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Abstract

Introduction: Several studies have provided evidence of the key role of neutrophils

in the pathophysiology of Alzheimer’s disease (AD). Yet, no study to date has inves-

tigated the potential link between AD and morphologically abnormal neutrophils on

blood smears.

Methods: Due to the complexity and subjectivity of the task by human analysis, deep

learning models were trained to predict AD from neutrophil images. Control mod-

els were trained for a known feasible task (leukocyte subtype classification) and for

detecting potential biases of overfitting (patient prediction).

Results:Deep learning models achieved state-of-the-art results for leukocyte subtype

classification but could not accurately predict AD.

Discussion: We found no evidence of morphological abnormalities of neutrophils in

AD. Our results show that a solid deep learning pipeline with positive and bias con-

trol models with visualization techniques are helpful to support deep learning model

results.
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1 INTRODUCTION

Over the past decade, inflammation has emerged as a prominent fea-

ture of Alzheimer’s disease (AD) pathophysiology.1 Several studies

have provided evidence of a key role played by neutrophils in AD-

related inflammatory processes,2 mediated by intracellular granules,

surface expression of inflammatory proteins, higher extravasation, and

vascular NETosis.2–4

It is known that, on a blood smear, neutrophils exhibit abnormali-

ties or morphologic particularities during infections and inflammatory
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processes.2,5,6 However, to our knowledge, no studies have investi-

gated such potential morphological particularities of AD neutrophils,

secondary to their functional alteration. The objective of the present

study is to investigate the presence of such abnormalities on peripheral

blood smears and their potential as a biomarker of diagnosis of AD.

Detecting unknown abnormalities on a blood smear is a com-

plex and time-consuming task. Deep learning has emerged during the

past decade as a powerful tool for image analysis, capable of achiev-

ing expert-level accuracy and even discovering unknown image pat-

terns of clinical importance.7–9 To explore the link between neutrophil

Alzheimer’s Dement. 2021;13:e12146. wileyonlinelibrary.com/journal/dad2 1 of 6

https://doi.org/10.1002/dad2.12146

https://orcid.org/0000-0001-6871-8711
mailto:floris.chabrun@chu-angers.fr
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/dad2
https://doi.org/10.1002/dad2.12146


2 of 6 CHABRUN ET AL.

morphology and AD, we trained state-of-the-art artificial intelligence

architectures based on machine learning methods, so-called deep

learning, to predict AD based on images of blood smears.

2 MATERIALS AND METHODS

2.1 Cohort construction and data collection

Patients from the Department of Geriatrics of the University Hos-

pital of Angers were recruited into two cohorts: the AD group for

patients with AD and the subjective memory complaint (SMC) group

for patients without dementia and without mild cognitive impair-

ment (MCI) who had normal neuropsychological and functional perfor-

mance. Details concerning the recruitment of patients are listed in File

S1, section 1: Cohort construction in supporting information. Leuko-

cyte images for patients were retrieved from routine a health-care

database of analyses run in the Department of Hematology of the Uni-

versity Hospital of Angers. Those images were partitioned in training,

validation, and test sets according to rules described in File S1, sec-

tion 2: Data partitioning.

This study was performed using anonymized data collected during

the care and treatment of patients. According to the approval of the

Ethics Committee of the University Hospital of Angers (no 2020/118),

due to the tacit consent of patients for theuseof their anonymizeddata

collected during routine care, written consent was not required and

replaced by verification of the absence of patient’s opposition. Data

were collected and processed after declaration to the University Hos-

pital of Angers’ Data Protection Officer according to the General Data

Protection Regulation (declaration ar19-0046v0).

2.2 Prediction tasks

Two pre-trained state-of-the-art architectures (VGG-16 and Inception

v3) were trained after transfer learning for three learning prediction

tasks, including two control tasks, to ensure the veracity of the results

obtained for AD patients.

The first task, referred to as “AD prediction,” aimed at classifying

patients with AD versus patients with SMC from neutrophil images

from peripheral blood smears.

The same deep learning architectures were used for a simpler task:

the prediction of already known imaging features, namely leukocyte

subtype classification into four classes: neutrophils (NE), eosinophils

(EO), monocytes (MO), and lymphocytes (LY). Basophils were excluded

because of an insufficient number of samples.

Finally, to explore biases potentially responsible for overfitting, by

learning by heart for example, we also trained the same architectures

to predict the patient to whom each image belonged. This task is

referred to as “patient identification.”

Details concerning the choice of those deep learning architectures

and the training are presented in File S1, sections 3-7; see Figure S1 in

supporting information.

HIGHLIGHTS

∙ There is no argument in favor of morphologically abnor-

mal neutrophils in Alzheimer’s disease.

∙ Study is based on data allowing state-of-the-art leukocyte

deep learning classification.

∙ A pipeline allows its robustness to be checked regardless

of sample size.

RESEARCH INCONTEXT

1. Systematic review: We reviewed literature using pub-

lished and pre-print sources (eg, PubMed, arXiv). Sev-

eral studies have recently provided evidence of a major

role played by neutrophils in the pathophysiology of

Alzheimer’s disease. Toour knowledge, however, no study

has addressed the presence of morphological alterations

among neutrophils on blood smears, despite the well-

known links between inflammation processes and neu-

trophilic morphological abnormalities.

2. Interpretation: Our results confirm the absence of neu-

trophilic morphological abnormalities on blood smears.

This is supported by deep learning control models achiev-

ing state-of-the-art accuracy for a known feasible task on

the same data and visualization techniques exploring the

behavior of thosemodels.

3. Future directions: As neutrophils did not show any mor-

phological alterations onblood smears carriedout on rou-

tineblood formula counts, itmaybe interesting to analyze

higher resolution images to search for finer alterations or

focus on non-cell elements not routinely analyzed such as

neutrophil extracellular traps.

3 RESULTS

3.1 Cohort description

The cohort is described in Table 1. Twopatients hadWaldenström’s dis-

ease: one in the AD group and one in the SMC group. Because of the

balance betweenboth groups, those patientswere kept in the analyses.

No other patients in the AD group had any form of malignant hemopa-

thy. In the SMC group, one patient had chronic lymphocytic leukemia,

and one had a follicular lymphoma. Those patients were kept in our

study, because our partitioning pipeline prevents models from being

tested on images of patients they were trainedwith.
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TABLE 1 Cohort description

Group AD SMC Total/p-value,2

Patients

Number of

patients

8 10 Total: 18

Number of

reports

12 13 Total: 25

Age: mean± SD 85.3± 5.4 years 84.8± 6.6 years N.S.1

Biology

Total leukocytes

count

10.8 G/L 8.0 G/L N.S.1

PMN count 8.6 G/L 6.6 G/L N.S.1

PME count 0.2 G/L 0.1 G/L * 1

Monocyte count 0.7 G/L 0.5 G/L N.S.1

Lymphocyte

count

1.2 G/L 0.6 G/L * 1

Hemoglobin 11.2 g/dL 11.8 g/dL N.S.1

Hematocrit 33.0% 35.2% N.S.1

Mean globular

volume

92.5 fL 96.3 fL N.S.1

Mean hemoglobin

concentration

33.8 33.7 N.S.1

Platelet count 211 152 N.S.1

CRP≥

5mg/L/total

7/9 (3 unknown) 7/8 (5 unknown) N.S.2

Images

PMN images 1455 1468 Total: 2923

PME images 54 28 Total: 82

Monocyte images 117 118 Total: 235

Lymphocyte

images

347 200 Total: 547

Notes: P values were computed usingMann-Whitney tests. N.S.: P> 0.05.

*P< 0.05.
1P values were determinedwithMann-Whitney tests.
2P value was determinedwith a Fisher’s exact test.

Abbreviations: CRP, C-reactive protein; PME, polymorphonuclear eosinophil; PMN, polymorphonuclear neutrophil; SD, standard deviation.

3.2 Leukocyte subtype classification

The topmodel (VGG-16) achieved an accuracy on the test set of 97.5%

(94.3% with random translation/rotation applied to the image). For all

models, median accuracy was 84.6% (96.1% and 82.2% median accu-

racy for models trained with soft and strong image augmentation,

respectively).

3.3 Alzheimer’s disease prediction

The topmodel (VGG-16) achieved an area under the curve for receiver

operating characteristic curve (AUC-ROC) on the test set of 0.68 (0.62

with random translation/rotation applied to the image). For all models,

themedian AUC-ROCwas 0.5.

3.4 Patient identification

The top model (Inception v3) achieved an accuracy on the test set of

95.3% (80.3% with random translation/rotation applied to the image).

For all models, the median accuracy was 17.3% (73.8% and 12.2%

median accuracy for models trained with soft and strong image aug-

mentation, respectively).

3.5 Gradient-weighted class activation mapping
(Grad-CAM) visualization

The heatmaps presented in Figure 1A–C depict the attention of neu-

ral networks on the image for the associated output prediction. This

allows assessment of (1) which regions are useful for the predictions
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F IGURE 1 Gradient-weighted class activationmapping (Grad-CAM) visualization of best models for blood cell type classification (A),
Alzheimer’s disease prediction (B), and patient prediction (C). For each image, themodel was inputted with the raw image (left) and the same image
after random translation and/or rotation (right). Predicted class and associated confidence are plotted on the heatmap, while ground truth is
plotted on the input image

and whether those regions are consistent with the expectations of

human hematologists, namely for leukocyte subtype prediction; (2) the

number and size of those regions; and (3) the stability and robustness

of neural networks when transformations such as translation or rota-

tion are applied to the image.

4 DISCUSSION

With 18 patients and 3787 pictures, we trained amodel to classify cells

according to the four main leukocyte types, with an overall state-of-

the-art accuracy of 97.3%.10–12 The consistency of those results was

confirmed by (1) Grad-CAM, showing that the attention of the model

was focused on the area an expert hematologist would interpret, that

is, cells’ nuclei and cytoplasm, and this attention follows the elements

when translation/rotation is applied to the image; and (2) the results

during grid search, with most models achieving an overall accuracy on

the validation set higher than 85%, even with strong image augmenta-

tion.

We also showed that the deep learning models used (mainly Incep-

tion v3) could achieve a high accuracywhen predicting towhich patient

a cell image belongs. Grad-CAM showed that this ability is attained

by focusing on more minor details, such as red blood cell density and

spreading, or particularities on cells, like granulation density. Although

this highlights the high sensitivity of those small details and thus their

possible performance, this also highlights how those models are prone

to overfitting. This is demonstrated by predictions that neural net-

works tend to changewhen translation/rotation is applied to the image.
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The best model trained for AD prediction showed an interesting

AUC of 0.70 on the training set, confirmed on a test set of new images

(AUC = 0.68). However, Grad-CAM visualization supports a tendency

to overfit, showing a high versatility concerning the details on which

the model focuses and a high instability when applying translation or

rotation to the images. Furthermore, a grid search showed that most

models could not achieve an AUC on a test set higher than 0.5, thus

supporting this tendency.

Our results draw attention to the overfitting risks of deep learn-

ing architectures. We hereby show that state-of-the-art deep learn-

ing architectures can efficiently learn to memorize to which patient an

image belongs, based on a variety of details, some of which are minute.

In our study, we carefully partitioned our samples to make sure that a

model trained on images from a patient would not be tested on images

of the samepatient, to avoid any bias leading to an overestimation of its

performance. However, to date, a number of articles recently applying

deep learning to blood cell classification or prediction have not speci-

fied the stratification during partitioning.12–14 This omission may lead

to the overestimation of both the results of those models and particu-

larly their ability to generalize to new patients.

4.1 Limits

Our study was restricted on retrospective data analyzed during the

routine care of patients seen in the University Hospital of Angers. For

further confirmation of these results, multicentric prospective data,

including blood smear images obtained with other coloration methods

and other digital microscopes will be needed. Our data are accessi-

ble for further analysis upon reasonable request to the corresponding

author.

5 CONCLUSIONS

We used a solid prediction-based pipeline: (1) a positive control pre-

dictive model, trained to verify the feasibility of a known task on our

dataset, that is, leukocyte subtype classification; (2) a bias control pre-

dictive model, trained to determine whether models could learn fea-

tures allowing themtooverfit; and (3)Grad-CAMvisualization to check

that the attention given by themodel fit with our expectations. Thanks

to this pipeline, we have demonstrated here that there is no evidence

of a link between blood smear neutrophil morphology and AD.

We have also highlighted the importance of control predictivemod-

els, heavy visualization techniques, grid search, and transfer learning,

enabling us to verify the consistency of models and prevent falsely

accurate results from being trusted, despite a complex task based on

a relatively low number of samples.
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