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Abstract: Ginkgo biloba extract possess several promising biological activities; currently, it is clinically
employed in the management of several diseases. This research work aimed to extrapolate the
antioxidant and anti-inflammatory effects of Ginkgo biloba (Gb) in methotrexate (MTX)-induced liver
toxicity model. These effects were analyzed using different in vivo experimental approaches and
by bioinformatics analysis. Male SD rats were grouped as follows: saline; MTX; Gb (pretreated for
seven days with 60, 120, and 180 mg/kg daily dose before MTX treatment); silymarin (followed by
MTX treatment); Gb 180 mg/kg daily only; and silymarin only. Histopathological results revealed
that MTX induced marked hepatic injury, associated with a substantial surge in various hepatic
enzymes such as alanine transaminase (ALT), aspartate transaminase (AST), and serum alkaline
phosphatase (ALP). Furthermore, MTX caused the triggering of oxidative distress associated with
a depressed antioxidant system. All these injury markers contributed to a significant release of
apoptotic (caspase-3 and c-Jun N-terminal kinases (JNK)) and tumor necrosis factor (TNF-α)-like
inflammatory mediators. Treatment with Gb counteracts MTX-mediated apoptosis and inflammation
dose-dependently along with modulating the innate antioxidative mechanisms such as glutathione
(GSH) and glutathione S-transferase (GST). These results were further supplemented by in silico
study to analyze drug-receptor interactions (for several Gb constituents and target proteins) stabilized
by a low energy value and with a good number of hydrogen bonds. These findings demonstrated that
Gb could ameliorate MTX-induced elevated liver reactive oxygen species (ROS) and inflammation,
possibly by JNK and TNF-α modulation.
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1. Introduction

The liver, as a critical part of the metabolic machinery, has a central role in homeostasis and
detoxification of xenobiotics. Overproduction of intermediate toxic radicals, however, can disturb the
innate antioxidant guard mechanism, leading to several pathological disorders of the liver such as
acute and chronic hepatitis [1,2]. Furthermore, overwhelming levels of free radicals may cause the
depletion of thiols and result in lipid peroxidation, leading to cell membrane damage and hepatic
injury [3,4]. The inflammatory response develops secondary to tissue damage, which is triggered by
these initial pathological events [5,6].

Methotrexate (MTX) is an anti-neoplastic chemotherapeutic drug, approved for several malignant
conditions. MTX is also known to exhibit anti-inflammatory activity in conditions like psoriasis,
rheumatoid arthritis, and Crohn’s disease, which further fortifies its usage [7]. However, high doses
and prolonged use of MTX are associated with liver toxicity in humans, which is a major limitation of
its use [8]. Consistently, the literature has suggested that the release of proinflammatory cytokines
plays a critical role in the propagation of MTX-induced liver pathogenesis [9].

Natural products have been exploited as a repository for novel therapeutic identification for
decades and thus have attracted considerable attention as a source of potential therapeutic agents.
The antioxidant capabilities of many natural products have been consistently validated in experimental
models. The hepatoprotective activities of various naturally derived compounds have been identified
by several recent studies. For example, silymarin, extracted from Silybum marianum, or milk thistle, is a
bioactive compound that has demonstrated predictable hepatoprotective effects in several animals and
preclinical studies against a variety of insults, including MTX [10,11].

Ginkgo biloba (Gb) extract exhibits promising biological activities against neurodegenerative
and vascular disorders [12,13]. The beneficial effects of Gb are due to its multi-component
repository, in which flavonoids (25%), terpenoids (6%), and pro-anthocyanidins (7%) are the prominent
components [14]. Furthermore, flavonoids have the potential to attenuate the majority of enzymes
integrated into inflammatory cascades. Flavonoids also exert beneficial effects in cardiovascular
diseases, possibly by inhibiting coagulation, thrombus formation, and platelet aggregation [15].
Terpenoids have been shown to suppress the nuclear factor-kB signaling in inflammation and cancer
pathogenesis [16]. The beneficial hepatoprotective effects of Gb have been attributed to its modulating
effect on endogenous antioxidant mechanisms, which were shown to critically regulate liver toxicity in
several experimental models [17].

This research work aimed to investigate the hepatoprotective effects of Ginkgo biloba (Gb) in
methotrexate (MTX)-induced liver toxicity model. We expect that the results of this study will help in
identifying the cascading mechanisms involved in the hepatoprotective effect of Gb and thus provide a
clue for multiple potential targeted therapeutics.

2. Material and Methods

All types of primary antibodies were purchased from Santa Cruz Biotechnology (SCBT, Santa Cruz,
CA, USA). These include phosphorylated JNK (p-JNK), catalog number SC-6254; tumor necrosis factor
(TNF-α), catalog number SC-52B83; cyclooxygenase-2 (COX-2), catalog number SC-514489; and caspase-3,
catalog number SC-56053. Immunohistochemistry-related items such as Elite (Avidin/Biotin) system,
catalog number SC-2018, and 3,3′-diaminobenzidine (DAB) reagent, catalog number SC-216567, were also
obtained from Santa Cruz Biotechnology (SCBT, USA). A biotinylated goat anti-mouse was purchased from
Abcam UK, with catalog number ab-6789. This antibody was used as a secondary antibody. Other chemicals
like saline tablets, fixation solution (formaldehyde), antigen retrieval enzyme, quenching solvent
(H2O2), and DPX mounting were ordered from BDH (Germany). Gb extract, methotrexate, glutathione
(GSH), trichloroacetic acid (TCA), 1-chlor-2,4-dinitrobenzene (CDNP), N-(1-naphthyl)ethylenediamine
dihydrochloride, 5,5′-dithio-bis-(2-nitrobenzoic acid) (DTNB), and silymarin were either a kind gift from
local pharmaceutical industries, ensuring a highest analytical grade (Abbott and GSK Pharma, 99% HPLC
grade), or purchased from Sigma.
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2.1. Animals and Experimental Design

Sprague Dawley (SD) male rats weighing between 250 and 300 g and approximately 8–10 weeks
old were acquired from an institutional breeding facility and were kept under a controlled environment
at Riphah International University, Islamabad, Pakistan. The animals were maintained in plastic cages,
under an equal light/dark period at room temperature with free access to food to facilitate experimental
procedures. Extra care was practiced to avoid unnecessary stressful events. The investigational
procedures were pre-endorsed from the Research and Ethics (REC) committee of Riphah International
University, Islamabad, Pakistan, and as such strictly adhered to guidelines. Rats were divided into
the saline, MTX, and Gb treatment groups (Gb was administered as 60, 120, or 180 mg/kg) and the
silymarin group. Overall, a seven-day protocol was adopted, in which animals received either a single
daily dose of saline (with 5% DMSO) or a daily oral dose of Gb (60, 120, or 180 mg/kg) or a daily
dose of silymarin (100 mg/kg). MTX was administered on the 7th day as a single dose either after Gb
administration or saline (disease group or MTX-only group).

All drugs were dissolved in a mixture of 5% DMSO in saline. All animals that survived this
period were utilized in the study. A total of four animals died during the experimental procedures,
of which three were from the MTX-only group and one was from the low-dose Gb group; these
groups were further adjusted by supplementing more animals. After 7 days (Figure 1), rats were
anesthetized and divided into two cohorts (each cohort with n = 5 per group). One cohort was used for
biochemical analysis: blood was taken from the heart, sera were obtained through centrifugation and
preserved at –20 ◦C for subsequent analysis, and then liver tissues were analyzed for antioxidant assays.
The biochemical determinants (alkaline phosphatase (ALP), total bilirubin, aspartate transaminase
(AST), alanine transaminase (ALT)) were assessed by using standard commercial kits measured in
the UV spectrophotometer. For the other cohort of animals, liver tissues from different groups were
preserved in 4% paraformaldehyde for morphological analysis and later on processed for paraffin
embedding and trimming by a microtome. Thin 4 µm sections were made and fixed on a coated slide.
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were treated daily with saline and then on the 7th day received methotrexate (MTX) (20 mg/kg); (3) MTX +

Ginkgo biloba (Gb) 60 mg, where rats received Gb (60 mg/kg) orally for 7 days and then on the 7th day received
MTX (20 mg/kg); (4) MTX + Gb 120 mg, where rats were administered Gb (120 mg/kg) orally for 7 days and
then on the 7th day received MTX (20 mg/kg); (5) MTX + Gb 180 mg, where rats received Gb (180 mg/kg) orally
for 7 days and on the 7th day received MTX (20 mg/kg); (6) in the silymarin group, rats were administered
silymarin (100 mg/kg) for 7 days and then and on the 7th day received MTX (20 mg/kg).

2.2. Hematoxylin and Eosin (H&E) Staining

Tissue slides were subjected to deparaffinization protocol, which started with three different
xylene treatments for 10 min followed by rehydration in graded alcohol preparation (commencing from
100% to 70%, each wash for several minutes). The slides were then rinsed with distilled water to
clear any ethanol remaining and incubated for 10 min in hematoxylin at RT. After this, the slides
were washed with distilled water and observed under the microscope to ensure nuclear staining.
Otherwise, incubation time with hematoxylin was increased, followed by 1% HCl solution treatment
for a short interval and then rinsing with distilled water, followed by immediate treatment with
1% ammonia water and then rinsing with water. The slides were then stained with pinkish eosin
solution for the appropriate time and were then rinsed in water and kept under room temperature
for air-drying. This step was followed by gradient ethanolic dehydration, fixation in absolute xylene
(reverse deparaffinization protocol), and mounting with a glass coverslip. By using an Olympus light
microscope at 40× magnification scale, slides were analyzed for the extent of neuronal death and
survival using an ImageJ program [18].

2.3. Serum Biomarkers Analysis

The biochemical parameters or liver functional determinants (ALP, total bilirubin, AST, ALT) were
determined by using standard commercial kits measured in the UV spectrophotometer.

2.4. Oxidative Enzymes Analysis

Oxidative stress markers such as glutathione (GSH) level and glutathione transferase (GST)
activity were determined to assess the degree of MTX damage and the relative effect of the test
drug. After homogenization in phosphate-buffered saline (PBS) and centrifugation at 4000× g at 4 ◦C,
the upper layer of clear supernatant was picked carefully. GSH level was assessed using a previously
reported method with slight modifications. Here, 0.6 mM DTNB was dissolved in 0.2 M sodium
phosphate, and then 2 mL of this solution was added to 0.2 mL of the supernatant. Then, 0.2 M PBS
was added to make a final volume of 3 mL. The absorbance of the resultant mixture was measured
after 10 min at 412 nm using a spectrophotometer. Phosphate buffer was used as blank whereas the
DTNB solution was used as control. Real absorbance was calculated by subtracting the absorbance
of control from that of the tissue lysate. Final GSH values were expressed in µmol/mg of proteins.
For the determination of GST activity, three replicates of 1.2 mL reaction mixture were placed in a
glass vial. Tissue supernatant was then added to the freshly prepared reaction mixture consisting of
a 5:1 ratio of GST to CDNB. Blanks were also made using water by taking the same volume as the
reaction mixture. Aliquots of 210 µL from the reaction mixture were pipetted in a 96-well plate, and
the reaction rate was recorded using an ELISA reader at 340 nm. The GST activity was calculated using
the extinction coefficient of the product formed and expressed as µmol of CDNB conjugate/min/mg
of protein. For the nitric oxide assay, the previously reported protocols were adopted. Briefly, an
equivalent quantity of tissue supernatant and saline was gently mixed with an equivalent quantity of
Griess mixture, and the resulting mixture was further incubated. Absorbance was measured at 546 nm
with an ELISA reader, using standard sodium nitrite solution to calibrate the absorbance coefficient.
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2.5. Immunohistochemical Staining and Microscopic Analysis

Immunohistochemical staining was achieved according to our previously published report [18].
Briefly, after the deparaffinization protocol described above, slides were treated with proteinase K
to clear formaldehyde remains from the antigen epitope and then washed. A diluted H2O2 solution
(3% in methanol) was employed for quenching peroxidase reactivity. After washing, slides were treated
with a normal serum-like (NGS). Slides were then incubated for a whole night with primary antibodies,
as demonstrated in material sections with a dilution factor of 1:100. The next morning, slides were
consecutively treated with a biotin-tagged 2◦ antibody (dilution 1:50) and with an ABC kit (Santa Cruz
Biotechnology) and then stained in DAB solution. This step was followed by gradient ethanolic
dehydration and fixation in absolute xylene (reverse deparaffinization protocol) and mounting with a
glass coverslip. By using an Olympus light microscope at 40×magnification scale, slides were analyzed
for hyperactivated p-JNK, TNF-α, caspase-3, and COX2 using an ImageJ program [19].

2.6. Bioinformatics Resources

The bioinformatics study was done as described previously [20]. Briefly, 3D protein structures
were modeled and passed through validation tools like Procheck [21] and ProSA [22]. By using
AutoDock Vina, docking analysis was performed, for which Protein Data Bank (PDB) and mol2 files
were generated for all model proteins and ligands, respectively. The docking results were interpreted
by binding energies (E-value). From the E-value, the best ligand pose (orientation in protein after
docking) was inferred using Discovery Studio Visualizer (DSV) in terms of ligand pose orientation and
molecular interactions.

2.7. Statistical Analysis

All data are represented as means ± standard error of the mean (SEM) and were analyzed by
one-way ANOVA followed by Bonferroni multiple comparison post hoc testing via GraphPad Prism 7.
ImageJ software was used for the analysis of morphological data.

3. Results

3.1. Effect of Gb on Liver Biochemical Markers

Biochemical detriments were assessed for the degree of MTX-induced hepatic toxicity (Table 1).
A significant perturbation was demonstrated in the MTX-administered group, as evidenced by a
marked increase in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) (p < 0.001).
A significant effect was also noticed for the bilirubin level (p < 0.05). Downregulation trends were
observed for these biochemicals against different Gb doses (p < 0.05, Table 1).

Table 1. Effect of Gb on liver biochemical markers.

Treatment ALT AST TOTAL
BILIRUBIN

ALKALINE
PHOSPHATASE

Saline (5 mL/kg) 22.0 ± 10 26.20 ± 0.58 0.78 ± 0.05 149 ± 18.09

MTX (20 mg/kg) 164.80 ± 4.25 *** 272.2 ± 13.22 *** 0.92 ± 0.06 * 158.20 ± 6.23

MTX + Gb (60 mg/kg) 37.20 ± 1.65 ### 132.40 ± 1.7 ### 0.70 ± 0.03 127.40 ± 6.61

MTX + Gb (120 mg/kg) 27.80 ± 1.65 ### 119.80 ± 1.56 ### 0.82 ± 0.06 136.40 ± 9.41

MTX + Gb (180 mg/kg) 35.20 ± 6.26 ### 151.80 ± 12.66 ### 0.80 ± 0.03 166.20 ± 7.21

MTX + Silymarin (100 mg/kg) 67.80 ± 6.74 37.00 ± 9.77 0.74 ± 0.05 142.80 ± 11.93

Data are shown as means ± standard error of the mean (SEM) and were analyzed by one-way ANOVA followed by
Bonferroni multiple comparison post hoc testing using GraphPad Prism 7 software. Symbols *** or ### indicate p <
0.001. The symbol * shows a significant difference to saline, while # shows a significant difference to the MTX group;
n = 5. AST: aspartate aminotransferase; ALT: alanine aminotransferase; MTX: methotrexate; Gb: Ginkgo biloba.
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3.2. Effect of Gb on Fatty Acid Levels

Generally, plasma levels of lipids and lipoproteins decrease with hepatic damage [23], which we
likewise noticed in this study (Table 2). Furthermore, a downregulated trend for serum levels of
triglycerides, cholesterol, and high-density lipoprotein (HDL) cholesterol was demonstrated as due to
MTX. Treatment with Gb (60 and 120 mg) reversed the effect of MTX on triglycerides and low-density
lipoprotein (LDL) cholesterol while causing no effect on HDL levels (Table 2).

Table 2. Effect of Gb on fatty acid levels.

Treatment Triglycerides Cholesterol LDL Cholesterol HDL Cholesterol

Saline (5 mL/kg) 86.40 ± 2.69 95.40 ± 6.70 31.20 ± 0.66 18.00 ± 1.14

MTX (20 mg/kg) 67.60 ± 1.28* 70.00 ± 5.75* 43.00 ± 4.46* 14.40 ± 1.28*

MTX + Gb (60 mg/kg) 117.40 ± 3.23# 56.40 ± 2.92 19.20 ± 2.72## 14.20 ± 1.06

MTX + Gb (120 mg/kg) 102.80 ± 8.49# 55.80 ± 2.28 24.40 ± 2.24## 11.20 ± 0.58

MTX + Gb (180 mg/kg) 70.20 ± 5.77 63.80 ± 3.51 37.00 ± 3.42 13.60 ± 0.70

MTX + Silymarin (100 mg/kg) 88.20 ± 5.67 74.80 ± 2.08 37.80 ± 3.30 15.00 ± 0.31

Data are shown as means ± standard error of the mean (SEM) and were analyzed by one-way ANOVA followed
by Bonferroni multiple comparison post hoc testing using GraphPad Prism 7 software. Symbols * or # represent
p < 0.05, while ## represents p < 0.01. The symbol * shows a significant difference to saline, while # shows a
significant difference to the MTX group; n = 5. LDL: Low-density lipoprotein; HDL: high-density lipoprotein; MTX:
methotrexate; Gb: Ginkgo biloba.

3.3. Effect of Gb on Hepatic Oxidative Stress

Table 3 shows the antioxidative enzyme changes following MTX administration. MTX treatment-
induced ROS generation which is associated with the amassing of nitric oxide (NO) (100 ± 2.11 µmol/mg,
p < 0.001) and the depletion of GST activity (8.6 ± 0.5 µmol CDNB conjugate/min/mg of protein,
p < 0.001) and GSH level (30.3 ± 1.5 µmol/mg of protein, p < 0.001) relative to saline. All Gb doses
used in this experiment attenuated MTX-induced downregulation of oxidative enzymes induced by
MTX (p < 0.05).

Table 3. Effect of Gb on hepatic oxidative stress.

Treatment GST µmol CDNB
Conjugate/min/mg of Protein NO µmol/mg GSH µmol/mg of

Protein

Saline (5 mL/kg) 55 ± 0.7 17 ± 2.5 85 ± 1.6

MTX (20 mg/kg) 8.6 ± 0.5*** 100 ± 2.11*** 30.3 ± 1.5***

MTX + Gb (60 mg/kg) 19.94 ± 0.13# 92.18 ± 2.15 68 ± 0.5#

MTX + Gb (120 mg/kg) 25.98 ± 0.3# 78.28 ± 5.7## 142 ± 6.8###

MTX + Gb (180 mg/kg) 31.24 ± 0.6# 58.30 ± 0.90### 161.5 ± 1###

MTX + Silymarin (100 mg/kg) 77.8 ± 0.5 20.567 ± 0.8 90.23 ± 0.3

Data are shown as means ± standard error of the mean (SEM) and were analyzed by one-way ANOVA followed by
Bonferroni multiple comparison post hoc testing using GraphPad Prism 7 software. Symbols ∗∗∗ or ### represent
p < 0.001, ## represents p < 0.01, and # represents p < 0.05. The symbol ∗ shows a significant difference to saline,
while # shows a significant difference to the MTX group; n = 5 per group. GST: glutathione S-transferases; GSH:
glutathione; NO: nitric oxide; MTX: methotrexate; Gb: Ginkgo biloba.

3.4. Effect of Gb Liver Morphology

MTX administration caused detrimental disintegration of liver architecture (p < 0.001), an effect
not evident in the saline group (Figure 2). The adverse effect of MTX could be traced near the area of
the central vein, which is characterized by the inflammatory amassing of infiltrated cells and sinusoidal
dilatation associated with hepatocyte degeneration. On the other hand, treatment with different doses
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of Gb restored the morphological alteration to a state appearing similar to the saline-treated group
(Figure 2 and Table 4).
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Figure 2. Gb restored the morphological integrity of the liver, as shown by histological examination.
Liver tissue was stained with H&E (magnification, 20× scale bar 50 µm). Data are presented as means ±
SEM and relative to saline. Data were analyzed by one-way ANOVA followed by Bonferroni multiple
comparison post hoc testing using GraphPad Prism 5 software; n = 5 per group. The symbol ∗ shows a
significant difference relative to saline, while # shows significant difference relative to the MTX group,
while θ shows significant difference relative to treatment groups. Symbols ∗∗∗ or ### represent p < 0.001,
while ## represents p < 0.01 values.

Table 4. Extent of liver damage by MTX.

Histopathology Saline MTX MTX+
Gb 60

MTX+
Gb 120

MTX+
Gb 180

MTX+
Silymarin

Gb
180 Silymarin

Hepatoportal
and Sinusoidal

Cogestion
− ++ + +/− − − − −

Apoptosis − +++ ++ + + − − −

Necrotic damage − ++ + − − − − −

Inflammatory
Infiltrate − ++ + − − +/− − −

Note: +++, maximum detrimental change; ++, moderate detrimental change; +, minimum detrimental change; +/−,
less or no change; −, no change.

3.5. Gb Attenuated MTX-Induced Liver Apoptosis

JNK (p-JNK) is a triggering stimulus for the immunogenic response, including the effect on various
proinflammatory cytokines [24]. Moreover, the role of JNK as an apoptotic marker is demonstrated in
both extrinsic and intrinsic mitochondrial apoptotic pathways [25]. To investigate the anti-apoptotic role
of Gb in our model, we performed immunostaining of p- JNK and caspase-3, as various degenerative
models have shown the link between p-JNK and caspase activation, all linked to apoptotic cell
death [26]. Compared to the saline group, we found a significant number of positive cells for p-JNK
and caspase-3 (p < 0.001, Figure 3A,B). Gb treatment in a dose-dependent manner significantly reversed
these apoptotic markers induced by MTX, as revealed by immunohistochemical analysis.
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Figure 3. Gb attenuated apoptotic markers. The presented images indicate the immunoreactivity of
(A) caspase-3 and (B) p-JNK. Scale bars = 50 µm (20×magnification) and 20 µm (40×magnification);
n = 5 per group. Data presented are relative to saline, and the number of experiments performed
was three. Data are presented as means ± SEM and were analyzed by one-way ANOVA followed by
Bonferroni multiple comparison post hoc testing. The symbol ∗ shows a significant difference relative
to saline, while # shows a significant difference relative to the MTX group. The symbols ∗∗∗ or ### or
θθθ represent p < 0.001, while ## or θθ represent p < 0.01, while # shows p < 0.05.

3.6. Gb Attenuated MTX-Induced Inflammatory Mediators in Liver

TNF-α is a proinflammatory cytokine that is immediately released from glia cell after neutrophil
infiltration and thus plays a central role in mediating the inflammatory response [27]. Moreover, toll-like
receptor 4 (TLR4) is located on glial cells, and its activation not only triggers TNF-α release but also leads
to activation of several other potential downstream mediators, including iNOS, p-NFkB, and COX-2 [28].
We revealed whether MTX activates TLR4 and its downstream pathway by immunostaining of TNF-α
and COX2. As expected, a higher expression was noticed in response to MTX (p < 0.001) (Figure 4A,B),
whereas Gb treatment significantly reduced this hyperexpression (p < 0.01, Figure 4A,B).

3.7. Docking Studies

Ginkgolide A and bilobalide are chief constituents of terpene fractions which have previously
demonstrated favorable biological activities [24,25]. Similarly, quercetin, kaempferol, and their
glycosides are extensively studied in the literature. Based on previous reports and literature survey,
we proceeded with these constituents for docking studies. The 3D structures of the modeled proteins,
such as COX2, iNOS, TNF-ά, TLR4, IL-1β, and the drug constituents are shown in Figure 5.

The best pose and docking results are presented in Figure 6 for ginkgolide A, bilobalide, 3-O-(2′-O-(6′-O
-(p-coumaroyl)-β-d-glucosyl)-α-l-rhamnosyl) kaempferol (Molecule 1), 3-O-(2′-O-(6′-O-(p-coumaroyl)-β-
d-glucosyl)-α-l-rhamnosyl) quercetin (Molecule 2), 3-O-(2′-O,6′-O-bis (α-l-rhamnosyl)-β-d-glucosyl)
kaempferol (Molecule 3), 3-O-(2′-O,6′-O-bis (α-L-rhamnosyl)-β-d-glucosyl) quercetin (Molecule 4), quercetin,
and kaempferol. These constituents were docked against iNOS (Figure. 6). Table 4 shows the amino
acid residues and binding energy values. Most of these ligands formed two hydrogen bonds with iNOS
(Arg 311, Trp 393), except for Molecules 1, 3 and 4, which formed one hydrogen bond with Val 395.
Furthermore, the hydrophobic interacting residues of iNOS are mostly the same for all the docking ligands.
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Figure 4. Gb attenuated inflammatory markers. The presented images indicate the immunoreactivity
of (A) TNF-α and (B) COX2. Scale bars = 50 µm (20×magnification) and 20 µm (40×magnification);
n = 5 per group. Data presented are relative to saline, and the number of experiments performed
was three. Data are presented as means ± SEM and were analyzed by one-way ANOVA followed by
Bonferroni multiple comparison post hoc testing. The symbol ∗ shows a significant difference relative
to saline, while # shows a significant difference relative to the MTX group. Symbols ∗∗∗ or ### or θθθ
represent p < 0.001, while ## represents p < 0.01, while # or θ show p < 0.05.
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Figure 5. (A) The 3D structures of selected inflammatory protein targets. These are iNOS, TNF-α, IL-1β,
TLR4, and COX2. (B) The different ligand structures (such as Gb constituents and silymarin) were
made using ChemSketch and saved as a PDB file. iNOS: inducible nitric oxide; TLR4: toll-like
receptor; COX2: cyclooxygenase; IL-1β: interleukin; TNF-α: tumor necrosis factor; Ginko A:
ginkgolide A; Molecule 1: 3-O-(2′-O-(6′-O-(p-coumaroyl)-β-d-glucosyl)-α-l-rhamnosyl) kaempferol;
Molecule 2: 3-O-(2′-O-(6′-O-(p-coumaroyl)-β-d-glucosyl)-α-l-rhamnosyl) quercetin; Molecule 3:
3-O-(2′-O,6′-O-bis (α-l-rhamnosyl)-β-d-glucosyl) kaempferol; Molecule 4: 3-O-(2′-O,6′-O-bis
(α-l-rhamnosyl)-β-d-glucosyl) quercetin.
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Figure 6. The best pose and docking results are presented here for ginkgolide A, bilobalide, 3-O-(2′-O-(6′-
O-(p-coumaroyl)-β-d-glucosyl)-α-l-rhamnosyl) kaempferol (Molecule 1), 3-O-(2′-O-(6′-O-(p-coumaroyl)-
β-d-glucosyl)-α-l-rhamnosyl)quercetin (Molecule 2), 3-O-(2′-O,6′-O-bis(α-l-rhamnosyl)-β-d-glucosyl)
kaempferol (Molecule 3), 3-O-(2′-O,6′-O-bis(α-l-rhamnosyl)-β-d-glucosyl) quercetin (Molecule 4), quercetin,
and kaempferol, which were docked into iNOS. Both 2D and 3D shapes of the drug-receptor complex were
visualized by DSV.

Figure 7 shows docking results with IL-1β. Ginkgolide A; bilobalide; Molecules 2, 3, and 4;
and quercetin formed two hydrogen bonds with IL-1β. Leu 26 of IL-1β has ubiquitously formed
hydrogen bonds with Molecules 1, 3, and 4; kaempferol; and quercetin. Moreover, Molecules 3 and
4, kaempferol, and quercetin have a similar binding pattern. Pro 116 and Lys 97 are the common
binding residues of TNF-α involved in hydrogen bond formation with Molecules 3 and 4, kaempferol,
quercetin, and bilobalide (Figure 8). Molecules 1 and 2 formed two hydrogen bonds with TNF-α
(Glu115). Moreover, one hydrogen bond was formed between Tyr 118 of TNF-α and ginkgolide A.
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Figure 7. Docking results and best pose of ginkgolide A, bilobalide, 3-O-(2′-O-(6′-O-(p-coumaroyl)-β-
d-glucosyl)-α-l-rhamnosyl)kaempferol (Molecule 1), 3-O-(2′-O-(6′-O-(p-coumaroyl)-β-d-glucosyl)-α-L
-rhamnosyl) quercetin (Molecule 2), 3-O-(2′-O,6′-O-bis(α-l-rhamnosyl)-β-d-glucosyl) kaempferol
(Molecule 3), 3-O-(2′-O,6′-O-bis(α-l-rhamnosyl)-β-d-glucosyl) quercetin (Molecule 4), quercetin, and
kaempferol, after docking with IL-1β. Both 2D and 3D shapes of the drug-receptor complex were
visualized by DSV.
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Figure 8. The different panels represent the docking analysis and best pose of ginkgolide A, bilobalide,
3-O-(2′-O-(6′-O-(p-coumaroyl)-β-d-glucosyl)-α-l-rhamnosyl) kaempferol (Molecule 1), 3-O-(2′-O-(6′-O-
(p-coumaroyl)-β-d-glucosyl)-α-l-rhamnosyl) quercetin (Molecule 2), 3-O-(2′-O,6′-O-bis(α-l-rhamnosyl)
-β-d-glucosyl)kaempferol (Molecule 3), 3-O-(2′-O,6′-O-bis(α-L-rhamnosyl)-β-d-glucosyl) quercetin
(Molecule 4), quercetin, and kaempferol after docking with TNF-α. Both 2D and 3D shapes of the
drug-receptor complex were visualized by DSV.

Figures 9 and 10 show docking results of ginkgolide A; bilobalide; Molecules 1, 2, 3, and 4;
kaempferol; and quercetin with COX2 and TLR4, respectively. The docking results demonstrated that
Gb constituents are tightly connected to COX2 and TLR4. Furthermore, ginkgolide A linked with
COX2 by 5 H-bonds and with TLR4 with 4 H-bonds. Quercetin linked to COX2 by 3 H-bonds and TLR4
by 5 H-bonds. Molecules 2 and 3 formed 5 and 4 hydrogen bonds, respectively, with TLR4. Figure 11
represents the docking results of silymarin with iNOS, TNF-α, COX2, TLR4, and IL-1β. Binding energy
and amino acid residues involved in H-bond formation between different ligands and IL1-β, TNFα,
COX2, and TLR4 are shown in Table 5.
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Figure 9. The different panels represent the docking analysis and best pose of ginkgolide A, bilobalide,
3-O-(2′-O-(6′-O-(p-coumaroyl)-β-d-glucosyl)-α-l-rhamnosyl) kaempferol (Molecule 1), 3-O-(2′-O-(6′-O
-(p-coumaroyl)-β-d-glucosyl)-α-l-rhamnosyl) quercetin (Molecule 2), 3-O-(2′-O,6′-O-bis(α-L-rhamnosyl)-
β-d-glucosyl) kaempferol (Molecule 3), 3-O-(2′-O,6′-O-bis(α-l-rhamnosyl)-β-d-glucosyl) quercetin
(Molecule 4), quercetin, and kaempferol, after docking with COX2. Both 2D and 3D shapes of the
drug-receptor complex were visualized by DSV.
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Table 5. Binding energy and amino acid residues involved in polar contacts between different ligands and IL1-β, TNFα, COX2, and TLR4.

(A)
iNOS IL1-β TNFα

Ligand Binding
Energy

# of H
Bonds Residue Binding

Energy # of H Bonds Residue Binding
Energy

# of H
Bonds Residue

Ginkgolide –10 2 TRP393,
ARG311 –8.9 2 GLY64, HIS7 –7.8 1 TYR118

Bilobalide –9.8 2 ILE392,ILE392 –9.1 2 GLN5, SER43 –7.9 3 LYS97, PRO116,
TYR118

Molecule 1 –9.1 1 VAL395 –6.3 6

LEU26,
VAL132,
THR79,

LEU(80)2,
LEU134

–7.4 3 TYR118,
GLU(115)2

Molecule 2 –8.7 3 TRP393,
ARG311(2) –6.4 2 THR79,

LEU82 –7 3 GLU115,
GLN(61)2

Molecule 3 –8.8 1 VAL395 –6.2 3 LEU(20)2,
VAL132 –6.3 4 PRO126, LYS(97)2,

PRO116

Molecule 4 –7 1 VAL395 –6.6 2 LEU20,
VAL132 –5.2 2 PRO116, LYS97

Kaempferol –7.4 2 ARG311,
TRP393 –6.5 1 LEU26 –7.2 2 LYS97, PRO116

Quercetin –7.8 2 ARG311,
SER48 –6.8 3 VAL132,

LEU(26)2 –8.9 1 PRO116

Silymarin –9.6 1 ALA94 –8 1 ASP141 –9.1 4 GLY108, GLU 107,
ASP(164)2
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Table 5. Cont.

(B)

COX2 TLR4

Ligand Binding Energy # of H Bonds Residue Binding Energy # of H Bonds Residue

Ginkgolide –6.9 4 ASN(361)2,
ARG(3622) –7.9 4 ARG267, SER313, THR334, TYR354

Bilobalide –7.3 1 HIS212 –8.1 2 TYR354, SER311

Molecule 1 –6.7 2 LEU210, HIS212 –7.3 4 TYR354, ASP350, ARG359, THR336

Molecule 2 –8.9 5 ARG362, ASN(361)2,
SER129, GLN360 –8.4 5 ARG267, TYR354, ASP356, SER358,

ARG316

Molecule 3 –6.3 3 SER(112)2, ILE110 –7.2 4 LYS454, ASP(405)2, SER 384

Molecule 4 –7.8 4 SER 112, ILE(110)2,
SER 107 –6.6 3 ASP465, SER 384, LYS454

Kaempferol –6.8 1 GLN 360 –6.1 1 TYR354

Quercetin –6.4 3 GLY 211, ARG362,
ASN 361 –7.8 4 TYR354, ARG(267)2, SER291

Silymarin –5.8 1 GLY522 –8 4 THR381, GLN505, GLY478, ASN 381
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4. Discussion

MTX is an anticancer drug, immunosuppressant, and disease-modifying anti-rheumatic agent,
clinically indicated as useful for multiple human ailments [29]. However, consistent reports established
liver toxicity as a major side effect of MTX administration. The proposed mechanism behind this
pathogenesis is thought to be the enhancement of oxidative stress, although polyglutamate accumulation
with subsequent folate depletion is another potential mechanism [30].

In agreement with earlier studies, we observed high serum levels of ALP, AST, ALT, and serum
bilirubin in the MTX-intoxicated group [7]. Similarly, Gb administration reverted the toxic serum level
of MTX, as low levels of AST and ALT were noted (Table 1), in line with previously reported data [17].
Furthermore, the liver is central to lipid and lipoprotein metabolism; therefore, previous reports
demonstrated an altered level of lipids and their biometabolic products in liver damage [23]. Our work
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showed that MTX upregulated cholesterol, low-density lipoprotein cholesterol, and triglyceride (TG)
(Table 2), which lead to exaggerated inflammatory reactions. Previous reports demonstrated that
critical genes were expressed along with MTX usage, genes that modulate the synthesis of certain fatty
acids, and are implicated in both liver and cardiovascular pathogenicity [31]. Some of these effects
were attenuated in Gb pretreated groups; however, no effects were noticed on TG and HDL levels,
which is in line with previously reported data [30].

GSH and GST are innate antioxidant enzymes that can overcome free radical formation
(such as ROS and nitrates). It has been reported that MTX initiates oxidative distress both by
augmenting free radical content and by diminishing hepatic antioxidant enzymes (Table 3) [32,33].
Furthermore, distinct features of hepatic injury, such as infiltration of neutrophils, congestion, apoptosis,
and necrotic cell death, were evident in the MTX group, consistent with delineated biochemical changes
(Figure 2). These pathophysiological alterations in serum and at tissue level were mitigated by Gb
pretreatment, supporting its effective role in counteracting MTX-induced liver toxicity (Figure 2).

JNKs play a crucial role in oxidative-stress-induced apoptotic signaling, which can be implicated
either by extrinsic or intrinsic pathways [34,35]. Furthermore, the role that MTX plays by inducing
apoptosis through the mitochondrial extrinsic apoptotic pathway has also been reported [36,37].
Previous reports showed that the amplified expression of pro-apoptotic genes such as TNF-α, caspase-3,
and COX-2 occurs due to the JNK pathway activation [36]. In the present study, we demonstrated higher
p-JNK expression in the MTX group. Consistent with an earlier study, expression levels of JNK were
significantly reduced by Gb pretreatment (Figure 3B) [38]. Our results demonstrated that MTX induced
the release of TNF-α and COX-2, which was attenuated by Gb pretreatment, a consistent finding with
previous reports showing that Gb extract possesses anti-inflammatory activity [39]. In support of our
findings, Gb extract was found to ameliorates colitis and cause a release of proinflammatory mediators
by LPS in mice [40]. All the above-mentioned promising beneficial effects indicate that Gb could
impede several cascading pathways in this model of hepatotoxicity.

Docking analysis was performed to further demonstrate drug-protein interaction. No 3D structures
are available for several rat proteins, including iNOS, TNF-α, IL-1β, and TLR4. Therefore, we have
previously built the 3D structures of these proteins by homology modeling, further assessed for stability
by molecular dynamics (MD) simulation. The modeled proteins were then subjected to docking
analysis, where binding energy was evaluated and interactions were visualized in the Discovery
Studio (DS). Gb bound each target protein by forming H-bonds and other hydrophobic interactions.
Moreover, the role of hydrogen bonding in the drug-receptor complex is integral for complex stability,
and our findings are consistent with previous literature [41].

In conclusion, this study demonstrated that Gb has a protective role in MTX-induced inflammation
and apoptosis by reducing the expression levels of TNF-α, p-JNK, caspase-3, and COX-2 pathways in rat
liver. By inhibiting ROS generation, elevating liver GSH and GST, and reducing NO level, Gb reduced
hepatic oxidative damage dose-dependently. Further studies are required to fully understand the
molecular mechanisms of the protective effects that Gb has in liver toxicity.
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