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Abstract

Research has indicated that working memory is based on forming relations between individ-

ual elements. In this study, we considered the congruency of object clusters during a change

detection task. We demonstrate that changes which violate the relational encoding of a

probe display (single-object changes where one object shifts independently from its corre-

sponding group) are more easily detected than changes that maintain group structure (clus-

ter changes where all objects in the group shift in location together)–despite cluster changes

involving more objects moving overall. We explore this effect across interactions with direc-

tion of single-object movement (distancing from the cluster vs. uniting with the cluster) and

trial order, demonstrating that naïve participants improve at a faster rate on single-object

changes than cluster changes. It is concluded that storage in working memory functions by

building relational bindings between objects and their place within the chunk, rather than by

binding objects to their spatial location.

Introduction

Change detection paradigms are employed to investigate visual short-term memory (STM)

[1]. Using change detection, Jiang et al. [2] discovered participants tended to remember indi-

vidual objects in relation to the object’s surroundings, even when the surroundings were task-

irrelevant or when the target had been explicitly cued. This ‘relational grouping’ (encoding the

configural relationships between objects into memory) has been shown to enhance recall [3,

4], suggesting that relational grouping is a necessary aspect of maintaining individual units of

information (elements) in working memory (WM) [5–8]. In the current work, we examine the

impact of relational grouping on change-detection performance by manipulating whether the

change maintains the relational structure of the target group rather than changing the back-

ground stimuli.

The short-term memory system is responsible for maintaining temporary information in a

highly accessible state over a short period of time (typically in the realm of seconds and min-

utes), whereas working memory [9] distinctly involves maintaining and manipulating informa-

tion. This distinction is not often made in perceptual experiments [10] where visual WM is the
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preferred term. Visual WM research involves brief exposure times (less than one second) [11]

and simple displays to assess immediate encoding performance while cognitive WM research

typically allows participants to study elements [7]. Contemporary cognitive theories of WM

see the maintenance and manipulation of information inherently intertwined [6, 7, 12], such

that capacity limits in WM are simply limits on how information is integrated into chunks of

information [7]. Although WM is often defined by the manipulation of information, cognitive

WM theories posit chunk-formation involves relational integration processes. Given the

importance of this integration process to cognitive WM theories, the current study focuses on

this chunk-formation.

Cowan (7) suggests that chunks or the individual elements wherein are not directly related

to the capacity of WM but are stored as a relation to some concept. For instance, recalling the

sequence of letters “F-K-L” involves instantiating a relation to the concept of serial order. Simi-

larly, Oberauer (6) proposes that information is maintained in WM by binding elements into a

coordinated relational schema. For example, the recall elements F-K-L can be maintained

through a schema of temporal order with F bound to temporal position x1 such that: F1, K2, L3.

According to Oberauer, much of the strain on WM (and higher-order tasks) comes from hav-

ing to flexibly bind and unbind elements in light of new, updated information. For instance,

the n-back task [13] loads heavily on WM because it requires updating a running sequence of

elements, with every new item presented requiring both binding of the new elements and

unbinding of previously stored (but now unnecessary) elements. Halford et al. [8] hold a simi-

lar ‘binding’ view of WM but puts an emphasis on the contribution of processing limits to the

ability to instantiate new relations. For Halford et al., the capacity of WM is limited by the

maximum number of elements that must be simultaneously considered to comprehend the

relation that connects them. For instance, comprehending a four-way interaction is consider-

ably more complex than comprehending a three-way interaction, while comprehending a five-

way interaction is virtually impossible [14]. Although these theories [6–8] each have some

unique aspects, they share the view that WM capacity is based on chunk-formation. In these

approaches, the ostensibly ‘un-manipulated’ maintenance of information is still subject to

‘processing-like’ limitations because the elements are stored via a common relation that must

be instantiated.

Similar perspectives are found in the visual short-term memory literature on the impor-

tance of relational information. Vidal et al. [15] suggest that relational information is gleaned

from the visual display and form a ‘structural gist’. Changing a feature of a non-target changes

the ‘structural gist’ and impairs change detection. Similarly, Rensink [1] proposes that rela-

tional information between a set of objects is pooled into a nexus that contributes to higher-

level decision-making (i.e., decisions about the group, rather than the object). The nexus is

similar to the initial pooling of information in the structural gist process, though whereas the

nexus exists as a separate source of information, the gist is bound with individual object infor-

mation. The approaches are quite similar, though the nexus [1] suggests a more economical

explanation, and accounts for the finding that it is easier to detect a change (among a group of

non-changing objects) than it is to detect the absence of a change (among a group of changing

objects) [16]. Despite this difference, both theories and the cognitive WM theories offer similar

predictions on the importance of relational information.

Considerable work has been devoted to determining the nature of storage and processing

limits, and how relational information changes this capacity [4, 17–20]. As noted however, the

maintenance of elements through relations means that binding is an essential aspect to even

basic storage-over-time tasks that have little higher-order processing. The impact of a rela-

tional binding theory of WM on even simple storage-over-time experiments is understated,
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PLOS ONE | https://doi.org/10.1371/journal.pone.0203848 September 11, 2018 2 / 12

https://doi.org/10.1371/journal.pone.0203848


because WM theories are typically concerned with explaining the link between WM and

higher-order abilities such as reasoning or problem-solving [8, 21].

Consider Jiang et al. [2] who demonstrated that change detection for a single cued target

worsened when unrelated background stimuli was altered between probe and test. Because the

target’s surroundings were seemingly irrelevant to the single-target decision, the authors saw

this an indication that relational information must be processed. One constraint on Oberauer’s

[6] design is that elements must be bound into a relation to be mentally represented in WM. A

singular object can be bound in a unary relation of space but there is no frame of reference

with which to compare changes. By also binding the target object’s surroundings, altered rela-

tions between the object’s surroundings cue the observer that a change has occurred. Indeed,

Jiang et al. [22] found that the poor performance associated with tampering with the surround-

ings could be attenuated by providing an invariant frame of reference (e.g., gridlines), provid-

ing an additional context for the target to be bound alongside.

Although Oberauer’s [6] cognitive-relational WM can account for these results, both Jiang

et al. [2] and Jiang et al. [22] involved brief exposures (under 1 second) typically used when

researching visual WM. Dent (23) employed longer exposure times (2 seconds) in the realm of

cognitive WM, manipulating whether changes to a target object were coordinate-only (a shift

in position that maintained relations between objects) or categorical (a shift in position that

violated the categorical relationship, e.g., above-of became below-of). Despite both types of

changes being identical in magnitude (in terms of change in visual angle), the categorical

changes were detected at a higher rate than the coordinate changes. The displays were simple

in nature (only four objects per display) and changes were always a single object moving. In

the current study, we similarly employed longer display times but investigated change detec-

tion with multiple clusters of objects. This could help inform us of whether a group of objects

is subject to similar limitations as coordinate changes. Consider Fig 1. If we assume individual

objects are encoded and stored as a chunk, then we should see enhanced detection ability if the

change occurs to a single object (the blue change in Fig 1), because it is inconsistent with the

relations of the stored chunk. Alternatively, if a cluster changes (red change in Fig 1), the addi-

tional cues may provide better detection.

If WM is primarily based on relations, we would expect the single-object change to produce

the greater detection rate. Unlike Dent [23], who focused on small set size displays and

Fig 1. Example of relational encoding during the proposed change-detection task. Probe objects (grey crosses) are

encoded as chunks of objects, due to proximity. The encoded relational information means a single-object change

(indicated in blue) would be easier to detect than a cluster of objects changing (indicated in red), despite more objects

overall moving in the cluster change.

https://doi.org/10.1371/journal.pone.0203848.g001
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contrasted the position of two singular objects against one another, our displays involved large

set sizes that clearly exceed the capacity of WM, but which could be grouped into manageable

clusters of objects. We predict multi-object cluster changes, despite involving a change of a

larger (surface) magnitude (i.e., more objects shift location), would be harder to detect than

single-object changes as the spatial relation of the cluster is maintained. We designed the dis-

plays to encourage chunking of clusters: objects of the same cluster were the same shape (e.g.,

squares) and were closer in proximity to each other than to objects of other clusters [24, 25].

This encourages elaborated encoding: the high number of objects could be offset by grouping

them into manageable chunks [26] that were clearly defined [7]. This encouraged chunking

allowed more control over participants’ approach to the problem, mitigating the use of uncon-

ventional strategies like chunking with the borders which would contribute to error outside

the core manipulation [7]. Because Dent’s [23] experiment was closest in nature to the current

experiment, we also allowed participants multiple seconds to study the probe. Considering the

increased set sizes of the displays relative to Dent, we varied probe durations at 3 and 5

seconds.

Single-object changes can involve the target object shifted away or closer towards its cluster.

Consider Fig 2. Changing whether 2A or 2B is the probe (and the other display is the test) var-

ies whether the target is distancing or uniting relative to the cluster.

According to cognitive WM theories [6, 7], there is no particular reason to suspect that dis-

tancing or uniting should lead to different detection rates, because the relational information

within the cluster is changing to a similar magnitude. However, if the cluster is initially easier

to encode as a chunk (i.e., the probe is 2A), we would expect distancing changes to be easier to

detect than uniting. Because the objects are more dispersed in 2B, the spatial relation might

not be as easily encoded [27] and as such, the violation of the relation may be missed because

the relation was more weakly encoded.

Typically, participants engage in practice items before a task. However, we were interested

in comparing the trajectory of performance for naïve participants across the manipulations. If

working memory is fundamentally relational [6], we would expect a large initial detriment for

cluster change detection compared to single-object change detection, as cluster changes main-

tain the relation. However, over time, participants may learn to use more unconventional

aspects (such as the screen border) which help specifically with cluster changes.

Previous studies have indicated that irrelevant objects in a display are still used to encode

the position of target objects [22] and object position tends to be encoded categorically rather

than using coordinates [23]. We extend this by considering change detection performance for

multi-object clusters under exposure times that allow for elaborated encoding. We hypothesize

that violations to the encoded relational structure (single-object changes) will be easier to

Fig 2. Example of the two types of single-object changes: distancing vs. uniting. If the display on the left (2A) and

the display on the right (2B) is the test, then the target object has distanced itself from its cluster. Conversely, if 2B is the

probe and 2A is the test, then the target object has united with its cluster.

https://doi.org/10.1371/journal.pone.0203848.g002
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detect than cluster changes, despite cluster changes involving a larger surface change to the dis-

play. This is in line with cognitive WM accounts [6–8], where independent elements (objects)

are encoded as a relational structure (cluster) to form a chunk of connected information. We

also extend this by comparing performance trajectories to determine which change type (sin-

gle-object vs. cluster) is more intuitive to detect, hypothesizing that the difference between sin-

gle-object and cluster changes is initially larger, but closes as participants learn to detect cluster

changes. Finally, we hypothesize that distancing single-object changes will be easier to detect

than uniting single-object changes, because the cluster’s relation to a more distant target object

will be more weakly encoded than a close target object.

Method

Participants

Undergraduate students participated in the study as part of their psychology course and were

asked at the end of the study whether they consented to contribute their data to further

research purposes. This method of recruitment was approved by the Human Resources Ethics

Committee at the University of Sydney. Only the data of those who consented are presented

here. In total, 952 first-year psychology students (70.2% female) at the University of Sydney

participated. The mean age was 19.42 (SD = 3.22) years. The large sample was the result of con-

venience. We acknowledge that this results in high power for the study, potentially exaggerat-

ing the results. As such, we reran the regression analyses five times using randomly selected

subsets of the data (n = 200 each). The results of these analyses are reported in S1 Table. Over-

all, none of the main effects changed significance during any of these subsets. Interactions

occasionally fell out of significance, though this was more due to increased variability in the

confidence intervals than the size of the effect itself (odds ratio).

Measure and procedure

Participants completed a change-detection task, programmed using Inquisit Lab 5 [28] and

administered via desktop computer. Participants were tested in groups of 15–25. Throughout

the experiment, participants viewed a probe image consisting of various shapes for either 3 or 5

seconds. The test image was displayed following a 3 second inter-stimulus interval, and partici-

pants responded whether this test image was the same (using the ‘A’ key) or different (using

the ‘L’ key) to the probe presented previously.

Items were designed such that 10–12 objects were arranged on an invisible 10 x 10 grid,

centred on the screen. Each space on the grid was 2 x 2 cm and each object was 1 x 1 cm.

Objects could not fall in the outer cells of the grid, but could appear on grid intersections. The

objects were shapes of four kinds (circles, squares, triangles, crosses) and grouped into four

clusters, one of each kind of shape. Objects of the same group were closer in proximity to each

other than to objects of other groups. These design constraints were to facilitate grouping as a

strategy to circumvent the otherwise large set size, allowing us to bias which groups were being

formed by participants.

Participants first viewed task instructions which specified that the change would only con-

cern location (objects moving, rather than changing identity) with demonstrations of both sin-

gle-object and cluster changes. Twelve items were then administered. Half of the items were

no-change trials and the other half were change trials. The change always involved one or more

objects shifting location by 1.5 spaces (of the 10x10 grid; 2.5cm) in one of the eight cardinal or

intercardinal directions. Pilot testing of different movement lengths indicated this was a suffi-

cient degree of change to elicit responses above chance but below ceiling. Half of the change
trials had single-object changes, where a single object changed location (independent of its
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cluster). The other half had cluster changes, where a clustered group of objects changed in the

same direction together. Fig 3 demonstrates the change manipulation. Participants were ran-

domly allocated to a direction condition, such that single-object changes for half the sample

involved the object distancing from its cluster while for the other half, the object united towards

its group.

Results

All analyses were performed with R version 3.5.0 [29]. Plots were produced with the ‘sjPlot’

[30] and ‘ggplot2’ [31] packages. Hypotheses were tested by modelling item responses using a

mixed-effects logistic regression approach as implemented in the ‘glmer’ procedure from

‘lme4’ (1.1.17) package [32]. In total, 952 participants provided 11,436 data points for analysis

(excluding same items: 5,718 data points). The overall proportion of correct trials was .819 for

same items, .635 for between-cluster changes, and .729 for within-cluster changes. Fig 4 dem-

onstrates these proportions split across direction and exposure times. Collapsing over direc-

tion and exposure time, the difference between change types was statistically significant

(χ2
2 = 365.64, p< .001), such that accuracy was greater in same trials than single-object trials

(OR = 2.65, se = 0.14, 95% CI [2.39–2.94], p< .001), and single-object accuracy was greater

than cluster accuracy (OR = 1.56, se = 0.09, 95% CI [1.39–1.75], p< .001).

As the focus of our analyses is on differences between single-object changes and cluster

changes, subsequent analyses excluded “same” items. All variables (i.e., change type (single-

object, cluster), direction (distancing, uniting), exposure (3s, 5s), and trial order) and their

interactions were regressed on accuracy (Fig 5). The regression coefficients are reported in

Fig 3. Example item demonstrating the three types of trials: same (no change), cluster change, and single-object

change. In the example above, the target shape is triangle.

https://doi.org/10.1371/journal.pone.0203848.g003
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Table 1. There was a significant main-effect for direction (OR = 0.77, se = 0.06 CI95%

[0.67 – 0.89], p< .001), such that accuracy was higher for separating items than uniting items.

There was no main-effect for exposure (OR = 1.13, se = 0.08, CI95% [0.98 – 1.30], p = 0.101)

and exposure did not interact with any of the other variables (see Table 1). Trial order was a

significant predictor of accuracy (OR = 1.07, se = 0.01, 95% CI [1.39–1.75], p< .001), with par-

ticipants becoming more accurate in detecting change across the 12 items. This general

improvement we refer to as the change-detection trajectory (CD-trajectory). Overall, the CD-

trajectory was more pronounced for single-object changes than cluster changes (OR = 1.06,

se = 0.02, CI95% [1.02 – 1.10], p = 0.001), although this effect was more pronounced for direc-
tion being uniting rather than distancing (OR = 1.08, se = 0.04, CI95% [1.01 – 1.16],

p = 0.026). Simple-interaction analyses indicated that single-object CD-trajectories were sig-

nificantly more pronounced than cluster CD-trajectories for uniting items (OR = 1.1,

se = 0.03, CI95% [1.05 – 1.16], p = < .001), but not for distancing items (OR = 1.02, se = 0.02,

CI95% [0.97 – 1.07], p = 0.460).

Discussion

The current study contributes further evidence that WM stores and maintains information

through relations. Single-object changes which violate the relation of grouped objects were

more likely to be detected than cluster change where the relation is maintained. These results

are consistent with Dent’s [23] findings on singular objects that categorical changes (changing

relation) are easier to detect than coordinate changes (maintaining relation). Thus, although

grouping efficiently maximises the amount of information that can be stored at any one time

[4, 7], the present data indicates that this comes at a cost: visual changes where the relation

between the shifted objects is maintained can be missed. This effect was demonstrated despite

cluster changes involving changes of a larger veridical magnitude (more objects overall change

location). This contributes to cognitive WM theories [6, 7] by suggesting that relational infor-

mation is encoded and critical to the change detection process. As intended by the display

arrangement, participants encoded surrounding objects as part of a structure, rather than situ-

ating the items at a particular coordinate. This can be extended to Jiang et al.’s [22] finding

that changing task-irrelevant objects hinders performance not due to a general interference

effect, but because this disrupts the structure of the display.

Using only a small number of trials but a large sample that was unfamiliar with the task

allowed us to assess naïve approaches and how that changed across trials. Cluster changes were

Fig 4. Average (across all items) proportion correct for each type of change by (a) direction and (b) exposure.

Error bars represent 2 x standard errors.

https://doi.org/10.1371/journal.pone.0203848.g004
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initially difficult to detect but participant performance improved rapidly over the 12 trials.

Both uniting and distancing cluster changes had similar levels of performance by the end of

the task. This suggests that participants were becoming aware of this type of change and poten-

tially changed their approach to the task (possibly by using more higher-order encoding strate-

gies, such as border anchors or labelling). Although performance for cluster changes was

initially worse, single-object change detection performance improved at a faster pace. It must

be cautioned that this interaction was qualified by a three-way interaction with the change

type and trial order suggesting this improvement was faster for uniting trials than for distanc-

ing trials (Fig 5A). It appears that uniting single-object changes are initially more difficult to

naïve participants than distancing single-object changes, indicating there may be effects of

ease of initial encoding [27]. When objects are more disperse, it may be more difficult to form

an accurate relation compared to when the objects form a regular structure. The violations

with the uniting changes are then less likely to be noticed, not because they act as fundamen-

tally different relations, but because they have never been encoded as the same chunk in the

first place. Interestingly, participants improved in performance on uniting single-object

changes faster than those detecting distancing single-object changes, indicating that these

encoding effects are quickly overcome with task familiarity. That is, once participants were

aware of the nature of the groups (all the same shape), they were able to encode the target as

part of the cluster despite the increased distance. This theory could be confirmed by employing

another condition where the target object starts out at distance from the group (like the uniting

condition) but moves even further away. Thus, this condition would still be ‘distancing’ but

the initial chunk to encode would also be distant. Alternatively, or in addition, the improve-

ments may be a result of increasing understanding of task requirements and consolidation of

more effective strategies, which may be prone to related individual differences that have not

been explicitly investigated here.

We found no difference in overall change detection performance or learning trajectory

when comparing display exposure times (3 vs. 5 seconds). This suggests that 3 seconds was suf-

ficient time to consciously encode chunks despite having as many as three times the number

of objects as Dent’s [23] displays. This is consistent with Rensink’s [4] finding that 12 items

can be processed in approximately 1.5 seconds. The grouping cues of proximity and shape

identity likely aided pooling of the objects [1]. If this is the case, then it is unlikely the extended

probe duration equated to elaboration. Because both single-object and cluster performance

improved over the course of the test, it is also possible that two levels of structure were formed

Fig 5. Model plots of interactions (conditional on all other variables) for (a) direction, and (b) exposure. Shaded

areas represent 95% CI.

https://doi.org/10.1371/journal.pone.0203848.g005
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simultaneously: one level encoding relations between items and one level encoding relations

between clusters; with 3 seconds being sufficient to encode both levels. Hence, both single-

object and cluster performance improved over time (albeit with single-object performance

improving faster), because both levels of structure were being fine-tuned over the course of the

task. If a lower exposure duration (e.g., 1 second) produced different trajectories (e.g., single-

object performance improves, but cluster performance does not), it would confirm that two

levels of structure are present.

It should be cautioned that the learning trajectories presented here are based on naïve par-

ticipants and limited to 12 trials. Because performance did not reach asymptote in either sin-

gle-object or cluster conditions, it is possible that performance trajectories could continue or

change with additional trials. What we have demonstrated is that the learning trajectories of

the two types of changes start out similar and quickly grow dissimilar (standard errors between

the conditions generally lose their overlap by the third trial). Although we cannot say if this

trend continues past 12 trials, it does indicate that initial learning of the task widens the gap

between detection rates of single-object and cluster changes, supporting the conclusion that

detection of changes which violate relational structures is learned more intuitively than

changes which maintain relational structure.

Table 1. Regression coefficients for all main effects and interactions.

combined uniting distancing

Odds
Ratio

CI std.

Error
p Odds

Ratio
CI std.

Error
p Odds

Ratio
CI std.

Error
p

Fixed Parts

(Intercept) 2.24 2.09 – 2.40 0.08 < .001 1.96 1.77 – 2.18 0.1 < .001 2.55 2.32 – 2.81 0.12 < .001

direction (distancing vs uniting) 0.77 0.67 – 0.89 0.06 < .001

exposure (3s vs 5s) 1.13 0.98 – 1.30 0.08 0.101 1.23 1.00 – 1.51 0.13 0.053 1.04 0.86 – 1.26 0.1 0.711

change (single-object vs cluster) 1.62 1.44 – 1.82 0.1 < .001 1.75 1.47 – 2.08 0.15 < .001 1.5 1.28 – 1.76 0.12 < .001

trial order (mean centered) 1.1 1.08 – 1.12 0.01 < .001 1.14 1.12 – 1.18 0.02 < .001 1.05 1.03 – 1.08 0.01 < .001

direction x exposure 1.18 0.89 – 1.56 0.17 0.255

direction x change 1.17 0.92 – 1.48 0.14 0.2

exposure x change 1.16 0.92 – 1.47 0.14 0.208 1.3 0.92 – 1.84 0.23 0.138 1.04 0.76 – 1.43 0.17 0.802

direction x trial order 1.09 1.05 – 1.13 0.02 < .001

exposure x trial order 0.99 0.96 – 1.03 0.02 0.671 1 0.95 – 1.06 0.03 0.888 0.98 0.94 – 1.03 0.02 0.436

change x trial order 1.06 1.02 – 1.10 0.02 0.001 1.1 1.05

– 1.16

0.03 < .001 1.02 0.97 – 1.07 0.02 0.461

direction x exposure x change 1.25 0.78 – 2.00 0.3 0.357

direction x exposure x trial order 1.02 0.95 – 1.10 0.04 0.54

direction x change x trial order 1.08 1.01 – 1.16 0.04 0.026

exposure x change x trial order 0.99 0.92 – 1.06 0.04 0.823 1.03 0.93 – 1.15 0.06 0.54 0.95 0.87 – 1.05 0.05 0.309

direction x exposure x change x

trial order

1.09 0.94 – 1.25 0.08 0.256

Random Parts

τ00, subject 0.371 0.363 0.377

Nsubject 952 426 527

ICCsubject 0.101 0.099 0.103

Observations 5718 2556 3162

Deviance 6221.116 2843.202 3377.964

Note: all variables are mean-centered.

https://doi.org/10.1371/journal.pone.0203848.t001
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It is clear that structure and relation are critical to memory [6–8] and form the cornerstone

of higher-order intelligence [21, 33, 34]. Oberauer [6] suggests that representations are only

maintained within immediately accessible memory by the binding of an individual element to

a context within a relational schema. As a result, actively maintaining elements is dependent

on relational information. While single-object change detection was relatively better than clus-

ter change detection, we cannot conclude that memory is entirely dependent on this informa-

tion. Further, because our experiment was based on changes in spatial position, we cannot

necessarily generalize these findings to other visual properties or verbal information. Nonethe-

less, the present results, together with a cognitive approach to WM (extending on more per-

ceptual accounts of visual WM), produces interesting implications for our understanding of

the process and constraints involved in grouping spatial information. The current results indi-

cate that grouping information is an effective way to bypass capacity limits, but it comes at a

cost: changes that maintain the relational structure of the display are more likely to go unde-

tected. Multi-object groups can shift unbeknownst to participants if their spatial relation is

maintained. Like a guard falling out of line with the marching drill, a single object changing

independently of its group is conspicuous. It appears that maintaining information in WM is

dependent on the relations that connect that information.
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