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BACKGROUND: Lymphangioleiomyomatosis (LAM) is a rare lung disease found primarily in
women of childbearing age, characterized by the formation of air-filled cysts, which may be
associated with reductions in lung function. An experimental, regional ultra-high resolution
CT scan identified an additional volume of cysts relative to standard chest CT imaging, which
consisted primarily of ultra-small cysts.

RESEARCH QUESTION: What is the impact of these ultra-small cysts on the pulmonary
function of patients with LAM?

STUDY DESIGN AND METHODS: A group of 103 patients with LAM received pulmonary function
tests and a CT examination in the same visit. Cyst score, the percentage lung volume occupied by
cysts, was measured by using commercial software approved by the US Food and Drug
Administration. The association between cyst scores and pulmonary function tests of diffusing
capacity of the lungs for carbon monoxide (DLCO) (% predicted), FEV1 (% predicted), and FEV1/
FVC (% predicted) was assessed with statistical analysis adjusted for demographic variables. The
distributions of average cyst size and ultra-small cyst fraction among the patients were evaluated.

RESULTS: The additional cyst volume identified by the experimental, higher resolution scan
consisted of cysts of 2.2 � 0.8 mm diameter on average and are thus labeled the “ultra-small
cyst fraction.” It accounted for 27.9 � 19.0% of the total cyst volume among the patients. The
resulting adjusted, whole-lung cyst scores better explained the variance of DLCO (P < .001
adjusted for multiple comparisons) but not FEV1 and FEV1/FVC (P ¼ 1.00). The ultra-small
cyst fraction contributed to the reduction in DLCO (P < .001) but not to FEV1 and FEV1/FVC
(P ¼ .760 and .575, respectively). The ultra-small cyst fraction and average cyst size were
correlated with cyst burden, FEV1, and FEV1/FVC but less with DLCO.

INTERPRETATION: The ultra-small cysts primarily contributed to the reduction in DLCO, with
minimal effects on FEV1 and FEV1/FVC. Patients with lower cyst burden and better FEV1

and FEV1/FVC tended to have smaller average cyst size and higher ultra-small cyst fraction.
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Take-home Points

Study Question: In LAM, do small pulmonary cysts
have the same effect on PFTs as larger cysts?
Results: In a study involving 103 patients, an
experimental rUHRCT scan identified significant
fractions of ultra-small cysts of 2.2-mm average
diameter in some patients. In a statistical analysis
adjusted for potential confounding factors, the ultra-
small cyst fraction was associated with DLCO % pre-
dicted but not with FEV1 or FEV1/FVC % predicted.
Interpretation: The ultra-small cysts were found to

affect DLCO but not FEV1 or FEV1/FVC.
Lymphangioleiomyomatosis (LAM), a rare, progressive,
cystic lung disease found predominately in
premenopausal women, is caused by the proliferation of
abnormal-appearing, smooth muscle-like cells that leads
to the formation of air-filled cysts in the lungs, loss of
pulmonary function, and, in some cases, respiratory
failure. The disease presents itself in two forms: sporadic
LAM and in association with the autosomal-dominant,
neurocutaneous disorder tuberous sclerosis complex
(TSC-LAM). Sporadic LAM occurs in a randomized,
nonhereditary fashion and is estimated to affect 3.3 to
7.4 per million women worldwide.1-5 It is characterized
by lung (eg, cysts, pneumothoraces, hemoptysis),
lymphatic (eg, chylous effusions,
lymphangioleiomyomas), and renal (eg,
angiomyolipomas) manifestations.1,4-7 TSC-LAM is
associated with brain, skin, and cardiac manifestations,
in addition to findings characteristic of sporadic
LAM.1,4,5 The cystic manifestations of LAM can develop,
in an age-dependent manner, in up to 80% of women
with TSC.8 Clinically significant lung disease occurs only
in a small percentage of women with TSC.

Because LAM is a rare pulmonary disease, diagnosing
the condition can be challenging, especially in the
absence of extrapulmonary manifestations.9 Fortunately,
CT scans provide a noninvasive, high-resolution view of
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the lungs that reveals round LAM cysts with distinct
walls, which aids in the diagnosis. The extent of lung
involvement with cysts (called “cyst score” herein)
correlates with lung function and is a measure of disease
severity.10-12

Pulmonary function tests (PFTs) are used to determine
disease severity and progression in LAM. Although PFTs
measure the functional manifestation of pathologic
changes in the lungs, chest CT examinations provide a
direct visual representation of such changes. CT
evaluation was initially a subjective determination of the
percentage of lung that was abnormal. This subjective
CT evaluation was shown to correlate with PFTs of
FEV1 % predicted and diffusing capacity of the lungs for
carbon monoxide (DLCO) % predicted.10,12 Subsequently,
an index describing the percent volume of the
parenchyma occupied by cysts, or cyst score, was
introduced together with automated segmentation
software for its measurement,11 removing some
subjective factors in the evaluation of CT scans. The cyst
score has been shown to correlate with FEV1, FEV1/
FVC, and DLCO in clinical studies of LAM.11–17

The current standard for the measurement of cyst score
is the regular chest CT scan, which has also been used as
the gold standard to evaluate experimental CT scans of
substantially reduced radiation doses.18-23 However, a
previous study found that very small cysts may not be
identified due to the limits of resolution of standard
chest CT imaging.24 Using an experimental regional
ultra-high resolution CT (rUHRCT) scan, the smaller
cysts can now be identified.24,25 The rUHRCT scan
concentrates the X-ray dose into a short segment of the
chest, providing a more detailed view of the lung
parenchyma.

The purpose of the current study was to obtain the
distributions of average cyst size and ultra-small cyst
fraction in an expanded patient cohort and, in
combination with PFTs, assess the impact of the ultra-
small cyst fraction on pulmonary function in these
patients.
Patients and Methods
Study Population

The study was approved by the National Heart, Lung, and Blood
Institute Institutional Review Board (96-H-0100) with written
informed consent obtained from all participants. In a period of 1
year, 103 patients were recruited into the study. All patients were
female, with a mean age of 49.9 � 10.0 years. Of this cohort, 68
patients were diagnosed according to results of tissue biopsy and 35
individuals diagnosed by using a combination of renal
angiomyolipomas, chylothorax, serum vascular endothelial growth
factor-D levels, diagnosis of TSC, and lung cysts on CT scans.

CT Scan Protocol and Parameters

Patients were recruited prospectively to receive the experimental
rUHRCT scan in addition to the standard chest CT scan. Both were
performed in the same examination using a Cannon Aquillion One
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Figure 1 – Screenshots from the scanner console showing the coverage of the standard helical chest CT scan on the left and the research regional,
ultra-high resolution CT scan on the right. In these coronal projection views, the standard scan covers the entire chest, shown by the red rectangle
in the left image; the regional, ultra-high resolution CT scan covers a mid-segment of the chest of 20 mm length (dotted red rectangle in the right
image).
Genesis CT scanner (Canon Medical Systems Corp.). The parameters
for the standard chest CT scan were 100 to 120 kV/R700 mA, helical
pitch of 0.813, and nominal z length of 360 mm adjusted to fit the
chest of individual subjects (Fig 1), rotation time of 0.275 s, and
scan time of 3.6 s. The parameters for the rUHRCT scan were axial
mode (static bed) 120 kV/350 mA, z length of 2 cm, rotation time of
1.5 s, and scan time of 3 s. The location of the 2-cm segment of the
chest for the rUHRCT was set in the upper half or the mid-level of
the chest to avoid breast tissue while having a representative density
of cysts, which was determined visually based on the standard chest
scan.

The average doses of the two scans were dose-length product of 355
mGy � cm for the standard chest scan and 139 mGy � cm for the
rUHRCT scan. The local intensity of radiation, measured by the
CTDIvol index, was 8.3 mGy for the standard scan and 70 mGy for
the rUHRCT.

Image Reconstruction and Measurements

The standard chest CT scan was reconstructed to a 400-mm field of
view and 1-mm slice thickness and interval. The rUHRCT scan was
reconstructed to twice the resolution of the standard scan (200-mm
field of view and 0.5-mm slice thickness and interval). Due to the
higher local intensity of radiation in the rUHRCT scan, the image
contrast-to-noise ratio was not reduced from the standard scan
despite the higher resolution.24,25 The filter settings for both types of
scans were determined within a set of lung CT options provided by
the manufacturer. Specific options were chosen based on empirical
trials to ensure that the commercial software on the scanner for cyst
segmentation and scoring worked correctly.

Three types of cyst scores were measured: the score for the entire lung
from the standard scan (standard, whole-lung cyst score), the score
from the region of the rUHRCT scan (regional UHRCT cyst score),
and the score from a subset of the standard scan images that cover
the same region as the rUHRCT scan (standard regional cyst score).
The default attenuation threshold of –940 Hounsfield units was used
for the automated, cyst-scoring software provided by the
manufacturer, with visual confirmation of correct segmentation of
the cysts in all cases, and occasional manual adjustment of the
chestjournal.org
threshold within a range of �30 Hounsfield units to correct failures
of the automated segmentation.

An adjusted whole-lung cyst score was derived from the difference in
the regional cyst score between the rUHRCT scan and the standard
scan. In the limited length of the lung, a subfraction of the apparent
“noncystic areas” by the standard scan was found to actually be
cystic according to the rUHRCT scan. Based on the observation that
tissue in the “noncystic areas” in the standard scans had a relatively
uniform appearance throughout the lung, without consistent trends
or gradients, it was then assumed that throughout the length of the
lung, the same subfraction of the “noncystic areas” according to the
standard scan was actually cystic. Accordingly, an adjusted whole-
lung cyst score was calculated as

CS:full:adj ¼ 1� ð1�CS:fullÞ
�
1� CS:rUHRCT
1� CS:rHCT

�
;

where CS.full.adj is the adjusted whole-lung cyst score, CS.full is the
standard whole-lung cyst score, CS.rUHRCT is the regional UHRCT
cyst score, and CS.rHCT is the regional cyst score from the standard
scan.

Because the cyst segmentation provided by the scanner merged some
neighboring cysts, an average cyst size from each scan was
calculated, instead of the sizes of individual cysts. Taking into
account that LAM cysts tended to be round in shape,26 the mean
cyst diameter is given by the formula mean diameter ¼ 6(total cyst
volume)/(total cyst surface area). In the region that received the
rUHRCT scan, three types of average cyst size were calculated: for
the standard and rUHRCT scans, and for the additional cyst volume
identified rUHRCT. The last was calculated with the same formula
but with the total additional cyst volume and the total additional
cyst area as input.

Statistical Analysis

Multiple linear regression analysis was used to assess the association
between whole-lung cyst scores (standard and adjusted) and PFTs
(DLCO % predicted, FEV1 % predicted, and FEV1/FVC % predicted),
adjusted for demographic variables of age, sporadic vs TSC clinical
phenotypes, presence of angiomyolipomas, lymphangioleiomyomas,
201
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and history of chylothoraces and pneumothoraces. All demographic
variables were considered potential confounders. The cohort was also
divided into a low-cyst burden group and the rest. Low-cyst burden
was defined as having a standard whole-lung cyst score less than the
median of the cohort, which was 7.9%. Histograms of the cyst scores
among the entire cohort showed that their distributions were skewed
to the low end. Thus, a square root transformation was used to
make the distributions more symmetric.

To evaluate whether the additional cyst volume by rUHRCT (ultra-
small cyst fraction) significantly contributed to explaining variances
of PFTs, we used the residual analysis and the permutation test of
the aforementioned multiple, linear regression models.

Residual Analysis: We obtained the component of the ultra-small cyst
fraction (ie, the component not explained by the rest of the cyst
volume) by taking residuals from regression of the adjusted cyst
score on the standard cyst score (ie, regressing out standard score
from adjusted score). We then incorporated the component of the
ultra-small cyst fraction (residuals) in the multiple, linear regression
with standard cyst score and covariates, and tested if the component
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of the ultra-small cyst fraction was significantly associated with PFT
outcomes (DLCO, FEV1, or FEV1/FVC), adjusting for the standard
score (the rest of the cyst volume).

Permutation Test: We compared the difference in R2 (the variance of
the outcome of PFTs, explained by the regression model) between the
two regression models involving adjusted and standard cyst scores
(R2_adjusted – R2_standard). An R2 difference greater than zero
indicates that the adjusted cyst score explained the outcome better.
To evaluate the statistical significance of the R2 difference, we
performed permutation testing by constructing R2 differences under
the null, by permuting outcome among subjects and re-evaluating
the R2 difference 10,000 times. The statistical significance was
computed as the number of times seeing a null R2 difference no less
than the observed R2 difference. The P values of the comparisons
were adjusted for multiple comparisons of the three PFT measures.

Histogram distributions of the ultra-small cyst fraction and the average
cyst sizes among the patient cohort were obtained. Their associations
with the whole-lung cyst scores and with PFTs were assessed with a
univariate Pearson correlation.
Results

Cyst Score, Ultra-Small Cyst Fraction, and PFT
Measurements

A comparison of the rUHRCT scan and standard chest CT
scan is exemplified in Figures 2A and 2B, with their
respective detection of cysts highlighted in the segmentation
maps of Figures 2C and 2D. The rUHRCT scan identified
additional cyst volume compared with the standard chest
CT scan in all but two patients (Fig 3). The additional cyst
volume came from two types of contributions, with opposite
effects on the average cyst size of the total cyst volume. The
first were cysts that were either entirely missed or missing
most of their volumes in the standard scan segmentation
map (Fig 2C). Examples are those in the areas outlined by
the blue polygons and red circles, and others dispersed in
the rest of the segmentation maps. Those in the red circles
are adjacent to larger cysts and appear connected to their
larger neighbors in the rUHRCT segmentation map (Fig
2D). This type is primarily small cysts, which shift the
average cyst size downward (ie, smaller). The second type of
addition came from better resolution of the borders of larger
cysts, resulting in an enlargement of the segmented areas, as
exemplified by the cysts in the yellow dotted rectangles. This
type shifts the average cyst size upward (ie, larger).
Measurements of average cyst size indicated that the first
type was dominant, and the additional cyst volume
primarily consisted of ultra-small cysts (discussed in the
following section).

The adjusted and standard whole-lung cyst scores of the
entire cohort are plotted in Figure 3. The additional cyst
volume by rUHRCT (the ultra-small cyst fraction)
accounted for 27.9 � 19.0% (mean � SD) of the total
cyst volume, with a broad distribution among the
cohort. Higher ultra-small cyst fraction was associated
with lower cyst scores (R ¼ –0.403; P < .001) and with
better FEV1 and FEV1/FVC (R ¼ 0.315 and 0.308; P ¼
.001 and .002) but not with DLCO (R ¼ 0.066; P ¼ .508).

Figure 4 presents the distribution of both the adjusted
and standard whole-lung cyst scores among the cohort.
Histograms with and without a square root
transformation show that the transformation reduced
the asymmetry of the distributions.

Scatter plots of DLCO % predicted vs FEV1 % predicted
and vs FEV1/FVC % predicted are shown in Figure 5.
The trend lines indicate shallower slopes at the high end
of the PFT values.

Cyst Size Measurements

In the region covered by the rUHRCT scan, the average
size of cysts was 4.29 � 1.29 mm among the entire
cohort. In the same region, the average cyst size from the
standard scan was larger (5.97 � 1.64 mm; P < .001).
The average cyst size of the additional cyst volume
identified by the rUHRCT scan was 2.17 � 0.83 mm.
Histogram distributions of the three cyst-size
measurements among the patient cohort are
summarized in Figure 6.

The average cyst size among the cohort was found to
correlate positively with both standard and adjusted
whole-lung cyst scores (ie, smaller average cyst size
associated with lower cyst burden, R ¼ 0.593 and 0.520;
P < .001). It correlated negatively with FEV1

% predicted and FEV1/FVC % predicted (ie, smaller
average cyst size associated with better FEV1 and FEV1/
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Figure 2 – A-D, Cross-sectional images of the right lung of a patient with lymphangioleiomyomatosis and corresponding cyst segmentation maps,
illustrating the additional cyst volume identified by the regional ultra-high resolution scan (rUHRCT). A-B, Images from the standard helical chest CT
scan and the rUHRCT scan, respectively. C-D, Cyst segmentation maps corresponding to the images in panels A and B, respectively. The cystic areas are
highlighted with light gray pixels. The segmentation was generated semi-automatically by a US Food and Drug Administration-approved commercial
software provided by the scanner manufacturer. D, Additional cystic areas compared with those in panel C. The addition can be divided into two types
with opposing effects on the average cyst size. The first type were cysts that were either entirely missed or missing most of their volumes in panel C, as
exemplified by those in the areas outlined by the blue polygons and red circles, and others dispersed in the rest of the maps. Those in the red circles are
adjacent to larger cysts and appear connected to their larger neighbors in panel D. This type is primarily small cysts, which shift the average cyst size
downward (smaller). The second type of addition came from better resolution of the borders of larger cysts, resulting in proportional enlargement of the
segmented areas, as exemplified by the cysts in the yellow dotted rectangles. This type shifts the average cyst size upward (larger). Measurements of
average cyst sizes (Fig 6) showed that the first type (small cysts) dominated the additional cyst volume identified by using the rUHRCT scan.
FVC, R ¼ –0.548 and –0.482; P < .001) but only weakly
with DLCO % predicted (R ¼ –0.232; P ¼ .042).

Association of PFTs and Cyst Scores

The results of the multiple linear regression analysis
adjusted for demographic variables are summarized in
Table 1. The rUHRCT-adjusted, whole-lung cyst score
better explained the variance in DLCO % than the
standard cyst score from the standard chest scan, for the
entire cohort as well as the low-cyst burden group (P <

.001, adjusted for multiple comparisons). However, the
adjusted cyst score did not better explain the variances
in FEV1 % and FEV1/FVC % in either group (P > .998
for the null hypothesis).

From the same multiple linear regression analysis,
comparison of the ultra-small cyst fraction vs the rest of
the cyst volume, in terms of their influence on the
pulmonary function tests, is summarized in Figure 7.
The ultra-small cyst fraction contributed to the
chestjournal.org
reduction of DLCO % (mean � SE of –198.9 � 39.8; P <

.001) but not to FEV1 % (–12.1 � 39.6; P ¼ .760) and
not to FEV1/FVC % (–15.2 � 27.1; P ¼ .575). The rest of
the cyst volume contributed to the reduction in all three
PFTs. Figure 7 also presents coefficients and P values.

Of the background demographic variables, age and
history of chylothoraces were found to be significantly
associated with FEV1/FVC % predicted.

Interpretation and Discussion
In this study of 103 patients with LAM, an experimental
rUHRCT scan identified an additional volume of cysts
consisting primarily of ultra-small cysts. They affected
DLCO but not FEV1 or FEV1/FVC. The resulting adjusted
whole-lung cyst score better explained the variance in
DLCO among the cohort but not FEV1 or FEV1/FVC. The
distributions of average cyst size and ultra-small cyst
fraction were continuous and broad among the patients.
Patients with lower cyst burden, smaller average cyst size,
203
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Figure 3 – Comparison of the adjusted whole-lung cyst score based on the rUHRCT scan and the standard whole-lung cyst score from the standard
chest CT scan. The two scores of all patients are shown in the scatter plot on the left. The solid line is the line of equality. The rUHRCT scan identified
additional cyst volumes in all but two patients who had very low cyst burden (cyst score< 0.6%). The additional cyst volume as a percentage of the total
cyst volume, or the ultra-small cyst fraction, had a broad distribution among the cohort, as shown by the histogram on the right. HCT ¼ standard
helical chest CT; rUHRCT ¼ regional ultra-high resolution CT.
and higher ultra-small cyst fraction had better FEV1 and
FEV1/FVC.

Previous studies10-13 in patients with LAM observed that
the cyst score correlated better with FEV1 than with DLCO.
Schmithorst et al13 found in 18 patients with LAM that
percent cyst volume had a stronger correlation with FEV1
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than DLCO (R2 ¼ 0.74 vs 0.23; P < .05). Avila et al12

reported in 37 patients a higher correlation of percent
abnormal lung volume to FEV1 (R

2 ¼ 0.45; P < .001)
than to DLCO (R2 ¼ 0.23; P < .005). Another correlational
study by Aberle et al10 found in eight patients with LAM a
stronger correlation between cyst scores from standard
chest CT scans and FEV1 (R

2 ¼ 0.85; P < .005) than
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DLCO (R2 ¼ 0.64; P < .05). Moreover, the work of
Crausman et al11 also found that the amount of abnormal
cystic parenchyma in the lung according to CT scan was
better correlated with FEV1 (R

2 ¼ 0.81; P < 0.001) rather
than DLCO (R2 ¼ 0.58; P < .01).
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However in this study, after inclusion of the additional
cyst volume by the experimental, ultra-high resolution
scan, the association between the cyst score and DLCO

was strengthened, leading to a better prediction of DLCO

than FEV1 or FEV1/FVC. Our interpretation of these
11.5
yst Size (mm)

5.5 6.5 7.5 8.5 9.5 10.5

andard
y rUHRCT
y standard scan

tire cohort. The average size of pulmonary cysts in each patient was
n is shown in gray bars, from the regional ultra-high resolution CT scan
l rUHRCT scan (rUHRCT-standard) in red bars. The additional cyst
he average cyst size of the total volume from the standard CT scan to the
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TABLE 1 ] Results of Multiple Linear Regression Analysis of the Association Between Whole-Lung Cyst Scores and
Pulmonary Function Tests, Adjusted for Background Demographic Variables, for the Entire Cohort and
for the Low-Cyst Burden Group

Results DLCO % Predicted FEV1 % Predicted FEV1/FVC % Predicted

R2 (P value) for whole-lung cyst scores for the entire cohort

Standard score 0.549 (P < .001) 0.603 (P < .001) 0.616 (P < .001)

Adjusted score 0.622 (P < .001) 0.584 (P < .001) 0.602 (P < .001)

R2 (P value) for whole-lung cyst scores for the low-cyst
burden group

Standard score 0.314 (P ¼ .014) 0.220 (P ¼ .118) 0.373 (P ¼ .003)

Adjusted score 0.416 (P < .001) 0.207 (P ¼ .150) 0.329 (P ¼ .010)

P value for the hypothesis R2-adjusted > R2-standard

Entire cohort P < .001 P ¼ 1.000 P ¼ 1.000

Low-cyst burden group P < .001 P ¼ .998 P ¼ 1.000

The R2 values of the regression and the corresponding P values are tabulated. Also listed in the last row is the comparison between the R2 values from the
standard cyst score (R2-standard) and those from the adjusted cyst score (R2-adjusted), by permutation tests of the regression models, adjusted for
multiple comparisons. DLCO ¼ diffusing capacity of the lungs for carbon monoxide.
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findings is that although the ultra-small cysts may not
physically obstruct airflow as represented by FEV1 and
FEV1/FVC, their associated tissue damage already affects
the capacity for gas diffusion. Related to this
interpretation, a recent study by Balasubramanian et al27

in patients with COPD and pulmonary hypertension
found that airflow obstruction has been noted to be
insufficient in predicting clinical outcomes in the general
COPD population, and DLCO is an indicator of disease
morbidity beyond that represented by airflow
obstruction or by CT evidence of emphysema alone.28

Regarding the influence of ultra-small cysts on airflow in
the lung, the study by Argula et al29 analyzed progressive
air trapping in patients with LAM through paired CT
imaging at inspiration and expiration; they found
evidence of ventilation in cysts by the change of their size
from inspiration to expiration. Another study by Walkup
et al30 highlights that cyst ventilation is heterogeneous,
even among similarly sized cysts. A study by Suzuki
et al31 also showed cyst-airway communication in
pulmonary LAM through paired inspiration-expiration
CT imaging. Thus, ultra-small cysts did not cause
obstruction either because they communicate freely with
airflow pathways, or because they were too small to have
a mechanical effect. Larger cysts may be associated with
increased burden of LAM cells that obstruct and
eventually occlude the respiratory bronchioles.32-34

Regarding the association of cyst size and ultra-small
cyst fraction with PFTs and cyst burden, previous
studies have found similar trends.35,36 Avila et al35 used
visual grading of both cyst size and percent lung
206 Original Research
involvement from CT scans in 39 patients, and found
that cyst size was correlated with both FEV1 and DLCO,
and marginally with the extent of lung involvement at
CT imaging. Steagall et al36 applied the same visual
grading system to 227 patients with LAM in a later
study, and they found trends of association between cyst
size and PFTs as well as genotypes of patients, although
with weaker statistical significance than seen in the
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earlier study by Avila et al. The variability seen in these
earlier studies may be due to the visual system for
determining cyst size and cyst score, both of which carry
reader-dependent variability.

The association of cyst size and ultra-small cyst
fraction with cyst burden and FEV1 and FEV1/FVC
may also imply an explanation for a trend that was
reported by Taveira-DaSilva et al14 in a longitudinal
study involving 348 patients, namely, a more rapid
decline of DLCO than FEV1 in the initial stage of the
disease. Although the current study is cross-sectional,
the observed association is consistent with the notion
that patients at an earlier stage of the disease, with
lower cyst burden and better spirometry test results,
may also have smaller cysts and higher ultra-small cyst
fraction, which tend to affect DLCO more than FEV1

and FEV1/FVC.

The main limitation of our analysis is that it is a cross-
sectional study at a single time point in a population at
chestjournal.org
various stages of their disease. As such, there is
insufficient information to determine the stage of disease
for each patient individually. Any implication on the
course of the disease is by indirect inference. Another
limitation is that the rUHRCT scan only samples a short
length of the lung and extrapolates the result to the full
length under an assumption which was based on the
observation that tissue in the “noncystic areas” in
standard scans had relatively the same appearance
throughout the entire lung. The limited sampling also
introduces additional statistical variability to the data,
which likely reduced any statistical associations related
to the ultra-small cysts. Despite these limitations, the
experimental rUHRCT scan helped to uncover the
influence of ultra-small cysts on pulmonary function.
Measurements of ultra-small cyst fraction and average
cyst size may also help uncover potential relationship
between phenotypes related to cyst size and genotypes of
LAM disease, which has been suggested in an earlier
study.36
207
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