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A sensitive solvent-free extraction protocol for the quantification of arsenic at trace level has been described. It is based on the
reaction of arsenic (V) with molybdate in acidic medium in presence of antimony (III) and ascorbic acid as a reducing agent to
form a blue-colored arsenomolybdenum blue complex. The complex has been extracted into surfactant phase using Triton X-114,
and its absorbance was measured at 690 nm. The detection limit, working range, and the relative standard deviation were found to
be 1 ng mL−1, 10–200 ng mL−1, and 1.2%, respectively. The effect of common ions was studied, and the method has been applied
to determine trace levels of As(III) and As(V) from a variety of samples like environmental, biological, and commercially procured
chemicals.

1. Introduction

Arsenic is one of the common contaminant of ground water
which has been found to adversely affect human health at
levels as low as 10 μg L−1 [1]. It has a lethal dosage at 50% of
the population of 763 mg kg−1 of body mass. The maximum
contaminant level (MCL) prescribed by the United States
Environment Protection Agency (USEPA) for arsenic is
50 μg L−1 in drinking water. The World Health Organization
(WHO) has recommended MCL for arsenic in drinking
water as low as 10 μg L−1 [1]. Arsenic is very similar to phos-
phorous in some physical and chemical properties; that is,
the oxides of both elements form colorless and odorless
crystalline structures or compounds which are hygroscopic
and soluble in water. Due to these similarities, arsenic can
often substitute for phosphorous in biological systems [2]. It
is well known that arsenic inhibits the key metabolic enzyme
pyruvate dehydrogenase and arsenate competes with phos-
phate for the enzyme which disturbs ATP production and
ultimately uncouples oxidative phosphorylation. This inhi-
bition results in the reduction of the energy linked NAD+,
mitochondrial respiration, and ATP synthesis. The presence
of arsenic in the body also increases hydrogen peroxide pro-
duction which can lead to the formation of reactive oxygen

species. Consumption of arsenic contaminated matrices like
drinking water, rice, and vegetables lead to various health
problems like hyperkeratosis, respiratory, and cardiovascular
disorders [3]. Arsenic has been extensively used in several
applications mainly in wood preservation, in the production
of insecticides, herbicides, drugs, and feed additives, and in
poison preparation [4–6].

Among the various forms of arsenic, inorganic species
like arsenite and arsenate were proved to be more toxic than
that of organoarsenicals [3]. Quantification of inorganic
arsenic from water samples has been always a challenging
task especially at ultratrace level. Instrumental methods like
atomic absorption spectrophotometry (AAS), high-per-
formance liquid chromatography (HPLC), and inductively
coupled plasma mass spectrophotometry (ICPMS) have been
extensively used to quantify this toxic metal ion at trace
level [7, 8]. Most of these techniques rely on expensive
apparatus, skilled operators, complicated procedures, and
time-consuming sample preparation procedures. Hence,
spectrophotometric methods find wide spread use in deter-
mining metal ions at trace level from a variety of sample
matrices due to their easy adaptability even in modestly
equipped laboratories. Many of these spectrophotometric
methods are less sensitive, and toxic organic solvents like
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benzene, pyridine, and chloroform were used for analyte
extraction [9, 10]. One of these methods requires hydride
generation facility which results in the formation of arsenic
hydride which is known to be poisonous [11]. Recently, a
method has been reported based on microparticle formation
of methylene blue dye. The intensity of the color has been
quenched by arsenic, and it gave a very low detection limit
of 4 ng mL−1[12]. Low-cost test kits have been available in
the past, but they can be used in higher concentration range,
that is, 100–3000 μg L−1, which is not sensitive enough to
monitor low levels of metal ion in drinking water and other
treated industrial effluents. Hence we require inexpensive
and sensitive methods for monitoring the arsenic at trace
level. Recently, cloud-point-extraction (CPE-) based meth-
ods have been extensively used to facilitate preconcentration
and separation of the analyte from complex matrices [13].

Separation and preconcentration of the analyte can be
easily achieved by using surfactant in place of organic solvent
[13]. The presence of surfactant not only facilitates extrac-
tion of analyte efficiently but also enhances the sensitivity of
the method [14]. Hence, surfactant-mediated extraction pro-
cedures provide very good efficiency in extracting the analyte
from a large volume of aqueous solution. This protocol is
simple, highly efficient, and less expensive and restricts the
use of toxic organic solvents. The present paper describes
a simple cloud point extractive determination of arsenic as
arsenomolybdenum blue using nonionic surfactant, that is,
Triton X-114 at room temperature. The proposed method is
simple and sensitive, and it has been successfully applied to
determine trace level arsenic from different environmental
and biological samples.

2. Experimental

2.1. Instrumentation. Absorbance measurements were made
using a Shimadzu Scanning Spectrophotometer (model UV-
3101PC) with 1 cm quartz cuvettes. Calibrated centrifuge
tubes with 15 mL volume capacity were used to accelerate
the phase separation. All pH measurements were carried out
using Control Dynamics digital pH meter (model APX 175).
ICPAES analysis was carried out using Jobin Yvon Horiba
Spectrometer (model Ultima 2).

2.2. Reagents and Solutions. All chemical reagents used were
of Analar grade, and distilled water was used throughout
the experiments. Stock arsenate solution (1000 μg mL−1) was
prepared by dissolving 0.416 g of Na2HAsO4·7H2O AR (SD
Fine Chem Ltd., Mumbai, India). Ammonium molybdate
solution of 0.015 mol L−1 was prepared weekly by dissolving
1.85 g (NH4)6Mo7O24·7H2O (Merck, Mumbai, India) in
100 mL distilled water and storing in refrigerator. About
0.008 mol L−1 of Sb (III) was prepared by dissolving 0.267 g
of potassium antimony tartrate (Biddle Sawyer & Co Ltd.,
Mumbai, India) in 100 mL distilled water. Ascorbic acid
solution (SD Fine Chem Ltd., Mumbai, India) of about
0.01 mol L−1 was prepared by dissolving 0.176 g in 100 mL
distilled water and storing in refrigerator. Sulfuric acid
1.25 mol L−1 was prepared by diluting appropriate amount
of concentrated acid in cooled distilled water. Triton X-114

(ACROS ORGANICS, NJ, USA) (4% v/v) stock solution was
prepared by dissolving 4 mL of concentrated solution in hot
distilled water. H2O2 (30% w/v) (Qualigens, Mumbai, India)
was used for sample digestion.

2.3. Sample Collection and Preparation

2.3.1. Water Samples. The water samples were collected using
polyethylene containers from polluted lake where painted
clay idols were immersed after festival procession. The water
samples were filtered through Whatman filter paper to
remove the suspended particulate matter. Then, 5 mL of the
diluted sample was used to determine the arsenic (V) and
another 5 mL aliquot of sample was treated with 1 mL each
of concentrated nitric acid and H2O2 for the determination
of total arsenic [As(III) + As(V)].

2.3.2. Soil Samples. The soil samples were collected from
the agricultural field and soil sludge samples from the pond
bed where painted clay idols were immersed. Both samples
were collected from the site and stored in polyethylene bags.
The soil samples were air dried, and known weight (100 g)
of sample was placed in a 250 mL beaker and extracted
four times with 5 mL portions of concentrated hydrochloric
acid each time. The combined extract was boiled for about
30 min, then the solution was cooled and diluted to 50 mL
with distilled water. 5 mL aliquot of diluted sample was used
for As(V) determination by the proposed method. Another
aliquot of 5 mL was treated with 1 mL each of concentrated
nitric acid and H2O2 solution to determine total arsenic.

2.3.3. Vegetable Samples. The spinach and tomato leaves were
collected from local market. They were dried in sun light
and grinded into fine powder. 100 g of finely powdered and
sieved sample was placed in a beaker. 10 mL each of nitric
acid and sulfuric acids were added and heated to 100◦C for
20 min, in fume hood. The solutions were cooled, treated
with 10 mL of perchloric acid, and heated again in fume hood
for 5 min, until the dense fumes of sulphur dioxide disappear
completely. Then, solutions were cooled and 1 mL of HCl was
added to remove any heavy metal ions present in the sample.
The filtered solutions were diluted to 100 mL using distilled
water. Then, 5 mL aliquots of diluted samples were used for
the estimation of As(V) content as well as total arsenic after
treating the sample aliquot with 1 mL each of concentrated
nitric acid and hydrogen peroxide.

2.3.4. Biological Samples

Urine Sample. Urine samples were collected in sterilized
glass containers from male individuals, and 10 mL of sample
was diluted to five times. The diluted samples were depro-
teinated by treating with 2 mL of trichloroacetic acid (30%),
and the residue has been removed by centrifugation. The
filtrate was treated with 5 mL each of concentrated nitric
acid and H2O2 to oxidize any As(III) present to As(V) in the
sample. Then, the solution was diluted to 100 mL and five mL
aliquots of diluted samples were subjected for the analysis of
arsenic content.
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Nail and Hair Samples. Hair and Nail samples were collected
from adults and washed thoroughly with distilled water
followed by acetone and finally dried in an oven at 100◦C.
About 0.2 g of dried samples were placed in 250 mL beakers
separately and, 12 mL of concentrated HNO3 followed by
2 mL of HClO4 were added. The contents were digested by
heating on a sand bath for about 45 min; after the digestion,
the solutions were cooled and treated with 5 mL of H2O2.
The reaction mixture was heated again to dryness at 200◦C
to yield a white residue. Then, 10 mL of 1 mol L−1 H2SO4

was added to the beaker and the contents were heated at
100◦C for 1 h and diluted to 50 mL. Five mL aliquots of these
solutions were used to estimate the arsenic content.

2.4. Chemicals. The commercially procured laboratory
chemicals for which the assay has been specified have been
used to quantify the arsenic content. One gram of sample was
dissolved in water and then treated with 5 mL each of con-
centrated nitric acid followed by H2O2. The solutions were
diluted to 100 mL, and 5 mL aliquots were used for the anal-
ysis of total arsenic content.

2.5. Amaranth Dye. 1 g of dye sample was dissolved in water
and then, treated with 5 mL each of concentrated nitric and
H2O2. The pH of the solution was adjusted to 5 by adding
acetate buffer solution and made up to 100 mL. Then, 5 mL
aliquot of diluted sample was used for the analysis.

2.6. Procedure. Suitable aliquots of arsenate solution (arsenic
concentration 10−200 ng mL−1) were taken in 10 mL
volumetric flasks. Then, 2 mL of 1.25 mol L−1 sulfu-
ric acid, 0.2 mL of 0.008 mol L−1 antimony (III), 1.2 mL
of 0.015 mol L−1 ammonium molybdate, and 0.5 mL of
0.01 mol L−1 ascorbic acid were added and allowed for
10 minutes for the formation of arsenomolybdenum blue
complex. Then, 2 mL of Triton X-114 (4% v/v) has been
added and the solutions were diluted to the mark. These
solutions were transferred into 30 mL centrifuge tubes and
phase separation was achieved by centrifuging them at
3800 rpm for 5 min. The centrifuge tubes were cooled in
an ice bath to harden the viscous phase of the surfactant-
rich micellar phase. Then, the aqueous phase was separated
by simple decantation method. The surfactant-rich micellar
phase was homogenized by the addition of ethanol and made
up to 5 mL. The absorbance values were measured at 690 nm
against the reagent blank.

3. Results and Discussion

The proposed method is based on the reaction of arsenic
(V) with molybdate to form arsenomolybdate and its
reduction to arsenomolybdenum blue complex in presence
of a reducing agent. This reaction has been proposed based
on the phosphate’s reaction with molybdate to form phos-
phomolybdenum blue in acidic medium and its application
to water samples through cloud point extraction [15]. The
reaction has been explored to develop a simple and sensitive
spectrophotometric method to measure arsenic at nanogram
level concentrations. The arsenomolybdate formed in acidic
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Figure 1: Absorption spectra of arsenomolybdenum blue complex
after cloud point extraction.

medium with molybdate can be reduced to arsenomolybde-
num blue complex with antimony (III) in presence of ascor-
bic acid as reducing agent. The blue-colored complex exhib-
ited absorption maximum at 840 nm in aqueous condition.
Surfactants have been extensively used to sensitize the reac-
tion or to separate the analyte phase without using organic
solvent as a medium. Hence, a nonionic surfactant has
been used to extract the arsenomolybdenum blue complex
by cloud point method at room temperature. The colored
complex has exhibited two absorption maxima one at 690
and another at 840 nm in presence of surfactant (Figure 1).
The nature of dual absorption maxima of this complex is
unknown till now, and the investigations are in progress
to find its abnormal behavior. However, the signal to noise
ratio is much superior at 690 nm when compared to 840 nm,
hence all absorbance measurements have been carried out at
690 nm in the present investigations.

3.1. Optimization Study. The initial studies were carried out
by extracting the formed arsenomolybdenum blue complex
into nonionic surfactants like Triton X-100 and Triton X-114
as the TX series of nonionic surfactants have several advan-
tages over other surfactants like commercial availability,
low toxicity, low cloud point formation temperature and
high density of the surfactant-rich micellar phase [13]. The
quantitative extraction of the complex was obtained by both
the surfactants, but, in case of Triton X-100, heating is
required for cloud formation but in presence of Triton X-114,
cloud formation takes place at room temperature. Hence,
Triton X-114 was used as a micellar phase to preconcentrate
the analyte species before absorbance measurement. All the
parameters influencing the complex formation and cloud
point extraction have been optimized.

3.1.1. Effect of Acidity. The arsenomolybdenum blue complex
forms in acidic medium; hence, the effect of sulfuric acid



4 The Scientific World Journal

0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.08

0.12

0.16

0.2

0.24

0.28

0.32

0.36

0.4

0.44

0.48 Sample

Reagent blank

A
bs

or
ba

n
ce

Overall acidity (M)

Figure 2: Effect of overall acidity.

concentration on complex formation has been studied. The
higher absorbance values corresponding to the sample versus
reagent blank were obtained at an overall acidity value of
0.25 M. The required acidity was achieved by the addition
of 2 mL of 1.25 mol L−1 sulfuric acid and used in all further
studies (Figure 2).

3.1.2. Effect of Surfactant. The effect of surfactant concentra-
tion on the quantitative phase separation of analyte through
micelle is a crucial parameter in cloud-point-extraction
based methods. Hence, we have examined two nonionic
surfactants like Triton X-100 and Triton X-114 for the quan-
titative separation of the complex. Quantitative extraction
of the complex from the aqueous phase was obtained by
both surfactants, but the extraction of the complex at room
temperature was achieved only with Triton X-114. The high
density of Triton X-114 facilitates quick phase separation
which can be easily achieved by simple centrifugation [16].
In case of Triton X-100, heating is required to attain cloud
point temperature whereas Triton X-114 attains clouding at
normal condition itself, that is, at room temperature [9].
Hence, Triton X-114 has been selected as a micellar phase for
analyte separation. Quantitative extraction of the complex
was achieved at 0.8% (v/v). The required surfactant concen-
tration was achieved by the addition of 2 mL of 4% surfactant
solution (Figure 3).

3.1.3. Effect of Ammonium Molybdate. The effect of ammo-
nium molybdate concentration was carried out in order to
get maximum sample absorbance with minimum blank val-
ue. The absorbance value of surfactant-rich phase increases
with increase in molybdate concentration and remains con-
stant at molybdate concentration beyond 1.2×10−3 mol L−1.
Hence, the required concentration was achieved by the
addition of 1.2 mL of 0.015 mol L−1 molybdate solution
(Figure 4). Similarly, the effect of Sb (III) concentration on
the complex formation was also studied and the maximum
absorbance value for sample was observed at 1×10−3 mol L−1
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Figure 3: Effect of Triton X-114 concentration.
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Figure 4: Effect of molybdate concentration.

concentration. It was achieved by adding 0.2 mL of
0.008 mol L−1 Sb (III) solution.

3.1.4. Effect of Ascorbic Acid. Various reducing agents like sul-
fate and ascorbic acid were used to reduce the arsenomolyb-
date to arsenomolybdenum blue. Ascorbic acid is preferred
over sulfate because sulfate is a good reducing agent in
neutral condition whereas the complex formation takes place
at acidic condition. The optimum concentration of ascorbic
acid required for the complex formation has been found to
be 4 × 10−3 mol L−1. The required concentration has been
achieved by the addition of 0.4 mL of 0.01 mol L−1 (Figure 5).

3.1.5. Effect of Time and Temperature on Cloud Point Extrac-
tion. The effects of time and temperature on the cloud
point extraction of arsenomolybdenum blue complex from
the aqueous phase into micellar phase have been studied.
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Figure 5: Effect of ascorbic acid.

The cloud point formation occurs at room temperature as
Triton X-114 cloud point temperature at room temperature.
Then, CPE of the complex is going to complete within
10 min, that is, centrifuging the solution for 5 min at
3800 rpm to separate aqueous phase from micellar phase and
cooling the separated micellar and aqueous phase in ice bath
for 5 min in order to increase the viscosity of the surfactant
phase which facilitates easy decantation of aqueous phase
from the tube. The separated surfactant phase should be
dissolved in suitable organic solvents to decrease the viscosity
in order to measure its absorbance value. Various solvents
like ethanol, methanol, and acetonitrile were tested. Among
these, ethanol has been found to be suitable one because the
complex in micellar phase gets homogenized in less vol-
ume compared to acetonitrile and methanol. The ethanol-
assisted homogenized solution was diluted to 5 mL, and its
absorbance was measured at 690 nm against a reagent blank.

3.2. Efficiency of Clod Point Extraction. The efficiency of
cloud point extraction mainly depends on the hydrophobic
nature of the analyte, apparent equilibrium constants in the
micellar medium, the kinetics of the complex formation,
and the transference between the phases [17]. The arsenate
along with molybdate forms arsenomolybdate in acidic
condition which on reduction in presence of Sb (III) gives
the arsenomolybdenum blue which is hydrophobic in nature.
The high hydrophobicity of the complex in water is necessary
for preconcentration by cloud point extraction. Under the
optimal conditions, the highest extraction efficiency was
obtained. The cloud point extraction efficiency increased
with the hydrophobicity of the complexes and for the arseno-
molybdenum blue complex it is nearly 100%. The extraction
efficiency of heteropoly acids like phosphomolybdenum blue
and arsenomolybdenum blue (present method) has been
found to be 100% because of their hydrophobic nature as
well as complete partition due to the efficient binding of these

Table 1: Effect of foreign ions.

Interferent Tolerance limit (μg)

Ca2+, Cl−, Zn2+, Ni2+, Co2+, F− >2000

Cd2+, SO4
2 −, I−, NO3

− >1000

Na+, K+, Mg2+, Fe3+, Fe2+ 800

Pb2+, Ba2+, Cu2+, Al3+,Hg2+ 500

PO4
3−

900a

10

50b

SiO3
2− 40

100c

a
The white precipitate formed by the addition of the above metal ions

was removed by centrifuging the solution, and then the reducing agent
was added followed by the surfactant for preconcentrating the formed blue
complex.
bThe calcium nitrate was added before adding the molybdate so that
phosphate does not form blue complex.
cThe tartaric acid was used to mask the silica interference, otherwise it forms
silicomolybdenum blue and causes positive interference.

Table 2: Analytical merits of the proposed method.

Linear working range (ng mL−1) 10–200

Limit of detection (ng mL−1) (3σ , n = 5) 1.0

(Relative standard deviation %) (n = 5) 1.4

Maximum preconcentration factor 5

Improvement factor 24

complexes to the micellar phase. Thus, the enhancement
factor which has been defined as the concentration ratio
of the analyte in the final diluted surfactant rich phase is
24. This enhancement factor facilitates to bring the analyte
concentration within the detectable range in the proposed
method.

3.3. Interference Study. To check the suitability of the pro-
posed method for application studies, the effect of common
anions and cations was studied in the determination of
arsenic. The anions like Cl−, SO4

2−, NO3
−,CO3

2−, F−, and
citrate did not interfere even at 1000 μg level. However,
PO4

3− and silica interfered positively as they also form het-
eropoly blue complexes. The phosphate and silicate interfer-
ence was overcome by treating the sample solution with 1 mL
each of 2% calcium nitrate and 3% tartrate, respectively.
The cationic species like Ba2+, Pb2+, Hg2+, Al3+, and Cu2+

form white precipitate which can be removed by centrifuging
before adding surfactant. The other cations like Fe2+, Ca2+,
Mg2+, Cr6+, Zn2+, and Ni2+ did not interfere even at 1000 μg.
This method did not suffer any interference from glucose,
citric acid, and amino acids like histidine, and so forth, which
are commonly present in the urine samples (Table 1).

3.4. Analytical Merits. The analytical merits of the optimized
method have been summarized in Table 2. The linear
working range of the method has been found to be 10–
200 ng mL−1. The limit of detection, relative standard devi-
ation, preconcentration factor, and improvement factor of
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Table 3: Determination of arsenic from commercially procured chemicals.

Sample Certified arsenic content (ng)
Arsenic found (ng)

Proposed method ICPAES method

(1) Cupric sulphatea (Analar grade) 5000 4990± 24 4990± 12

(2) Cupric nitrateb (Analar grade) 1000 990.0± 9 1140± 18

(3) Sodium hypophosphite Hydratedc 4000 4001± 16 3800± 10

(4) Amaranth dyed 3000 2900± 12 3000± 15

n = 5; the values given here are average of five measurements.
aSample was procured from Glaxo Laboratories (India) Ltd., Mumbai with the following certified composition: Cl: 0.003%; As: 0.0005%; Fe: 0.005%; Ni:
0.015%.
bSample was procured from Glaxo Laboratories(India) Ltd., Mumbai with the following certified composition: Cl: 0.001%; Sulphate: 0.0025%; As: 0.0001%;
Fe: 0.005%; Ni: 0.01%; Ba: 0.005%; Pd: 0.001%, Bismuth: 0.001%.
cSample was procured from SD Fine Chem Ltd., Mumbai with the following certified composition. As: 0.0004%; Pb: 0.001.
dSample was procured from SD Fine Chem Ltd., Mumbai with the following certified composition. As: 3 ppm; Pb: 10 ppm.

Table 4: Determination of arsenic in biological samples.

Sample
Total As (ng) As(V) added (ng) Total As(V) found (ng) Recovery (%)

Proposed method ICPAES method
Proposed
method

ICPAES method Proposed method
ICPAES
method

Hair∗ ND ND 20 19.9± 1.2 20.0± 1.6 99.5 100

Nail∗ ND ND 10 9.2± 1.9 9.8± 1.1 96.2 98.0

Urine† ND ND 20 19.6± 1.2 20.3± 1.2 98.0 101.5

n = 5; the values given here are average of five measurements.
ND: Not detected.
∗Concentration in ng g−1.
†Concentration in ng mL−1.

Table 5: Determination of arsenic in different environmental samples.

Sample
As(V) found
in samples

As(III) + As(V) found
in samples

As(V)
added (ng)

Total arsenic Recovery (%)

Proposed
method

Proposed
method

ICPAES
method

Proposed
method

ICPAES
method

Proposed
method

ICPAES
method

Polluted water∗ ND 500± 12 499± 13 — — — — —

Bore well water∗ ND 200± 13 200± 11 20 220± 12 220± 12 100 100

Polluted soil† 32± 2.0 99.0± 9.1 98.0± 8.3 — — — — —

Spinach leaves†

(Spinacia oleracea)
ND 210± 12 209± 12 20 230± 10 229± 12 100 99.5

Tomato leaves†

(Lycopersicon
esculentum)

ND 500± 15 449± 11 10 590± 12 600± 15 98.3 100

n = 5; the values given here are average of five measurements.
ND: Not detected.
∗Concentration in ng mL−1.
†Concentration in ng g−1.

the method were found to be 1.0 ng mL−1, 1.4 for 25 ng
arsenic, 5 and 24, respectively.

3.5. Application Study. In order to check the reliability of
the proposed method, it was applied to determine arsenic
content in the commercial chemicals where arsenic quantity
is certified. The recovery studies were carried out by spiking
the biological samples like human urine, human nail, and
human hair samples with known quantities of arsenic. These
results were found to be compared with the results of ICPAES

method which are in good agreement. The arsenic content in
surface water, ground water, soil, and vegetable samples were
also determined (Tables 3, 4, and 5).

3.5.1. Water Samples. The ground water contamination with
arsenic mainly depends on the nature of soil as well as the
human activity nearby the region. Arsenic-based paints have
been extensively used in painting clay idols throughout the
world. These idols were submerged in the lake water or ponds
after their procession during the selective festival season in
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Table 6: Comparison of the proposed method with other methods.

Method Linear range (ng mL−1)
Detection limit

(ng mL−1)
Preconcentration

factor
References

(1) Ion-Pair extraction/spectrophotometry 50–800 — 5.0 [10]

(2) Chemiluminescent method 0–100 0.4 12.5 [11]

(3) Spectrophotometry 0–300 4.0 — [12]

(4) Cloud point extraction/spectrophotometry 10–200 1.0 5.0
Proposed
method

India and some other parts of world. When these clay idols
were submerged, the water bodies as well as the soil sledges
get contaminated with the arsenic.

3.5.2. Soil Samples. The soil can get contaminated with ar-
senic by various means. The agricultural soil gets contam-
ination with arsenic by means of manures and agricultural
sprays. The soil sludge in our study was collected from the
pond beds where painted clays idols were dumped after
festivals. These idols slowly dissolve, and pond bed collects
clay material containing arsenic.

3.5.3. Vegetable Samples. The plant uptake capacity for ar-
senic depends mainly on the level of arsenic present in the
soil as well as the use of arsenic contaminated water. The ar-
senic content in spinach leaves and tomato leaves was deter-
mined by following the procedure discussed above.

3.5.4. Biological Samples. Arsenic can be measured in human
urine, hair, and nail samples to monitor excessive environ-
mental or occupational exposure, to confirm a diagnosis of
poisoning in hospitalized victims or to assist in the forensic
investigation in case of fatal overdosage. Organic arsenic
compounds tend to be eliminated in the urine in unchanged
form, while inorganic forms are largely converted to organic
arsenic compounds in the body prior to urinary excretion.

4. Conclusions

A simple, highly sensitive cloud point extractive spectropho-
tometric procedure for trace level arsenic quantification in
different matrices has been reported. The method is based
on the cloud-point-mediated preconcentration of the arse-
nomolybdenum blue complex and measuring its absorbance.
The method can be employed to detect the inorganic arsenic
species in various environmental matrices at nanogram
levels. This method is much more sensitive than any other
spectrophotometric method reported till now including
arsenomolybdenum blue method. The use of surfactant in
the proposed method is ecofriendly and nontoxic when
compared to the conventionally used organic solvents for
extraction of the analyte. It provides wide linear range in
comparison with some of the reported methods (Table 6).
The results obtained by the proposed method have been
compared with the ICPAES method, and the measured ar-
senic levels from different natural samples were found to be
in good agreement.
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