved with new algorithm in classification
of cracks compared to Figure 3.
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Figure 8. Confusion matrices showing different network accuracy when: (a) the model is trained on
the original Mendeley “Concrete Crack Images for Classification” data set and tested on concrete
images without shadows; (b) the model is tested on concrete images with shadows; (c) the model is
trained on the augmented Mendeley “Concrete Crack Images for Classification” data set and tested
on concrete images without shadows.

4. Discussion

In this paper, we wanted to demonstrate that if machine learning algorithms are
used on available databases of concrete crack images, they fail to accurately identify
concrete cracks in the presence of challenging environmental conditions. To improve
the concrete crack detection accuracy, three options could be proposed: 1st option is to
eliminate shadows through pre-processing the acquired images before applying machine
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learning algorithms for concrete crack detection. This approach does not work well and the
drawbacks have been demonstrated in [25]. 2nd option is to improve the concrete crack
image database with a large collection of images with shadows in challenging illumination
conditions to improve the accuracy of existing deep learning networks, as demonstrated in
this paper. 3rd option is to design a completely new deep learning network, which could
cater to complex images for challenging environmental conditions, which goes beyond the
scope of this manuscript.

There are still some practical challenges that could be envisaged in applying our
method using an unmanned areal vehicle (UAV). Most important is to ensure the qual-
ity of images acquired by the UAV device. This challenge could be mitigated by using
high-resolution imaging cameras, which are readily available these days. Another chal-
lenge could be the impact of concrete surface coloring or location of the concrete surface,
e.g., onshore or offshore concrete structures (underwater concrete structures). Both of
these challenges could be further mitigated with the help of image augmentation. Yet
another challenge is with respect to the quantification of concrete crack size. The approach
presented in this paper is geared toward concrete crack detection, which is the first step
toward detection of concrete crack next step is the quantification of the crack, its size,
dimensions, and type of crack. Whether it is a superficial crack, micro-crack, or failure
crack. All of them come with their own challenges. Further development of our method is
required to address the crack quantification questions. Approach presented in this paper
is geared towards preventive maintenance and routine inspections to enable preventive
maintenance to ensure that cracks do not lead to failure of the structure.

Although our proposed approach may appear simplistic, it is, however, the most
particle approach as it does not require the creation of an entirely new deep learning
network and nor does it require massive data collection exercises for images of concrete
cracks in challenging conditions. Our approach also demonstrates that its possible to use
image augmentation to improve the accuracy of existing established networks, which have
been tested on a number of difficult problems.

Finally, the results shown in our paper demonstrated that the augmented data set
helped to retrain the network to reach a very high level of accuracy for the classification
of images. However, augmentation alone itself should not always necessarily lead to an
improved result. The augmentation algorithms introduced in this paper are based on a
realistic simulation of optical effects in the virtual digital environment. Therefore, such an
approach when an existing data set is augmented and then deep learning algorithms are
employed can improve if and only if the augmentation is based on realistic environmental
conditions. This has been demonstrated in our paper and this is a major differentiator
leading to the success of such an approach.

5. Conclusions

This article highlights the challenges associated with the classification of real-life
concrete crack images taken in complex illumination conditions. The test experiments
conducted on images with shadows clearly demonstrate that current state-of-the-art deep
learning models fail to identify cracked surfaces in the presence of shadows. This paper
introduces the image augmentation technique, which is achieved through three consecu-
tive steps: ray-tracing of shadows, shadow data set augmentation, and shadow blending.
Testing of the model that is trained on the augmented data set shows a significant increase
in robustness and the model accuracy—0.9941 compared to 0.9045. The proposed aug-
mentation technique seems to be the most practical approach to help train the networks
to identify cracks on concrete surfaces in the presence of shadows as existing data sets
can be reused in the process. Such enhanced classification capabilities are beneficial for
structural control and health monitoring of concrete structures using unmanned aerial
vehicles or drones, where the methodology must be robust enough to deal with real-life im-
ages impacted by different environmental conditions such as shadows, shading, blemishes,
and concrete spall.
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