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Abstract: There are unanswered questions with regards to acute respiratory outcomes, particularly
asthma, due to environmental exposures. In contribution to asthma research, the current study
explored a computational intelligence paradigm of artificial neural networks (ANNs) called self-
organizing maps (SOM). To train the SOM, air quality data (nitrogen dioxide, sulphur dioxide and
particulate matter), interpolated to geocoded addresses of asthmatics, were used with clinical data
to classify asthma outcomes. Socio-demographic data such as age, gender and race were also used
to perform the classification by the SOM. All pollutants and demographic traits appeared to be
important for the correct classification of asthma outcomes. Age was more important: older patients
were more likely to have asthma. The resultant SOM model had low quantization error. The study
concluded that Kohonen self-organizing maps provide effective classification models to study asthma
outcomes, particularly when using multidimensional data. SO2 was concluded to be an important
pollutant that requires strict regulation, particularly where frail subpopulations such as the elderly
may be at risk.

Keywords: self-organizing maps; classification model; air quality; asthma outcomes; asthma research;
artificial neural networks

1. Introduction

South Africa is accepted as one of Africa’s most industrialized economies [1]. The rapid
industrialization of South Africa has increased the demand for electrification and other
inputs for industrial processes such as transportation and human capital [1]. The increased
need for the latter has led to rural–urban migration and rapid urbanization. Consequent to
rapid urbanization, industrialization and migration, social determinants of health, such
as the place where people live, have also changed. As may be expected, new patterns of
both communicable and non-communicable diseases have therefore emerged. One such
disease with a significant economic and public health burden in South Africa is asthma.
South Africa is ranked fifth in the world for age-adjusted mortality due to asthma [2].
Although not the only known trigger for asthma, pollution due to industrial processes and
other anthropogenic processes has proved to be a concern for the South African context. In
South Africa, as in many other emerging markets, the use of clean technologies to power
economies is limited. Therefore, industrial processes generate increased levels of pollution,
which in turn increase the incidence of acute asthma [2]. Nearly 85% of electricity generated
in South Africa is generated through power plants using coal [1]. An additional 5% of
the electricity is generated using diesel turbine engines [1]. These processes contribute
to overall air pollution. Emissions from vehicles also contribute to pollution. Therefore,
exposure to air pollution and the resultant acute exacerbations of asthma still form a
pertinent research topic.

Int. J. Environ. Res. Public Health 2021, 18, 11071. https://doi.org/10.3390/ijerph182111071 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-5346-5798
https://orcid.org/0000-0003-0783-9768
https://orcid.org/0000-0001-5076-3143
https://doi.org/10.3390/ijerph182111071
https://doi.org/10.3390/ijerph182111071
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph182111071
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph182111071?type=check_update&version=2


Int. J. Environ. Res. Public Health 2021, 18, 11071 2 of 10

The relationship between environmental exposures and health has been the subject
of public health research for decades [3–5]. There remain several unanswered questions
regarding acute respiratory outcomes, particularly asthma, due to environmental exposures.
Asthma is a heterogeneous disease with clinical presentation symptoms such as wheezing,
shortness of breath, chest tightness and coughing, usually characterized by respiratory
airway inflammation and hyper-responsiveness [6]. Research indicates that air pollution
plays a role in exacerbation of asthma, but it remains unclear how air pollution causes
asthma disease [7,8].

The role of aeroallergens in triggering asthma has been documented as early as the
1980s [9]. Although aeroallergens, particularly pollen, have been known to trigger asthma,
studies in the South African context indicated that pollution was also associated with the
increased incidence of acute asthma and hospitalization [2].

In West Africa, another study found that, in addition to industrialization, pollution
generated by agricultural processes and burning of farm lands further contributes to
exposure that increases respiratory symptoms and related mortalities [10]. Similar to the
increasing incidence of asthma in relation to increased industrialization and pollution in
sub-Saharan Africa, the same association has been documented for South East Asia [11].
The rapid industrialization of South East Asia has been linked to an increasing prevalence
of asthma and allergies [11]. These findings linking increase in pollution to increased
incidence of acute asthma underscore the importance of understanding the role of pollution
in triggering non-allergic asthma.

Univariate analyses have produced knowledge on the association between exposure
to pollution and asthma. However, alternative methods that enhance the understanding
of exposures that precipitate acute exacerbations, to enable proactive and preventative
interventions in the management of asthma, are required. The latter methods need to
have independent assumptions generally required for traditional univariate statistical
methods. These alternative methods need to be resilient to air quality data that are often
sparsely available in emerging markets such as South Africa. Most importantly, proposed
alternative methods need to be capable of describing non-linear relations between exposure
to air pollution and the related health outcomes. The relationship between exposure and
health may not necessarily be linear, as assessed in most univariate analysis methods, due
to bio-variability and the complexity of mixed exposures. Non-linear methods such as
ANNs have been found to perform better in forecasting compared to linear models such as
the traditional Autoregressive Integrated Moving Average (ARIMA) model [12].

To assess this complex relationship between exposure to air pollution and health
outcomes, the current study used a non-linear method, using artificial neural networks
(ANNs). The study applied the Kohonen self-organizing neural network [13,14]. This is a
dimension reduction algorithm that compresses the output of a multidimensional input
into a two-dimensional grid or map called a self-organizing map (SOM). The algorithm in
Kohonen’s self-organizing maps applies unsupervised learning; that is, it uses no assistance
from external sources and, therefore, primarily performs clustering of training patterns or
associations without known outcomes [15].

In the SOM model, the idea of self-organizing relates to the ability of systems to
change their internal structure and function in response to external stimuli [15]. As the
SOM produces a lower-dimensional projection of the high-dimensional input, the similarity
relations between and within the input data points are preserved [15]. The SOM model
closely resembles learning vector quantization (LVQ) and is based on competitive learning,
where only the winning neuron learns [13].

The current study sought to contribute to understanding the attributes of environmen-
tal exposures and the characteristics of patients who presented with acute exacerbation
of asthma. The primary research goal was to determine if acute exacerbations of asthma
could be forecasted through a supervised machine learning algorithm to classify disease
outcomes. The study hypothesized that a supervised neural network algorithm could be
trained to cluster patients presenting with acute exacerbations of asthma, thereby allow-
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ing for extracting rules and attributes associated with mixed air pollution exposure that
exacerbate asthma.

2. Materials and Methods

This was a cross-sectional study in two public hospitals serving the Johannesburg
and Tshwane Metropolitan cities in Gauteng Province, South Africa. A map indicating
the study area is submitted as supplemental submission A: Figure S1. The study used
clinical records to collect information on patients who presented at the health facility with
acute exacerbations of asthma and other respiratory ailments. The initial patient sample
size was 1647 patients, but only 483 patients had complete address records. The degree
and severity of asthma were not used as inclusion criteria, as the study only focused on
incidence. The study excluded patients who had addresses that could not be geocoded.
Only complete address records could be used to successfully geocode patients’ addresses
for interpolation of air quality data received from the Department of Environmental Affairs
(DoEA) air quality monitoring stations.

A self-developed data collection instrument with ethics approval (p460/2016) was
used to collect clinical data and record environmental data. All the presenting clinical
symptoms recorded on the medical records were also collected. This instrument is provided
as supplemental B. In the analysis, all asthma cases were coded as 1, and non-asthma
outcomes were coded as 0. Air quality data were requested from the DoEA for the City of
Johannesburg (CoJ) and the City of Tshwane (CoT). Data from all the monitoring stations
in the two cities were provided by the department. These data were pre-processed and
transformed (standardization and scaling) before analysis. Data on nitrogen dioxide (NO2),
sulfur dioxide (SO2), carbon monoxide (CO), ozone (O3), and particulate matter (PM10)
were received. These data had varying degrees of missingness indicative of the sparsity of
air quality data in South Africa.

Residential addresses in the clinical records were provided by patients without any
form of verification. The patients’ addresses were geocoded in ArcGIS version 10.6. All
demographic data were collected including gender, age, race and residential address.
Age categories were defined as (a) category 1, infants (from birth to 1 year); (b) category
2, children (2–9 years); (c) category 3, adolescents (10–19 years); (d) category 4, adults
(20–65 years); and (e) category 5, elderly (over 65 years of age). In the South African
context, there are four race categories which were coded 0 to 3. Race category 0 was
African or Black. Race category 1 was Whites. Race category 2 was Indian, and category 3
was Other.

Missing data were imputed using multiple imputation by chain equations (MICE).
The completely imputed environmental data from the DoEA were then interpolated to the
patients’ geocoded physical addresses.

As discussed in the introduction, an SOM method was preferred in the current study
due to its ability to identify non-linear relations. It also offered better dimensional reduction
and presentation of an output in two dimensions compared to other methods.

The first step in developing an SOM algorithm is deciding on the size of the map or
grid. Selecting the right size of the map is important, as bigger maps with a high number of
nodes are computationally heavy and may not always achieve sufficient data reduction [16].
In the current study, we used a size slightly bigger than the size recommended by the rule of
thumb. We used an 8 × 8 grid in the final model because this size had an optimum model
with lower quantization error. The SOM algorithm can have a rectangular, hexagonal
or linear structure and uses the structure to organize the neurons [16]. The principal
steps in developing an SOM included (a) initialization, (b) updating of codebook vectors,
(c) updating codebook vectors using Euclidian distance and (d) computing the quantization
error [15]. Initialization can be represented by Equation (1) below:

wkj = (wkj1, wkj2, ···, wKJI) (1)
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There are multiple ways to initialize the codebook vectors, but the simplest method is
to assign random values to the weights as shown in Equation (1), where K represents the
number of rows and J the number of columns.

Iterative updating of the codebook vector follows Equation (2) as

wkj (t + 1) = wkj (t) + hmn, kj (t)[zp − wkj (t)] (2)

where mn is the row and column index of the winning neuron as determined by the
Euclidean distance.

The iterative process of updating the codebook vectors ends when the minimum
quantization error has been achieved. Equation (3) shows calculation of quantization error.

εt =
pt

∑
p=1
|| zp− wmn(t) ||

(
2
2

)
(3)

To optimize the model performance, the learning rate is adjusted using Equation (4).

η(t) = η(0)e − t/τ2 (4)

The SOM algorithm was best suited for the current study because it provided a clear
classification map. Furthermore, the SOM algorithm could still work well using air quality
data with high degrees of data missingness.

To optimize the SOM algorithm, we changed the learning rate. Equation (4) describes
the computation for adjusting the learning rate. A learning rate is a parameter optimizer
that ensures the gradient descent does not change too rapidly or too slowly. The smaller
the rate, the slower the gradient descent, and the longer the iteration. If too big, it may also
affect convergence of the model.

To perform SOM, the clinical data were merged with the interpolated DoEA pollu-
tion data. The exposure data used were exposures measured two days before a clinical
presentation. This lag period was intended to allow for an inflammation process that often
precipitated an acute exacerbation of asthma [17]. Lag periods of 0 to 5 days have been
reported where patients presented with respiratory symptoms, such as asthma, after they
were exposed to dust [18].

Further data pre-processing included scaling and normalization of the data to prevent
the differences in the scales of the variables from affecting the output, producing a scale
artifact (SA). Variables with a larger scale may appear to be more important or significant
in the algorithm learning process compared to variables with a smaller scale. Therefore,
scaling is essential and allows for the input values to fall within the active range of the
activation function of the algorithm. Nominal input values were coded into binary input
parameters in preparation for modelling.

In the current study, we performed both a supervised and an unsupervised SOM, with
the former producing dependent variable codes indicative of class predictions, i.e., whether
the candidate had asthma or not. The difference between outcomes of a supervised SOM
and an unsupervised SOM is that the former can perform a regression (in the case where
the known outcome variable is continuous) or a classification (in the case where the known
outcome variable is binary or class type), while the latter purely performs clustering of the
input data [19].

To improve convergence speed and SOM performance, we varied the learning rate
and the optimization of neighborhoods. After performing the SOM, the trained weights
did not have any boundaries indicating clusters. Two methods can be used to develop
cluster boundaries on the trained weights: (a) using a unified distance matrix or (b) using
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a Ward clustering method [13]. We used the Ward clustering of the codebook vectors to
visualize the cluster boundaries. Equation (5) shows how the Ward distance was calculated.

drs = nrns nr + ns ||wr− ws||
(

2
2

)
(5)

To evaluate the performance of the SOM algorithm, accuracy, quality, quantization
and topological errors were computed. The quality of an SOM model is determined by
the mean distance of objects mapped to a unit and consequently the mean distance of
objects mapped to the codebook vector of that unit. The smaller the distances, the better
the objects are represented by the codebook vectors. The distance between the neurons
was mapped on the code book vectors, and the closer they are, the better. In this study, the
effects of neighborhood size and the number of weights in the self-organizing map (SOM)
on quantization error were also analyzed.

3. Results

Over 70% of the initial study population was lost to the study in final model devel-
opment. These were patients whose addresses could not be geocoded and therefore did
not have an exposure profile. Of the remaining sample (n = 483), about 53% (n = 255) were
male, and nearly 2% (n = 7) had a missing gender identity in the medical records. Just
under 20% (n = 92) of the clinical presentations were confirmed asthma cases, while others
were either a case of respiratory tract infection (19%), cough and bronchitis (6%), or other
related respiratory conditions.

The ages of the participants were rightly skewed, with the minimum age being four
months and the eldest patient being 86 years old. Seventy-three percent of the patients were
adults and the elderly. Over 53% of positive asthma cases were adults. The pronounced
effect of age suggests frailty or higher susceptibility to acute disease outcome with advances
in age. The effect of race in determining health outcomes was also evaluated.

Figures 1 and 2 below show (a) the prevalence of asthma by age category and
(b) the prevalence of asthma by gender. In Figure 1, the adulthood age category is shown
to contribute to the highest count of participants who had asthma (10% of the total asthma
cases). The elderly and adolescence age groups followed with a 4% contribution.
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Although Figure 2 does not adjust for age category, it indicates that the positive asthma
cases were mostly males (52%, n = 47).

The initial unsupervised SOM, as shown in Figure 3, demonstrated a successful reduc-
tion in the multidimensional inputs to the desired two-dimensional map on a 4 × 4 grid.
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Figure 3. The code plot of an unsupervised SOM showing a two-dimensional map of the parameters
determining disease outcome.

The output map is read from left to right and from the bottom to the top of the map.
The bottom left cycle represents node 1, and the top right cycle represents the last node
(node 16). In Figure 3, a 4 by 4 map, there are 16 nodes on which the various inputs are
mapped. Except for node 1 and node 11, all the nodes showed that the different input
parameters contributed to determining the disease class. Generally, gender, race and age
were important in determining the disease class. The contributory factor of the input data
is shown by the size of the fan, which is color specific for the input variable. In six of the
nodes (nodes 2, 8, 9, 12, 14 and 16), environmental pollution parameters were deterministic
of disease class, i.e., whether a patient had asthma or not.

As in the unsupervised SOM, the socio-demographic factors (age, gender and race) in
the supervised SOM seemed to dominate most nodes. However, the effect of environmental
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pollution was better represented in the supervised SOM. The code plot of the supervised
SOM in Figure 4 shows that the pollutants had equally contributing representations in
many nodes. Nodes 1–6 (the bottom row of nodes) show that only the environmental
pollutants determined the disease outcome for those patients. Nodes 8, 36, 40, 42, 43, 50,
51 and 53–64 show a balanced representation of the environmental parameters and the
sociodemographic parameters. However, gender seemed to be the overall most predictive
variable of disease outcome shown in nodes 15, 22–24, 29–32 and 37–40. SO2 demonstrated
an equally predictive value as race. NO2 and PM10 seemed to have the least predictive
value. However, PM10 was slightly more potent than NO2. In node 6, PM10 was the variable
most predictive for classification of disease outcome, and NO2 was the most predictive in
node 14.
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Figure 4. Code plot of the supervised SOM showing the independent variables.

The supervised SOM for classifying asthma disease outcome was successful. Supple-
mentary Figure S2 show the dependent variable code plot. After optimizing the model
performance indicators, the final model had an accuracy rate of 59%, a sensitivity rate
of 18% and a specificity rate of 64%. Changing the learning rate in the SOM algorithm
produced the most improvement in model performance. We tested the quality of the model
using a quantization error. Distances less or equal to 0.05 were observed for 57 of the 64
nodes. Furthermore, a low quantization error was observed (0.03).

4. Discussion

The SOM output allowed the mapping of a complex interaction between gender, race
and SO2. The model further showed the effect of NO2 and PM10. A traditional statistic
model might have defined the odds ratios or the gradients that equate one parameter
to the other in a linear function (points where known X values can be used to calculate
the Y output values). However, the current SOM model established threshold values for
individual parameters at every node. It is this type of outcome that makes unsupervised
classification models such as SOM an alternative that may be useful in modelling complex
relationships between exposure and disease outcome. If knowing outcomes (e.g., an odds
ratio) was adequate in asthma research, it would be reasonable to posit that the burden
of asthma in emerging markets such as South Africa would not result in the reported
age-adjusted death rates. It is known what the odds of females presenting with more
asthma may be, but additional information, such as the levels of SO2, NO2 and PM10 that
are sufficient to produce interactions that may precipitate acute asthma, remains the current
challenge. SOM models can identify these interactions and quantify them.
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An algorithm such as SOM that enables extracting learning rules even from sparse
data, such as the type of missing air quality data observed in South Africa, has an advantage
over other algorithms, particularly those that may be affected by missing and sparsely
available data. Further development, i.e., algorithm soft computing, of the SOM-extracted
rules allows for better prediction and prescription on the management of disease outcomes.
The latter attribute made an SOM a strongly suitable model to predict disease outcomes
given the clinical presentations of patients with respiratory conditions that might have
been acute exacerbations of asthma or a related outcome. Based on the SOM developed
in the current study, a soft computed algorithm was prototyped into an asthma device. A
patent on the device is currently under review.

The prevalence of asthma in South Africa has been recorded to be on the rise [2]. The
results of the International Study of Asthma and Allergies in Childhood (ISAAC) in two
South African cities (Cape Town and Polokwane) have shown the prevalence to range
between 16% and 20% for the 13 to 14-year-old age group [2]. Age in the current study
was reported as skewed. Therefore, an age-adjusted prevalence was not suitable to report.
However, an overall incidence of asthma was reported as 19% (n = 483).

More males had asthma compared to females (just under 5% more males had asthma).
This was inconsistent with expectation. Previous studies have shown asthma to be more
prevalent in females, although this difference may be age related [20]. Although the current
study did not measure the incidence of occupational asthma, this type of asthma may also
be useful to explain the finding that the current study had more males with asthma than
females. We observed older patients to be more susceptible to acute asthma compared to
other age groups. This finding is consistent with the literature. Old age has been shown
to increase mortality in patients aged above 55 years old, although some studies indicate
childhood asthma to be often severe [21].

We observed an interaction between environmental factors and sociodemographic
factors in some nodes. This interaction suggests that knowing environmental attributes
and managing environmental pollution is vital for asthma management in the South
African context. In the supervised SOM, considering pollutants only, SO2 seemed to be
a potent predictor for positive asthma cases. PM10 and NO2, although predictive, had a
lesser contribution. This observation concurs with Greenberg et al., who observed that
the probability of mild and moderate-to-severe asthma was greater in areas with high
exposure levels of SO2 compared to sites with high levels of NO2 [22]. In that study, the
probable reasons for different presentations of asthma severity with the exposure to the
two pollutants are given in depth, and the reasons relate to the pathophysiology in both
the lower respiratory space and the upper airways [22].

In this study, we modeled pollution variables that may be generated by industrial
processes, and we found SO2 to be the most important. As it has been reported that 85%
of electricity generated in South Africa is produced using coal as the fuel [1], the finding
that SO2 had more potency in classifying asthma suggests a policy need to further regulate
emissions such as SO2. Furthermore, compliance with new WHO standards becomes an
important national imperative for South Africa. Rapid industrialization, urbanization and
the migration of large populations of people to urban centers may lead to anthropogenic
activities that increase generation of pollutants such as SO2.

5. Conclusions

Gender, race and age showed an association to clinical presentation with acute exacer-
bations of asthma. SO2 predicted acute asthma better than both NO2 and PM10. Although
the initial study sample size was reduced due to unavailable exposure profiles, the self-
organizing map still showed satisfactory performance. In this study we observed a low
quantization error. This study concluded that SOMs present an opportunity for studying
non-linear health outcomes. This is particularly true in environmental and public health
where the burden of chronic diseases such as asthma is on the rise. This conclusion was
strengthened by the ability of the model to successfully classify asthma outcomes, even



Int. J. Environ. Res. Public Health 2021, 18, 11071 9 of 10

when the geocoding process had resulted in the loss of a sizable proportion of the initial
sample size. Multidisciplinary approaches used in this study showed resilience to missing
data. Therefore, using an SOM is recommended in exposure assessment, particularly when
clinical and environmental data may be sparsely available. As indicated, the air pollution
data had varying degrees of missing data and were imputed. The SOM was still possible
using data sets with missingness.

6. Limitation

The current study had limitations due to patients’ addresses that could not be geocoded.
The addresses had no available georeferenced data and could not be processed. Therefore,
the addresses that could not be geocoded could not be included in the study because,
without geocoding, the exposure from the monitoring stations could not be interpolated to
the patients’ addresses. The impact of this limitation is a loss of 70% of the study sample
size. This reduction in sample size may have affected the power of the study, although
sample size may not be a critical rate-limiting step in machine learning model development.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph182111071/s1, Figure S1: Study setting, Figure S2: Supervised SOM Dependent variable
code plot.
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