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Regions Supporting Expressive Language
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Abstract

Introduction: How components of the distributed brain networks that support cognition participate in typical
functioning remains a largely unanswered question. An important subgroup of regions in the larger network
are connector hubs, which are areas that are highly connected to several other functionally specialized sets of
regions, and are likely important for sensorimotor integration. The present study attempts to characterize connec-
tor hubs involved in typical expressive language functioning using a data-driven, multimodal, full multilayer
magnetoencephalography (MEG) connectivity-based pipeline.

Methods: Twelve adolescents, 16—18 years of age (five males), participated in this study. Participants underwent
MEG scanning during a verb generation task. MEG and structural connectivity were calculated at the whole-
brain level. Amplitude/amplitude coupling (AAC) was used to compute functional connections both within
and between discrete frequency bins. AAC values were then multiplied by a binary structural connectivity
matrix, and then entered into full multilayer network analysis. Initially, hubs were defined based on multilayer
versatility and subsequently reranked by a novel measure called delta centrality on interconnectedness (DCI).
DCI is defined as the percent change in interfrequency interconnectedness after removal of a hub.

Results: We resolved regions that are important for between-frequency communication among other areas during
expressive language, with several potential theoretical and clinical applications that can be generalized to other
cognitive domains.

Conclusion: Our multilayer, data-driven framework captures nonlinear connections that span across scales that
are often missed in conventional analyses. The present study suggests that crucial hubs may be conduits for inter-
frequency communication between action and perception systems that are crucial for typical functioning.
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Impact Statement

We present methodology to characterize regions supporting cross-frequency communication in the distributed language net-
work. There are 3 key innovations: (1) incorporation of a structural connectivity constraint based on diffusion magnetic res-
onance imaging (MRI), (2) use of a full multilayer framework that captures both within- and between-frequency connections,
and (3) introduction of a new metric, delta centrality on interconnectedness (DCI), that quantifies the importance of a region
for cross-frequency coupling.
Introduction been a paradigmatic shift in neuroimaging from active-baseline
subtraction (conventional approach) to connectivity-based ana-

URRENT MODELS OF how the brain supports expressive
language function are often based on conventional, task-
based, active-baseline contrast neuroimaging analyses that fail
to differentiate activity that is necessary for completing a task
(i.e., task-essential) versus activity that is task-correlated, but
not necessarily crucial for completion. Recently, there has

lyses. Importantly, decreased activation in a region, measured
by functional magnetic resonance imaging (fMRI), may be as-
sociated with increased connectivity to other regions (Biichel
et al., 1999; Kelly and Garavan, 2004; McIntosh et al., 1999).
Regions that may be increasingly important in the network as
a conduit of connectivity are potentially de-emphasized in
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activation-based studies. Network analysis provides a frame-
work in which to study the global and local topological features
of brain networks (Rubinov and Sporns, 2010), which may be
more informative about which regions are crucial for a task.

Brain connectivity can be represented as an adjacency
matrix, consisting of brain regions (i.e., nodes) and their con-
nections (i.e., edges). Within this network, centrality metrics
can be used to determine which nodes are most important
(i.e., network hubs) (van den Heuvel and Sporns, 2013b).
Hubs can be further split into two types: comnnector hubs,
which are highly connected to several different functionally
specialized sets of regions, and provincial hubs, which are
highly connected within one functionally specialized set of re-
gions (Rubinov and Sporns, 2010; van den Heuvel and Sporns,
2013a). Connector hubs, due to their common placement at
the interface between sensory and motor systems, may be of
particular importance for tasks that rely heavily on integration
between sensory and motor information, such as expressive
language (Pulvermiiller, 2018). Defining connector hubs
may provide more specificity in characterizing both location
and functionality of areas involved in expressive language.

We have previously shown that connectivity-based hub anal-
ysis of broadband magnetoencephalography (MEG) and fMRI
data can successfully delineate regions thought to be critical for
language in children and adolescents performing auditory verb
generation (Youssofzadeh et al., 2017, 2018). However, we
have also shown that patterns of connectivity differ across
the spectra (Kadis et al., 2016); broadband approaches may ob-
fuscate important frequency-specific information. Multilayer
network analysis is a mathematical framework that can be
used to model and analyze multivariate and multiscale data
(De Domenico, 2017; De Domenico et al.,, 2013; Kiveld
et al., 2014). This approach has been used successfully to iden-
tify hubs that can separate healthy individuals from clinical
populations, to provide evidence that brain function is nontri-
vially constrained by brain architecture, and to show that mod-
els of the brain that allow regions to operate and couple at
multiple frequencies better predict empirical MEG data (Battis-
ton et al., 2017; Brookes et al., 2016; De Domenico et al.,
2015b, 2016; Deco et al., 2017; Tewarie et al., 2016).

The present study aims to expand on our previous findings
by demarcating connector hubs and utilizing unique informa-
tion from multiple frequency bins. Structural connectivity,
derived from diffusion tractography, can be used to inform
functional connectivity to restrict connections to only those
that are biologically plausible. The current study utilizes gen-
eralized Q-sampling imaging (GQI) for reconstruction of dif-
fusion imaging data, on which deterministic tractography is
performed (Yeh et al, 2013, 2010). This method remains sen-
sitive to crossing fibers, which occurs in up to 90% of white
matter, while limiting false positives (Jeurissen et al., 2013).

The current study seeks to define connector hubs that are
important for successful execution of expressive language
in typically developing adolescents. We hope to demonstrate
that reranking nodes defined as hubs by multilayer versatility
according to a novel metric sensitive to a node’s importance
in interconnectivity of the network will lead to more precise
maps of regions thought to be crucially involved in language
functioning. Connector hubs will be defined by using a data-
driven, structurally constrained, MEG connectivity-based
multilayer framework. This framework can be extended to
study any cognitive domain and has several real-world appli-

WILLIAMSON ET AL.

cations. Clinically, this could potentially lead to more accu-
rate mapping of eloquent tissue, needed in presurgical
planning for patients undergoing cortical resection. Informa-
tion derived from this pipeline could be used to inform com-
putational models to better replicate brain function and its
relation to behavior. Testable generative models of the
brain are needed to move beyond description and toward
new predictions and theories (Betzel and Bassett, 2017).

Methods
Institutional review board approval

This study involving human subjects research was ap-
proved by the Institutional Review Board (IRB) at Cincinnati
Children’s Hospital Medical Center and was carried out in ac-
cordance with the ethical standards of title 45, part 46, and
title 21 parts 50 and 56, of the Code of Federal Regulations.

Informed consent

All subjects provided written informed consent or parental
consent and children assent in accordance with the Declara-
tion of Helsinki.

Participants

The study cohort consisted of 15 typically developing ad-
olescents, ages 16—18 years. Inclusion criteria were being a
native English speaker without history of neurological insult
or disease, speech or language disorder, or learning disabil-
ity. All participants underwent neuropsychological assess-
ment, MRI, and MEG. Three participants were excluded
due to issues of data quality, leaving 12 participants for the
final analysis (M =16.89+0.67). The Edinburgh Handedness
Inventory (Oldfield, 1971) indicated that all participants
were right handed (M =94.68 £ 8.44).

MRI acquisition

Three-dimensional-T1-weighted (TR/TE =8.055/3.68 ms,
1.0x1.0x1.0mm voxels) and diffusion (b=800 s/mm?,
32 directions, 1 b0, TR/TE=8955/77 ms, 1.875x1.875 X
2.37 mm voxels, 55 slices) scans were collected for each par-
ticipant. Multimodal radiographic markers were placed be-
fore the MRI at nasion and periauricular points to facilitate
registration with MEG.

MEG acquisition

MEG data were collected on a 275-channel CTF system
(MEG International Services Ltd., Coquitlam, BC, Canada)
with a sampling rate of 1200Hz. A covert verb generation
task was used. Nouns and speech-shaped noise were auditorily
presented to participants (71 nouns, 72 noise). Participants were
instructed to think of a corresponding verb when they heard a
noun, and provide no response when they heard noise. Stimuli
were presented every 5 sec by an MEG-compatible, calibrated
audio system that comprised distal transducers, tubing, and
ear inserts (Etymotic Research, IL) and randomly alternated be-
tween conditions. During the MEG session, head localization
coils were placed at nasion and periauricular points to monitor
movement and facilitate coregistration between MEG and MRI.

MRI processing

Diffusion processing included geometric distortion correc-
tion, eddy current correction, Gibbs ringing removal, denoising,
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and registration of the diffusion and structural images. To
improve geometric distortion correction and registration, an
“imitation” T2-weighted image was constructed from each
participant’s T1-weighted image to better match the contrast
of the b0 image. The imitation T2 is simply the T1 image
(dark gray matter, bright white matter, and dark cerebrospinal
fluid [CSF]), with the contrast adjusted to match that of a T2
image (bright gray matter, dark white matter, and bright
CSF). See Supplementary Figure S1 for examples of images
at each MRI processing step. Structural and diffusion prepro-
cessing was carried out in AFNI and TORTOISE, respectively
(Cox, 1996; Irfanoglu et al., 2018; Pierpaoli et al., 2010).
Diffusion processing included geometric distortion correc-
tion, eddy current correction, Gibbs ringing removal, denois-
ing, and registration of the diffusion and structural images.
To improve geometric distortion correction and registration,
an “‘imitation” T2-weighted image was constructed from
each participant’s T1-weighted image to better match the con-
trast of the b0 image. Geometric distortion correction involved
aligning the b0 image to the imitation T2, then correcting dis-
tortions using nonuniform B-spline grid sampling (Irfanoglu
et al., 2011). Gradient vectors were rotated according to the
eddy correction and registration. Before reconstruction, the
quality of each data set was assessed by calculating the corre-
lation between neighboring diffusion directions/volumes. If
more than 10% of the data were excluded due to poor correla-
tion (r<0.9), the data set was excluded. All data were visually
inspected after preprocessing to ensure adequate alignment.
Spin distribution functions for each voxel were obtained
using GQI (Yeh et al., 2010). GQI was chosen due to the sen-
sitivity to crossing fibers and because it is one of the few
higher order diffusion models that can be applied to any diffu-
sion sampling scheme that is balanced, that is, the isotro-
pic voxels are reconstructed as an isotropic spin distribution
function (SDF), which is checked during reconstruction
(Yeh et al., 2010). Q-space diffeomorphic reconstruction
(QSDR), an extension of GQI, involves aligning the subject’s
quantitative anisotropy map (QA; derived from SDFs) to a QA
template in Montreal Neurological Institute space (HCP-842)
using diffeomorphic mapping to allow both linear and nonlin-
ear alignment, applying the inverse Jacobian to the subject
space SDFs, and adjusting for scaling differences between
the subject and template, conserving the amount of diffusion
spins in the original data (Yeh and Tseng, 2011). Alignment
quality was assessed by the correlation between subject and
template SDFs. Default QSDR settings were used except for
the number of fibers resolved, which was reduced to three
due to the limited directions in the current data set.
Deterministic tractography (curvature limit=45° min length
threshold =30 mm, max length threshold =300 mm, one round
of topology-informed tract trimming) (Yeh et al., 2018), based
on QA, was performed between cortical parcels. The QA thresh-
old was automatically determined by 0.6*Otsu’s threshold,
which has been shown to be optimal for resolving true connec-
tions while limiting false positives (Maier-Hein et al., 2017;
Otsu, 1979). Resulting adjacency matrices were binarized. Diffu-
sion reconstruction and tracking were performed in DSI Studio.

MEG processing

A bandpass filter from 0.1 to 100 Hz was applied to contin-
uous MEG data. A sharp discrete Fourier transform filter was
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applied at 60Hz to reject line noise. Data were initially
epoched to —400 to 2000 ms relative to stimulus onset.
Jump artifacts were removed based on deviation from a me-
dian filter. Participants were excluded if more than 10% of
trials were rejected during preprocessing. The period of
—400 to Oms was used for baseline correction and O to
2000 ms was used to capture dynamics related to the task.
MEG and MRI data were coregistered using the fiducial
markers and single shell head models were constructed
from the segmented MRI (Nolte, 2003).

The covariance matrix used for source estimation was con-
structed from the longer trial epoch (—400 to 2000 ms). Cent-
roids of each parcel in the Brainnetome atlas, consisting of
246 regions (123 per hemisphere) (Fan et al., 2016), were
used in calculation of the leadfield matrix, and the time-series
at each position was estimated using a linearly constrained
minimum variance beamformer (Van Veen et al.,, 1997)
with 0.1% regularization. Noise estimates for each “‘virtual
sensor’” were also projected and used to normalize each esti-
mated time course (i.e., compute the neural activity index).
The linearly constrained minimum variance natively produces
estimates of activity in the three canonical planes. For this
study, we project along the dominant orientation, which is
equivalent to taking the first eigenvector of the time series.

MEG connectivity analysis

Source activity was symmetrically orthogonalized to reduce
signal leakage (Colclough et al., 2015) and bandpass filtered
into equally spaced 5 Hz bins from 0.5 to 50.5 Hz. The resulting
frequency-specific time series were cropped to 800—1300 ms
relative to stimulus onset. Previous studies using the same
task with visual stimuli revealed a strong beta-event-related
desynchrony around 300-800 ms after stimulus onset as a sig-
nature for verb generation (Kadis et al., 2011). The current
time window is shifted to account for delay differences be-
tween visual and auditory stimulus delivery and perception,
as supported by time/frequency analysis (Youssofzadeh
et al., 2017). Amplitude envelopes were obtained using a Hil-
bert transform. Amplitude/amplitude coupling (AAC) was
calculated for each node (centroid) pair both within- and
between-frequency bins, from low to high frequencies only
(Brookes et al., 2012). AAC was chosen as the connectivity
metric because it can be applied both within and between fre-
quencies and has been used previously in MEG multilayer net-
work analyses (Brookes et al., 2016; Mandke et al., 2017;
O’Neill et al., 2015; Tewarie et al., 2016).

Normalization with surrogates

Surrogate time-series were calculated to determine which
connections were statistically significant. One hundred null mod-
els were generated for each source using the 0 to 2000 ms time
window, using iterative amplitude-adjusted Fourier transform
(Schreiber and Schmitz, 1996). Data were cropped to 800-
1300 ms, and null connectivity was computed for each set of
surrogates. After obtaining the mean and deviation of the surro-
gates, z-scores were obtained for empirical connections. This
approach resulted in 10 adjacency matrices weighted by
z-score (4 within frequency, 6 between frequency). All MEG
processing was performed with the Fieldtrip toolbox (Oosten-
veld et al., 2011) in MATLAB 2016a (The MathWorks, Inc.,
Natick, MA), and using custom MATLAB routines.
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Multilayer network analysis

Adjacency matrices from the MEG connectivity analysis
were thresholded using the orthogonal minimum spanning
tree method (Dimitriadis et al., 2017). Supplementary Figure
S2 shows increased specificity of results in regions most
linked to expressive language when using OMST versus a
percentage thresholding (i.e., top 10% of connections).
Each thresholded MEG connectivity matrix was then multi-
plied entry-wise by the binary structural connectivity matrix.
In matrices characterizing interfrequency connections, the
maximum connectivity value was taken between each
pair of regions to ensure that the off-diagonal matrices
were symmetric and undirected. They were combined to
form a full multilayer network, represented by a supra-
adjacency matrix (De Domenico et al., 2015b). For further
details about the calculation of multilayer versatility, see
Appendix Al. Researchers have shown that calculating
centrality measure in a single layer or aggregating over
multiple layers may be misleading compared with a full
multilayer representation. One of the key reasons for this
is that single-layer analyses do not capture nonlinear
relationships between nodes. Simulations have shown the
importance of nonlinear connectivity afforded by cross-
frequency connections (Deco et al., 2017). Supplementary
Figure S3 shows the difference in using a multilayer frame-
work with and without interconnections. Inclusion of inter-
connections (full multilayer) also increases the specificity
in regions specific to expressive language. Multilayer
networks were constructed with in-house scripts and the
MuxViz package (De Domenico et al, 2015a) in R (R
Core Team, 2018). The pipeline as described to this point
is shown in Figure 1.

Characterizing connector hubs

To determine which nodes were hubs, multilayer versatility
(multilayer adaptation of PageRank centrality) was calculated
for all nodes (De Domenico et al., 2015b). Hubs were defined
as nodes with a z-score-normalized multilayer versatility >2.
Human brain networks have been shown to have positively
skewed degree distribution, resembling an exponentially trun-
cated power-law distribution (Achard et al., 2006). Although
the distribution varies for each participant, this threshold cap-
tures the extreme positive values for all participants (Fig. 2).
Nodes with suprathreshold-normalized multilayer versatility
were then passed to connector hub analysis.

The current study attempts to use a more direct measure of
connector hubs. Different brain regions are thought to com-
municate at multiple frequencies (Deco et al., 2017). It seems
feasible that connector hubs may facilitate communication
among these multiple frequencies between modules. One
measure that may capture this property is interconnectedness
(Baggio et al., 2016). More interlayer connections mean the
network has higher interconnectedness. For this study, inter-
connectedness was simply defined as the number of inter-
layer connections.

To capture local properties of the network, interconnected-
ness was used to calculate delta centrality for each node. Delta
centrality is the percent change in a global network measure
after the removal of a node (Fornito et al., 2016). Each hub
was iteratively removed, and the percent change in intercon-
nectedness was calculated. The new metric, called delta
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Key steps involved in multilayer analyses. (a) Source time-series estimates are obtained from MEG data and tractography performed for diffusion data for each

subject, (b) connectivity is computed between nodes for each modality, (¢) weighted connectivity matrices are resolved; the structural matrix (diffusion) is binarized and
into a multilayer network, and (e) network measures are computed on the supra-adjacency matrix. While this study used equally spaced bins, the figure shows an example

used to constrain the functional (MEG) matrices by entry-wise multiplication, (d) all structurally constrained matrices (both within and between frequencies) are combined
using four canonical bins for simplicity. MEG, magnetoencephalography. Color images are available online.

FIG. 1.
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FIG. 2. Normalized centrality
distribution for all participants.
Each color corresponds to a differ-
ent subject. Dotted line (x=2) is the
threshold that was used to deter-
mine whether a node was hub based
on its multilayer versatility. The
plot shows that this threshold suc-
cessfully captures the expected fat
tail of the centrality distribution for
all subjects, which is indicative of
hubs within the network. Color
images are available online.

i~
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centrality on interconnectedness (DCI), was used to rerank the
original hubs. Since most DCI values for each participant were
0, DCI was centered and scaled around 0. Fisher’s one-
sample, one-tailed permutation testing was used to determine
which hubs had a DCI significantly >0 across all participants,
with bootstrapping (5000 iterations) performed to determine
significance. Connector hubs in this framework are defined
as the regions that significantly increase the overall interfre-
quency connectedness of the network.

Results
Multilayer matrix sparsity

Mean sparsity for each individual layer is reported in
Table 1. Independent two-sample t-tests revealed no signifi-
cant differences in sparsity across layers between males and
females (corrected p>0.05).

Resolved connector hubs for expressive language

Eight connector hubs were resolved in the present analy-
sis, including left superior frontal gyrus, left ventral middle
frontal gyrus, left paracentral lobule, left ventrolateral infe-
rior temporal gyrus, left postcentral superior parietal lobule,
left lateral amygdala, right medial precuneus, and right mid-
dle occipital gyrus (Fig. 3).

Comparison of multilayer versatility with DCI

To determine the information gained by reranking the
hubs obtained from multilayer versatility, statistical maps
(using the same permutation testing used to obtain DCI
maps) of versatility were visually compared with DCI re-
sults. Both methods resolved regions thought to be involved
in expressive language. However, DCI had greater focality in
resolving regions particularly linked to expressive language.
Maps of nodes with significant multilayer versatility were
much more diffuse and encompassed regions thought to be
involved in a variety of cognitive functions (Fig. 4).

Utility of structural constraint

One of the important innovations in the current study is the
inclusion of the structural constraint to limit connections to
only those that are biologically plausible, as determined by
diffusion tractography. To show the utility of this approach,
DClI results obtained from analysis both with and without the
structural constraint were visually compared. Both methods
resolved regions that have been implicated in language func-
tioning. However, results without the constraint were more
bilateral. Structurally constrained results showed greater re-
liability, resolving left paracentral regions and left middle
frontal gyrus (Fig. 5).

Individual-level results

Each individual statistic map was thresholded at an uncor-
rected p <0.001 to assess the sensitivity of DCI at the subject
level. DCI consistently resolved expressive language regions
in all 12 subjects (Fig. 6). These results survived stricter
thresholds and only regions thought to be directly involved
in expressive language were resolved in 8 out 12 of the partic-
ipants at the strictest threshold to still have results. The most
consistent regions at the strictest threshold were the left mid-
dle frontal gyrus and left parietal lobule resolved in the group
analysis. In the other four participants, the most robust result
was dominated by parietal regions or right hemisphere homo-
logues of the regions resolved in the other participants.

Discussion

Overall, the present study showed the utility of connector
hub analysis to delineate regions previously associated with
expressive language functioning. This analysis has three key
innovations compared with previous work: (1) using a data-
driven multilayer framework utilizing MEG cross-frequency
connectivity data to take advantage of rich, frequency-specific
connectivity patterns, (2) using a structural constraint de-
rived from state-of-the-art diffusion tractography to restrict



TABLE 1. MEAN AND STANDARD DEVIATION OF SPARSITY ACROSS LAYERS FOR WHOLE
COHORT AND FOR MALES AND FEMALES, SEPARATELY

Mean sparsity for each frequency bin (%)

Layer (Hz) Overall mean sparsity Males Females

0.5-5.5t0 0.5-5.5 0.030£0.052 0.039£0.069 0.023£0.040
0.5-5.5to 5.5-10.5 0.080=0.066 0.116+£0.064 0.055£0.058
0.5-5.5 to 10.5-15.5 0.058 £0.064 0.063£0.077 0.055%0.058
0.5-5.5 to 15.5-20.5 0.067£0.064 0.087x0.075 0.053£0.056
0.5-5.5 to 20.5-25.5 0.048 £0.060 0.084+0.071 0.022+0.037
0.5-5.5 to 25.5-30.5 0.066+0.073 0.103+£0.087 0.039£0.053
0.5-5.5 to 30.5-35.5 0.084+0.070 0.126£0.069 0.054£0.057
0.5-5.5 to 35.5-40.5 0.062£0.068 0.093+£0.079 0.040£0.054
0.5-5.5 to 40.5-45.5 0.063£0.057 0.055+0.064 0.068£0.057
0.5-5.5 to 45.5-50.5 0.036+0.051 0.031£0.051 0.040£0.054
5.5-10.5 to 5.5-10.5 0.008 £0.000 0.008 =0.000 0.008 £0.000
5.5-10.5 to 10.5-15.5 0.080%0.066 0.116£0.064 0.055£0.058
5.5-10.5 to 15.5-20.5 0.058 £0.064 0.063£0.077 0.055+£0.059
5.5-10.5 to 20.5-25.5 0.067£0.064 0.087x0.075 0.053£0.056
5.5-10.5 to 25.5-30.5 0.059£0.065 0.087x0.075 0.040£0.054
5.5-10.5 to 30.5-35.5 0.083+0.070 0.126£0.069 0.053£0.056
5.5-10.5 to 35.5-40.5 0.057%0.061 0.061£0.073 0.054£0.057
5.5-10.5 to 40.545.5 0.092£0.065 0.119£0.066 0.072£0.060
5.5-10.5 to 45.5-50.5 0.092£0.065 0.116 £0.064 0.075£0.065
10.5-15.5 to 10.5-15.5 0.008 £0.000 0.008 £0.000 0.008 £0.000
10.5-15.5 to 15.5-20.5 0.062 £0.069 0.073£0.089 0.054£0.058
10.5-15.5 to 20.5-25.5 0.084+0.070 0.073£0.089 0.092£0.059
10.5-15.5 to 25.5-30.5 0.079£0.065 0.093£0.079 0.069£0.057
10.5-15.5 to 30.5-35.5 0.031£0.055 0.063£0.077 0.008 £0.000
10.5-15.5 to 35.5-40.5 0.058 £0.062 0.084+0.071 0.039£0.052
10.5-15.5 to 40.5-45.5 0.094£0.067 0.149+0.024 0.055%0.059
10.5-15.5 to 45.5-50.5 0.112£0.053 0.149+0.024 0.085x0.052
15.5-20.5 to 15.5-20.5 0.008 £0.000 0.008 £0.000 0.008 £0.000
15.5-20.5 to 20.5-25.5 0.054£0.057 0.054£0.063 0.054£0.057
15.5-20.5 to 25.5-30.5 0.090£0.064 0.097£0.083 0.086+0.054
15.5-20.5 to 30.5-35.5 0.039x0.056 0.038£0.067 0.039x0.054
15.5-20.5 to 35.5-40.5 0.062£0.069 0.096£0.083 0.038£0.050
15.5-20.5 to 40.5-45.5 0.040£0.059 0.063+0.077 0.023+0.041
15.5-20.5 to 45.5-50.5 0.071£0.068 0.063£0.077 0.077£0.066
20.5-25.5 to 20.5-25.5 0.008 £0.000 0.008 £0.000 0.008 £0.000
20.5-25.5 to 25.5-30.5 0.093 £0.066 0.126£0.069 0.070£0.058
20.5-25.5 to 30.5-35.5 0.036+0.051 0.054£0.064 0.023+£0.040
20.5-25.5 to 35.5-40.5 0.089+0.062 0.093£0.079 0.086+0.054
20.5-25.5 to 40.5-45.5 0.100£0.058 0.116£0.064 0.088+0.054
20.5-25.5 to 45.5-50.5 0.049£0.063 0.063£0.077 0.040£0.054
25.5-30.5 to 25.5-30.5 0.008 £0.000 0.008 £0.000 0.008 £0.000
25.5-30.5 to 30.5-35.5 0.066+0.063 0.041£0.073 0.084£0.052
25.5-30.5 to 35.5-40.5 0.105+0.063 0.126 £0.069 0.090£0.059
25.5-30.5 to 40.5-45.5 0.062£0.068 0.070£0.085 0.057£0.061
25.5-30.5 to 45.5-50.5 0.067 £0.064 0.063+0.077 0.070£0.059
30.5-35.5 to 30.5-35.5 0.008 £0.000 0.008 £0.000 0.008 =0.000
30.5-35.5 to 35.5-40.5 0.027£0.043 0.031+£0.051 0.023+£0.040
30.5-35.5 to 40.5-45.5 0.079£0.065 0.093£0.079 0.068£0.057
30.5-35.5 to 45.5-50.5 0.018+0.033 0.031£0.052 0.008 £0.000
35.5-40.5 to 35.5-40.5 0.008 £0.000 0.008 =0.000 0.008 £0.000
35.5-40.5 to 40.5-45.5 0.045+0.054 0.031£0.052 0.054£0.058
35.5-40.5 to 45.5-50.5 0.062+0.069 0.073£0.089 0.054£0.058
40.5-45.5 to 40.5-45.5 0.008 £0.000 0.008 £0.000 0.008 £0.000
40.5-45.5 to 45.5-50.5 0.067£0.064 0.087x0.075 0.053£0.056
45.5-50.5 to 45.5-50.5 0.008 £0.000 0.008 £0.000 0.008 £0.000
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FIG. 3. Connector hubs resolved. These include left superior frontal gyrus, left ventral middle frontal gyrus, left paracentral
lobule, left ventrolateral inferior temporal gyrus, left postcentral superior parietal lobule, left lateral amygdala, right medial
precuneus, and right middle occipital gyrus. Effect size is indicated by region color (blue to red). Color images are available

online.

functional connections to those that are biologically plausible,
and (3) using a novel metric (DCI) that does not necessitate
community detection to determine connector hubs in the mul-
tilayer network. This pipeline is fully data-driven and adds to
the interpretation of how the resolved connector hubs contrib-
ute to expressive language, that is, these regions are necessar-
ily important for interfrequency communication.

Two notable aspects of the results are the contrasts be-
tween hubs resolved between multilayer versatility and
DCI and between analyses with and without the structural
constraint. Multilayer versatility has previously been used
successfully with resting-state fMRI data to distinguish
schizophrenic patients from healthy controls (De Domenico
et al., 2016). However, when applied to task-based data, re-
sults from the current study seem to show that versatility
is biased toward resolving central hubs, often called the
“rich club” of the brain (van den Heuvel and Sporns,
2011). These nodes are generally thought to be domain gen-
eral and nonspecific for a given task. Reranking nodes
by DCI resolves domain-specific nodes that facilitate task-
specific functioning between different brain regions.

Multilayer Versatility

Results were also improved by adding a structural constraint
to the network. Importantly, this allows only the biologically
plausible connections to be included in analyses. Previous stud-
ies have shown, in a multilayer framework, that functional con-
nectivity is nontrivially constrained by structural connectivity
(Battiston et al., 2017). Without the structural constraint, there
is greater chance of noise and spurious correlation between
two regions that are not directly connected. This constraint is
crucial for reducing false connections and improving specificity.

Different areas of the brain have been shown to engage at
different frequencies (Niedermeyer, 1999). This allows re-
gionally variant natural frequencies, which is the ensuing
frequency o