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Abstract

Just like everything in nature, scientific topics flourish and perish. While existing literature

well captures article’s life-cycle via citation patterns, little is known about how scientific popu-

larity and impact evolves for a specific topic. It would be most intuitive if we could ‘feel’ top-

ic’s activity just as we perceive the weather by temperature. Here, we conceive knowledge

temperature to quantify topic overall popularity and impact through citation network dynam-

ics. Knowledge temperature includes 2 parts. One part depicts lasting impact by assessing

knowledge accumulation with an analogy between topic evolution and isobaric expansion.

The other part gauges temporal changes in knowledge structure, an embodiment of short-

term popularity, through the rate of entropy change with internal energy, 2 thermodynamic

variables approximated via node degree and edge number. Our analysis of representative

topics with size ranging from 1000 to over 30000 articles reveals that the key to flourishing is

topics’ ability in accumulating useful information for future knowledge generation. Topics

particularly experience temperature surges when their knowledge structure is altered by

influential articles. The spike is especially obvious when there appears a single non-trivial

novel research focus or merging in topic structure. Overall, knowledge temperature mani-

fests topics’ distinct evolutionary cycles.

Introduction

Text

Scientific impact assessment helps shape scientific development from aspects including invest-

ment [1, 2], promotion policy [3, 4] and individual career [5, 6]. Thanks to its significance and

widespread applications, measuring scientific impact has always been one of the most dis-

cussed topics in communities of all disciplines. Citation-based analysis always occupies a pre-

dominant role for impact assessment because of the quantitative characteristics of citations

and more importantly, the positive correlation between citation and scientific influence [7, 8].

For an article, citation dynamics reveals its temporal evolution of impact [9–11] and popularity
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[12]. For a researcher, the evolution of individual citation statistics portraits his or her activity

[13], scholar impact dynamics [14–16] and research interest pattern [17]. For a scientific topic,

however, individual or article citation dynamics modeling fails to characterize its life-cycle

because this one-dimensional indicator is not capable of exploiting the interplay among aca-

demic entities. This raises a fundamental question: how to depict the rise and fall of a scientific

topic by leveraging its citation information?

The first step to answer this question is to define scientific topic and then to find an appro-

priate way to describe it. A scientific topic is in fact a complex network comprising of articles

that have similar research interests. As citation is able to display the interaction among articles,

we can thus define and represent a scientific topic by its citation network. Topic citation net-

work is a directed graph where nodes represent articles and edges symbolize citations. By

retrieving and integrating academic data from renowned databases including but not limited

to DBLP, arXiv, Elsevier and Springer, we identified 47310 articles that have gained over 1000

citations and have had a non-trivial influence within their research fields. These articles were

published between 1800 and 2019 and their research interests cover 294 domains in 16 disci-

plines: History, Computer science, Environmental science, Geology, Psychology, Mathematics,

Physics, Materials science, Philosophy, Biology, Medicine, Sociology, Art, Economics, Chemis-

try and Political science. A detailed catagorical information can be found in the folder entitled

“topic all levels and classifications (galaxy map and skeleton tree)” at https://github.com/

drlisette/knowledge-temperature/tree/master/data. Some of them created new topics while

others made major breakthroughs in existing fields. Their immense contribution and inspira-

tion to subsequent researches has made them each a leader in their field of research. To this

end, we refer to these papers as pioneering works and define a scientific topic led by each to be

a citation network that consists of the pioneering work, child papers, which are all the articles

that directly cite the pioneering work, and all the citations among them. We visualize our sci-

entific topics with a graph that we call galaxy map. Galaxy map not only highlights the most

influential child papers along with the pioneering work, but also does a preliminary clustering

within the topic (Fig 1(a), 1(c) and 1(e)). We find that while some pioneering works still have

an overwhelming impact in the scientific topics they founded, quite a few have several child

papers who have established an authority comparable or even greater than themselves. Fur-

thermore, in some of our examples, these prominent child papers seem to have transformed

the original topic into multiple new topics (Fig 1(e)). Much as galaxy map gives a nice overview

of scientific topic’s current status, the temporal evolution of scientific topic needs to be further

depicted. With this regard, we go beyond the galaxy map representation and dig deeper into

the topic citation network for a more intuitive perception of topic’s flourishing dynamics.

Since we interpret scientific topics through their citation pattern, topic evolution is reflected

by the development of topic citation network. Complicated academic citation networks are

springing up all across the science community as a result of the explosive research activity

growth, both in and across disciplines, and the prevalence of larger teams [18, 19]. The repre-

sentation and characterization of complex network has attracted a huge amount of efforts,

among which an appeal to statistical thermodynamics stands out as a principled school of

thought [20]. Some studies at the beginning of this century reveal the intimate connections

between thermodynamic quantities and complex network dynamics [21]. Recently, more liter-

ature has succeeded in characterizing natural networks [22], neuron networks [23] and biolog-

ical networks [24] through thermodynamic approaches. In particular, thermodynamic

temperature is able to capture critical events in evolving networks [25]. These prior works

inspired us in that heat corresponds with popularity and moreover, temperature quantifies

partly our body feelings of weather. It would be most direct and intuitive if we could ‘feel’

topic vigor in the same way as we perceive the weather. Motivated by this thought, we try to
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Fig 1. Comparison between galaxy map and topic skeleton tree. In galaxy map: Node size and label size are proportional to

article’s total citation count. Only the most-cited papers are labelled with titles. The node representing the pioneering work is

colored in red. Other nodes are colored by their positions under the ForceAltas layout algorithm. Nodes in the same cluster take a

same colour (yellow, green, blue or pink). In topic skeleton tree: Node size (except for the node representing the pioneering work)

is proportional to article’s structure entropy. The size of the node that stands for the pioneering work is twice the maximum size

of the other nodes. Node colour is the same as in galaxy map. Only pioneering work is labeled by its title. (a,b) Topic led by

‘Critical Power for Asymptotic Connectivity in Wireless Networks’. (a) Galaxy map. Numerous child papers, especially ‘The

capacity of wireless networks’ and ‘HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks’,
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depict the flourishing and perishing of scientific topics by measuring their knowledge temper-

ature, a quantity designed to portrait topic impact and popularity evolution by leveraging the

rich structural information hidden in citation networks.

Knowledge temperature essentially depends on 2 factors: the accumulation of topic knowl-

edge and the advancement of topic knowledge structure. As knowledge is a sublimation of

information and duplicated information is no longer valuable to knowledge generation, mea-

suring knowledge quantity boils down to evaluating the volume of non-overlapped, or useful

information. The latter, however, can be estimated by examining paper similarity, which

essentially involves determining citation significance. As for knowledge structure, it is also

closely related to the question whether a citation is important for an article. Therefore, in

order to address the key issue in knowledge temperature conception: citation importance

judgement, we extracted skeleton tree for each topic (Fig 1(b), 1(d) and 1(f)). While galaxy

map visualizes the entire topic citation network, skeleton tree captures the most essential idea

inheritance within the topic by preserving the most valuable citation for every child paper. In

particular, we are able to answer 2 fundamental questions by tracing down a path in skeleton

tree: from what thought an idea is greatly inspired and what new idea it has directly inspired.

From another perspective, skeleton tree demonstrates certain clustering effect in its leaves as it

puts intimately related articles together. We employed graph embedding techniques to extract

topic skeleton tree. By representing all of the articles in a high dimensional space, we calculated

the difference between each pair of article, DiffIdx, and further computed ReductionIdx for

every paper based on structural information. ReductionIdx measures the similarity between an

article and the whole topic and we use it to evaluate the importance of every citation. Detailed

description of ReductionIdx can be found in S1 File Section S1.1. Skeleton tree extraction fol-

lows two principles: first and foremost, keep at most one citation for every article except the

pioneering work and second, ensure topic’s global connectivity. The extraction process con-

sists of 2 steps: firstly, remove loops in the topic citation network and secondly, prune the net-

work by leaving out less important citations of every child paper. In an ideal topic skeleton

tree, every article, except the pioneering work, has exactly one citation and we are able to reach

every article from the pioneering work (Fig 2(a)). In addition, we further calculated structure

entropy [26] for every article and for the entire topic based on topic skeleton tree. For an arti-

cle, its structure entropy indicates its authority within the topic. For a topic, its structure

entropy measures the information hidden in its citation pattern. Because the extraction pro-

cess involves a thorough investigation into citation network structure, topic skeleton tree

serves as an indispensable tool for our knowledge temperature design and for the heat distribu-

tion visualization within the topic.

We evaluated topic knowledge temperature from 2 aspects: the increase in topic knowledge

and recent structural change in topic knowledge. For each perspective, we made an analogy

between topic citation network Gt = (Vt, Et) and a thermodynamic system and used the sys-

tem’s thermodynamic temperature as a popularity score. Due to their different focuses and

objectives, there is no connection between the two analogies. They are independent from each

other. At timestamp t, we add up the popularity scores obtained by Gt in distinct aspects and

have outperformed the pioneering work. (b) Skeleton tree. After initial development, the topic has found two research focus. (c,d)

Topic led by ‘Latent dirichlet allocation’. (c) Galaxy map. The pioneering work has a dominant influence. (d) Skeleton tree. Three

research directions have derived directly from the pioneering work. (e,f) Topic led by ‘On random Graphs, I’. (e) Galaxy map.

Two influential child papers, ‘On the evolution of random graphs’ and ‘The Structure and Function of Complex Networks’ seem

to split the topic into two parts. (f) Skeleton tree. The pioneering work has inspired in particular one school of thought. There is

no significant division in topic’s knowledge structure.

https://doi.org/10.1371/journal.pone.0244618.g001
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Fig 2. Skeleton tree extraction and graph shrinking demo. The red node “P” is the pioneering work and the green nodes are child papers. A directed edge

from A to B represents “B cites A”. (a) Skeleton tree extraction. Leftmost: topic citation network. Rightmost: topic skeleton tree. The importance of a citation

is determined by the difference of ReductionIdx between a paper and its reference. The bigger the difference, the more trivial a citation is. Each node’s

ReductionIdx is indicated by the value beside. From left to middle: loop cutting. c1, c2 and c3 cite one another. Remove one of the three citations to eliminate

the loop structure. The citation between c1, c2 and the one between c1 and c3 are of equal importance and are both less crucial than the one between c1 and

c2. In this case, remove one of the two citations randomly. Here we cut the citation between c1 and c3. From middle to right: graph pruning. Remove

redundant citations and only keep the most meaningful citation for every child paper. Similarly, in case of equivalence, remove a citation randomly. (b)

Graph shrinking example for Tt
structure computation. c3 arrives between timestamp t − 1 and t and cites all papers in the topic. Its citation pattern suggests that

c1 and c2, disconnected in Gt−1, have relatively close connections in their research content. Remove c3 and add virtual citation(s) between c1 and c2
according to the general rule where the younger virtually cites the older. If c1 and c2 were published in the same year, they virtually cite each other in Gt’s

counterpart after shrinking, G0t.

https://doi.org/10.1371/journal.pone.0244618.g002
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define topic knowledge temperature Tt as:

Tt ¼ Tt
growth þ Tt

structure ð1Þ

where Tt
growth measures knowledge increment and Tt

structure estimates the magnitude of changes

in knowledge structure between 2 consecutive timestamps.

For Tt
growth, we made an analogy between scientific topic and ideal gas. We assumed that the

restraints a topic faces during its development remain at a constant level. The corresponding

thermodynamic hypothesis is that the pressure remains invariant. While temperature is a

derived function of entropy and internal energy, it can also be expressed in terms of other state

variables for ideal gas. We opted to derive temperature by volume Vt and mole number nt as

these two variables are more intuitive in our design. We set Vt, nt to be the amount of total

information and the amount of duplicated information a topic has by the end of timestamp t.
Specifically, Vt = |Vt| and nt = |Vt| − UsefulInfot. UsefulInfot, Gt’s useful information, is derived

edge by edge based on Gt’s skeleton tree, Treet. In addition, we defined initial entropy S0 to be

the structure entropy of G0. We initialized Tt
growth by combining 2 ideal gas’s internal energy

expressions. T0
growth is defined in terms of initial entropy S0, initial volume V0 and initial mole

number n0. We updated Tt
growth via ideal gas state equation, PV = nRT. With pressure P being

invariant and R being constant, the variation of Tt
growth is governed by the dynamics of mole

number nt and topic volume Vt. The internal energy Ut can further be defined using the

expression Ut ¼ cntTt
growth. By making the hypothesis nt−1 = nt and then envisaging a

reversible path connecting the two states (P,Vt−1,nt−1, Tt� 1
growth) and (P,Vt,nt, Tt

growth), we were

able to iteratively compute the entropy St with an integration over temperature and volume:

dS ¼ ncv dT
T þ nR dV

V . Closed-form update expression of St can further be derived under the

assumption that the molar specific heat capacity cv is a constant. Although S0 and St look differ-

ent, they are closely related. While S0 quantifies the information hidden in topic citation pat-

tern from a microscopic perspective, by probing into the surrounding structure of every

article, St depicts this part of information from a macroscopic point of view with two state vari-

ables, temperature and volume. Detailed Tt
growth modelling information can be found in S1 File

Section S1.3.1. From a macroscopic view of information and knowledge, Tt
growth increases when

topics succeed in accumulating distinct, or useful information, the knowledge source for the

future. Intuitively, promising topics are able to attract a steady or even growing inflow of new

information. On the contrary, staggering topics consume more useful information than they

receive and their potential eventually drops. A rising Tt
growth indicates an increasingly solid and

rich knowledge base and thus reflects a topic’s growing impact. Furthermore, an accelerating

increase in Tt
growth suggests a topic’s greater capability in useful information collection and thus

its faster gain in fame.

Inspired by the temperature design in prior work [25, 27], we computed Tt
structure by making

an analogy between Gt’s evolution between two adjacent timestamps and an isochoric state of

change of a general thermodynamic system. We defined the system’s volume to be Gt’s node

number. The analogy is legitimate as long as the node number is fixed, which unfortunately

does not hold for Gt. In order to solve this issue, we designed a graph shrinking algorithm that

transforms Gt into G0t, where the nodes in Gt that arrive between timestamp t − 1 and t are

converted to virtual edges among nodes in Gt − 1 (Fig 2(b)). We derived Tt
structure from the

changes in internal energy and in entropy of the thermodynamic system:

Tt
structure ¼

dUt

dSt

�
�
�
�

�
�
�
� ¼

U 0t � Ut� 1

S0t � St� 1

�
�
�
�

�
�
�
� ð2Þ
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We defined entropy St−1, S0t to be the von Neumann entropy [28] of Gt−1 and G0t, the weighted

reduced graph of Gt obtained from the graph shrinking algorithm. St−1, S0t are approximated by

node degree. We set internal energy Ut−1, U 0t to be the ratio between edge number and node

number of Gt−1 and G0t respectively. Different from Tt
growth which focuses more on continual

knowledge increment, Tt
structure is designed to capture recent critical events and hence assesses

topic’s short-term popularity. Detailed Tt
structure modelling information can be found in S1 File

Section S1.3.2.

Among all the topics, we identified 16 representative topics to conduct our knowledge tem-

perature experiment. The pioneering works of these topics were published between 1959 and

2014 and their research interests fall in domains including machine learning, wireless network,

graph theory, biology and physics. These topics have sizes ranging from over 1000 articles and

approximately 5000 citations to more than 31000 articles and nearly 200 thousand citations. A

detailed description of the selected topics can be found in the folder entitled “knowledge tem-

perature data” at https://github.com/drlisette/knowledge-temperature/tree/master/data. By

observing topic skeleton tree and topic knowledge temperature together, we found that Tt’s

evolution is consistent with topic skeleton tree’s development and that Tt’s dynamics well

depicts topic flourishing, with Tt
growth quantifying knowledge accumulation and Tt

structure reflect-

ing knowledge structure shift. In particular, we noted that influential child papers usually play

an important role in boosting both Tt’s components. They are crucial to topic’s thriving in that

they help topics accumulate useful information and generate knowledge in multiple aspects.

However, there is a big variety in the duration between their publication time and the moment

when their contribution becomes perceptible [29].

Tt
growth varies smoothly and determines the overall trend of Tt (Fig 3(a)). A big rise in Tt

growth

corresponds most often with a significant increase in topic size. Typically, during such periods,

some child papers start to gain popularity and collect a non-trivial number of citations within

the topic. They help the pioneering work maintain the topic visibility [9, 30]. Their attractive-

ness to new ideas, added to that of the pioneering work, helps topic accumulate useful informa-

tion and eventually enrich topic knowledge pool (Fig 3(b)). A direct consequence of this

phenomenon, visible from skeleton tree, is a fortification of existing knowledge structure, some-

times accompanied by a mild extension (Fig 3(c)–3(e)). Nonetheless, an ever-growing topic

scale is not a guarantee for thriving periods. For instance, Tt
growth of topic led by ‘Critical Power

for Asymptotic Connectivity in Wireless Networks’ has been on the decrease since 2011 despite

a continuous growth in article number. This corresponds to the fact that almost all of the influ-

ential child papers within the topic were published no later than 2005. The lack of new, promis-

ing ideas and remarkable extensions to existing researches afterwards makes the topic lose

community’s attention and results in the topic’s demise. As for topic led by ‘A unified architec-

ture for natural language processing: deep neural networks with multitask learning’, its decline

in Tt
growth since 2015 is somewhat atypical. The decrease is owing to the emergence of popular

child papers published between 2013 and 2014 that largely excel their parent. Child papers ‘Effi-

cient Estimation of Word Representations in Vector Space’, ‘Distributed Representations of

Words and Phrases and their Compositionality’ and ‘Glove: Global Vectors for Word Represen-

tation’ have each attracted around 600 citations within the topic, while their total citations have

all surpassed 8000, much greater than their antecedent whose citation count still remains below

3000. They have had such big achievements that they have become the authorities in the

domain. Consequently, they have won over the attention of subsequent studies, which in turn

affects the knowledge accumulation of the topic created by their parent paper. We observe that

articles published after 2016 in the topic have not had a comparable development. This confirms

partly the shadowing effect caused by the prominent child papers mentioned above.
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Fig 3. Knowledge temperature (especially Tt and Tt
growth) and skeleton tree evolution of topic led by ‘A unified architecture

for natural language processing: Deep neural networks with multitask learning’. Node color corresponds to paper

knowledge temperature, with red being the hottest, yellow the average level and blue the coldest. Node size (except for the node

representing the pioneering work) is proportional to (re-scaled) structure entropy. The size of the node that stands for the

pioneering work is twice the maximum size of the other nodes. (a) Knowledge temperature evolution. Tt
growth dominates Tt. (b)

Current topic skeleton tree. The pioneering work and 4 most top-cited papers within the topic are labelled by title. (c,d,e) Topic

skeleton tree by the end of 2011, 2013 and 2015. The thriving period is characterized by a fast-growing skeleton tree where small

new clusters emerge and existing branches become increasingly robust. (f,g) Topic skeleton tree by the end of 2017 and 2019.

The stagnation period is reflected by a decelerating growth and an almost fixed tree shape.

https://doi.org/10.1371/journal.pone.0244618.g003
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Tt
structure, unlike Tt

growth, can vary greatly over time. It usually accounts for important fluctua-

tions of Tt (Fig 4(a) and 4(b)). A high Tt
structure usually marks one of the following 2 events: the

formation of sub-topics and the fusion of sub-topics. The first event is a consequence of the

arrival of rising stars in the topic. These articles, later proven influential to the topic evolution,

either introduce a single novel research focus or multiple research directions. Sometimes,

newly developed research directions prove to be a big success and start to defy topic authorities

by attracting most new articles’ attention. In this case, we can observe a gravity shift in topic

skeleton tree, with new branches and clusters developing much faster than the previously dom-

inating ones (Fig 4(a), 4(c) and 4(e)). The second event takes place when there is subsequent

literature uniting prior works’ research. More specifically, the sub-topic merge occurs when

there appears some unusual citations where an old article cites a young one and that the young

article is crucial to topic development (Fig 4(b), 4(d) and 4(f)). Both the emergence of a single

non-trivial research focus and the sub-topic merge can cause an obvious spike in Tt
structure. For

instance, topic led by ‘Neural Networks for Pattern Recognition’ had a sudden Tt
structure incre-

ment when child paper ‘A Tutorial on Support Vector Machines for Pattern Recognition’

established a third sub-topic direction. In topic led by ‘On random graphs, I’, prominent child

paper ‘On the evolution of random graphs’ fuses prior works’ ideas and changed topic land-

scape. However, the heat brought by such critical events are ephemeral. In the long run, their

impact on topic’s life-cycle is eventually reflected by the knowledge accumulation process,

which is quantified by Tt
growth.

In the occurrence of sub-topic merge, topic knowledge temperature increases. Yet the situa-

tion is not that simple when a topic splits into multiple directions. The dynamics of topic

knowledge temperature depends on the property of prominent child papers who lead novel

research branches. If they are developmental papers, which means they mainly amplify the

impact of prior work, then topic knowledge temperature will goes up. If they are disruptive

papers, which means their novelty overshadows the achievements of prior work, then topic

knowledge temperature will stagger or even go down. Whether a child paper is developemental

or disruptive can be judged by the ratio between its in-topic citation count and its total citation

count. For example, as is already mentioned above in Tt
growth’s discussion, the most popular

child papers of the topic led by ‘A unified architecture for natural language processing: deep

neural networks with multitask learning’ are all distruptive given that their in-topic citations

only account for a small fraction of their total citation count. As a result, we observe a decrease

in topic knowledge temperature despite the topic’s continuous expansion (Fig 3(a)). As for

topic led by ‘The capacity of wireless networks’, however, its prominent child papers are either

developmental or balanced between novelty and idea inheritance. For instance, more than

50% of total citations of child papers ‘Mobility increases the capacity of ad hoc wireless net-

works’ (published in 2002) and ‘A network information theory for wireless communication:

scaling laws and optimal operation’ (published in 2004) belong to the topic. More than 40% of

‘Capacity of Ad Hoc wireless networks”s citations take place in the topic. Therefore, their

arrival enriches topic knowledge, extends knowledge structure and contributes to the topic’s

flourishing during 2003 and 2007 (Fig 4(a)). Prominent child papers of the topic led by ‘The

capacity of wireless networks’ can be found at S1 File Section S2.2.2.

Furthermore, we compared topic knowledge temperature dynamics to the variations of top-

ic’s average annual scientific publication number and topic’s average annual useful informa-

tion increment between timestamps (Fig 5). Average annual useful information increment is

largely determined, though not always, by the size of average annual publication. During peri-

ods when a topic sees a decline in its publication number, we observe either a slow-down or a

drop in topic knowledge temperature. During periods when a topic accelerates its expansion,
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Fig 4. Knowledge temperature (especially Tt and Tt
structure) and skeleton tree evolution of topics led by ‘The capacity of wireless

networks’ (CWN) and ‘On random graph, I’ (RG). Node color corresponds to paper knowledge temperature, with red being the

hottest and blue the coldest. Node size (except for the node representing the pioneering work) is proportional to (re-scaled) structure

entropy. The size of the node that stands for the pioneering work is twice the maximum size of the other nodes. (a,b) Knowledge

temperature evolution. Tt
structure accounts for Tt’s fluctuations. (c,e) Skeleton tree of the topic led by CWN by the end of 2003 and 2007.

Advancements are visible in all directions. In particular, the gravity shift in the tree implies the emergence of new research focus, which

yields a soar in Tt
structure. (d,f) Skeleton tree of the topic led by RG by the end of 1979 and 1984. Article ‘On the evolution of random

graphs’ published in 1984 fuses the previously separated parts due to an atypical citation from an older article ‘On the existence of a

factor of degree one of a connected random graph’. The merge in topic knowledge structure pushed up Tt
structure during that period.

https://doi.org/10.1371/journal.pone.0244618.g004
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topic knowledge temperature most often climbs up. The degree to which topic knowledge tem-

perature increases is consistent with topic’s average annual useful information increment in

general. Especially in the two topics respectively led by ‘Bose-Einstein condensation in a gas of

sodium atoms’ and ‘Particle swarm optimization’, the spike in average annual useful informa-

tion corresponds with an upsurge in topic knowledge temperature (Fig 5(j) and 5(l)). While

previous analysis on topic knowledge temperature unveals the significance of useful informa-

tion growth to topic’s flourishing through popular child papers, this observation illustrates

from a holistic view that useful information accumulation is primordial to topic’s prosperity.

We observe a rich variation in Tt’s dynamics as each topic exhibits a unique development

pattern. We identify 4 distinct topic life-cycles: rising topic, rise-then-fall topic, awakened

topic and rise-and-fall-cycle topic (Fig 5). Rising topics demonstrate overall a steady and

Fig 5. Knowledge temperature, average annual publication number between timestamps and average annual useful information

increment between timestamps for 16 topics. Blue line: average annual publication number, value ¼ Vt � Vt� 1

yeart � yeart� 1. Orange line:

knowlegde temperature Tt. Grey line: average annual useful information increment, value ¼ UsefulInfot � UsefulInfot� 1

yeart � yeart� 1 . Left axis is for average

annual publication number and average annual useful information increment. Right axis is for knowledge temperature. (a) Topic led

by ‘Regulatory T Cells: Mechanisms of Differentiation and Function’. (b) Topic led by ‘Empirical Evaluation of Gated Recurrent

Neural Networks on Sequence Modeling’. (c) Topic led by ‘Neural networks for pattern recognition’. (d) Topic led by ‘Critical Power

for Asymptotic Connectivity in Wireless Networks’. (e) Topic led by ‘The capacity of wireless networks’. (f) Topic led by ‘Efficient

Estimation of Word Representations in Vector Space’. (g) Topic led by ‘Coverage problems in wireless ad-hoc sensor networks’. (h)

Topic led by ‘A neural probabilistic language model’. (i) Topic led by ‘A unified architecture for natural language processing: deep

neural networks with multitask learning’. (j) Topic led by ‘Bose-Einstein condensation in a gas of sodium atoms’. (k) Topic led by

‘Long short-term memory’. (l) Topic led by ‘Particle swarm optimization’. (m) Topic led by ‘On random graphs, I’. (n) Topic led by

‘Collective dynamics of ‘small-world’ networks’. (o) Topic led by ‘Latent dirichlet allocation’. (p) Topic led by ‘A FUNDAMENTAL

RELATION BETWEEN SUPERMASSIVE BLACK HOLES AND THEIR HOST GALAXIES’.

https://doi.org/10.1371/journal.pone.0244618.g005
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lasting Tt increase. They welcome rather intermittently their child papers that enjoy popularity

within the topic. This ensures to some extent a stable knowledge increment. Rise-then-fall top-

ics reach their peak at some point and then go downhill owing to the lack of new development

of existing ideas, the absence of new study focus or the shadowing of their outstanding child

papers. In addition, their expansion pace slows down during the cooling down phase. Awak-

ened topics can have a mild development for a duration as long as 20 years before experiencing

an influence surge. Their sudden flourishing is largely due to scientific communities’ recent

frenzy in certain domains, such as artificial intelligence. Rise-and-fall-cycle topics manifest a

more complicated Tt pattern. However, their rises and falls also match the global background,

such as the introduction of the Internet, the booming of artificial intelligence and the preva-

lence of online social networks. Detailed result discussion for each topic can be found in S1

File Section S2.1-S2.4.

How is heat distributed within a topic? To answer this question, we interpreted Tt as aver-

age temperature and computed paper knowledge temperature for every article. Paper knowl-

edge temperature gauges a work’s relative popularity and impact within the topic at a certain

moment. We assumed that paper knowledge temperature is influenced by both the popularity

of an article’s own idea, which is partly acquired from its references, and the overall popularity

of the works that draw inspirations from it. We expect an article to be “hot” if it possesses

trendy ideas itself and/or it inspires some popular articles. At each timestamp t, we assumed

the hottest and coldest works and then employed the heat equation to propagate the heat

across Gt. For a node u, its temperature change
dTu
di is (we omit the superscript t of paper knowl-

edge temperature in the equation):

dTu

di
¼
XjV

t j

v¼1

fAt
vuðTv � TuÞ ð3Þ

where fAt
vu is the thermal conductivity between node v and node u. fAt

vu depends on DiffIdxvu.

The bigger DiffIdxvu is, the bigger the difference between node v and node u and the faster

their heat exchange. We set the pioneering article to be the hottest node (knowledge tempera-

ture = 1) and all the underdeveloped papers to be the coldest nodes (knowledge tempera-

ture = 0). We modelled heat propagation via idea inheritance and youngster’s contribution to

knowledge renaissance respectively by forward and backward iterations of the heat equation.

The number of iteration i depends on the average hops between 2 randomly selected nodes.

Finally we performed a scaling by Tt. u’s paper knowledge temperature at timestamp t, Tt
u is

therefore:

Tt
u ¼ Tt

u;std �
Tt

Tt
std

ð4Þ

where Tt
u;std is u’s temperature and Tt

std the average temperature derived from the heat

equation.

We visualized paper knowledge temperature together with skeleton tree. If we let alone

the coldest papers, we observe a ubiquitous phenomenon: the closer an article is to the pio-

neering work, the hotter it tends to be. Paper knowledge temperature decreases along paths

in skeleton tree (Fig 4(c)–4(f)). This suggests that idea inheritance plays a main role in deter-

mining article’s popularity. Although pioneering work is the only known hottest node, we

identify other heat sources, the majority of which are the centers of non-trivial clusters. Most

heat sources happen to be among the most-cited child papers within a topic. They possess

primarily intrinsic value. Their own research content contributes a lot to topic’s survival and
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flourishing. Another type of heat source are articles situated between clusters. Such papers

may not have made astonishing discoveries nor have attracted many followers, but it is their

studies that have inspired some influential subsequent work. Their value lies essentially in

the enlightenment.

In an effort to better understand general heat distribution within a topic, our preliminary

observation prompted us to study the relation between paper knowledge temperature and arti-

cle age, as papers located in skeleton tree cores are parents or ancestors to papers on the

periphery. We find that regardless of research themes, older articles indeed tend to have higher

paper knowledge temperatures (Fig 6). Older papers take advantage of a longer time span and

tend to better diffuse their ideas thanks to their numerous followers, a tendency in line with

Fig 6. Relation between article age and paper knowledge temperature for 16 topics. Article age = 2020—year of publication. Grey

dotted horizontal line marks the topic knowledge temperature (average level) in 2020. (a) Topic led by ‘Regulatory T Cells:

Mechanisms of Differentiation and Function’. (b) Topic led by ‘Empirical Evaluation of Gated Recurrent Neural Networks on

Sequence Modeling’. (c) Topic led by ‘Neural networks for pattern recognition’. (d) Topic led by ‘Critical Power for Asymptotic

Connectivity in Wireless Networks’. (e) Topic led by ‘The capacity of wireless networks’. (f) Topic led by ‘Efficient Estimation of Word

Representations in Vector Space’. (g) Topic led by ‘Coverage problems in wireless ad-hoc sensor networks’. (h) Topic led by ‘A neural

probabilistic language model’. (i) Topic led by ‘A unified architecture for natural language processing: deep neural networks with

multitask learning’. (j) Topic led by ‘Bose-Einstein condensation in a gas of sodium atoms’. (k) Topic led by ‘Long short-term

memory’. (l) Topic led by ‘Particle swarm optimization’. (m) Topic led by ‘On random graphs, I’. (n) Topic led by ‘Collective dynamics

of ‘small-world’ networks’. (o) Topic led by ‘Latent dirichlet allocation’. (p) Topic led by ‘A FUNDAMENTAL RELATION BETWEEN

SUPERMASSIVE BLACK HOLES AND THEIR HOST GALAXIES’.

https://doi.org/10.1371/journal.pone.0244618.g006
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our intuition. Since we assume pioneering works possess the “hottest” knowledge, the gradual

temperature decline well illustrates that idea inheritance and innovation are taking place

simultaneously in every scientific topic. However, we observe a drop in average paper knowl-

edge temperature among the oldest papers in half of the topics. 2 phenomena can explain the

anomaly. Some topics contain a tiny fraction of atypical citations where younger articles are

cited by older papers or papers published at approximately the same time. When the younger

articles happen to be pioneering works, the oldest papers are no longer the topic founders.

They usually have inspired few or even no child papers in the topics. Consequently, they are

among the coldest articles. In rare cases, these papers inspired a certain quantity of works. But

they remain “cold” owing to their relatively different research focus with that of the pioneering

works even though they are connected to the latter. Their citations are more like peer bonds

rather than a symbol of inspiration and idea inheritance. Such is the case for the pioneering

work ‘Particle swarm optimization’ and its peer and popular child paper ‘A new optimizer

using particle swarm theory’.

Even if we let alone the cold old articles, the heat distribution is not that simple and monot-

onous. We observe in most topics that parent papers are not always hotter than its descen-

dants. According to our design, paper knowledge temperature is affected by 2 factors: the heat-

level of its own research content and the promotion gained from its descendants. Therefore, a

colder parent or ancestor is either due to its less prevalent ideas or a poor general performance

of its children. This phenomenon implies that an important status within the topic does not

necessarily bring much fame.

We further compared paper knowledge temperature with in-topic citation count, a tradi-

tional article-level impact metrics, to get a better understanding of their similarities and differ-

ences (S49 Fig in S1 File). We find a weak positive correlation between the two quantities

among the best-cited papers in topics. In particular, we highlighted the most-cited child papers

together with pioneering works on current skeleton trees. Most of them have a knowledge

temperature above average as they are represented as yellow, orange or red nodes (current

skeleton trees in S3, S9, S15, S35 Figs in S1 File for example). However, there are exception.

For instance, in topic led by ‘Particle swarm optimization’, popular child paper ‘A new opti-

mizer using particle swarm theory’ (NOPST) is among the coldest despite the fact that it is the

most influential child paper in terms of citation count (S35 Fig in S1 File). NOPST was pub-

lished in the same year as the pioneering work and it only cited the pioneering work. Its low

temperature is due to its relatively different research focus with that of the pioneering work

and an overall low heat level of its children. The latter is somehow also a consequence of the

former, as the pioneering work has most prevalent idea. The focus difference is also reflected

by their separation in the skeleton tree.

We also tracked the evolution of paper knowledge temperature of relatively popular child

papers within a topic and we find a similar phenomenon already observed at topic-level.

While an article’s own knowledge largely determines its heat level, child papers sometimes

play a perceptible role in boosting or maintaining its popularity and impact. For example, in

the topic led by paper ‘Bose-Einstein condensation in a gas of sodium atoms’, article ‘Bose-

Einstein condensation of exciton polaritons’ has so far kept being hotter despite a global

cooling since 2013 thanks to an above-average active development (S1 File Section S2.2.7).

Our finding is consistent with the research which demonstrates that papers need new cita-

tions to keep their visibility [30]. Besides, in some topics, especially the one led by ‘Collective

dynamics of ‘small-world’ networks’, we frequently find that popular child papers were pub-

lished in renowned journals such as Nature and Science (S1 File Section S2.4.2). Our obser-

vation accords with research which suggests a positive association between journal prestige

and article high impact [31].
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Nonetheless, we find that several scientific topics are intimately connected. Some pioneer-

ing works occupy a primordial position in other topics’ skeleton trees. Furthermore, these

closely related topics manifest similar knowledge temperature dynamics. However, such simi-

larity does not correspond very well with idea inheritance and development in some cases. For

instance, paper ‘The capacity of wireless networks’ (CMN) is the most successful child paper of

the pioneering work ‘Critical Power for Asymptotic Connectivity in Wireless Networks’. It

plays a crucial role in topic’s prosperity (S12 Fig in S1 File) by jointly inspiring one third of the

topic members, most of which were published during the flourishing period. Besides, CMN

surpassed and took over its predecessor to be the new authority in their domain in just a few

years. Yet, according to their topic knowledge temperatures, it is the topic led by CMN that

went downhill first. To this end, we wanted to design a mechanism that can better capture the

interactions among closely-connected topics. We define topic group to be a set of closely-

related topics where idea inheritance can be observed among the pioneering works. Following

our skeleton tree notion, we were inspired by the nutrition transfer among real trees in a forest

[32]. We hence treated scientific topics as trees and conceived a forest helping mechanism

where thriving topics in a topic group transfuse a small fraction of vigor to their dying siblings.

The amount of shared energy depends on both the ages and the size of the topic group. In

knowledge temperature experiments for a topic group, topics first evolve individually and get

their own knowledge temperature based on knowledge increase and structure growth. By the

end of each timestamp, forest helping is performed, when applicable, to adjust topics’ knowl-

edge temperature. When we compare topic knowledge temperatures before and after forest

helping, we find that our helping mechanism regulates mildly the temperatures as if it took

into account the “background popularity”, average popularity of a bigger research topic to

which the group belongs. Overall, forest helping slightly reduces the fluctuation of Tt (S51 Fig

in S1 File). Detailed forest helping experiment results can be found in S1 File Section S2.5.

Our work is different from existing literature on topic popularity in several aspects. To

begin with, we defined topic based on an influential article, while other efforts in topic trend

observation adopt keyword-based topic definition. Consequently, we used different types of

data. We conducted our analysis over topic citation network, whereas relevant works required

rich text information, at least full abstracts to embark on their analysis. Next, we modelled sci-

entific popularity by borrowing ideas from thermodynamics. On the contrary, other literature

adopted simple indicators such as publication-based trend indices [33], usage data [34] and

keyword occurrence statistics [35] to depict the ‘heat’ of topics. Drastically different as it

seems, both our method and relevent works’ analysis make use of publication number to

derive topic’s popularity. Last but not least, knowledge temperature we proposed is able to

track the rise and fall of scientific topics and to describe their lifecycles in a long term, while

existing researches focus on the comparison between different topics at a given time and hence

on the detection of hot trends.

Conclusion

In summary, we report a thermodynamic approach to evaluate the popularity of scientific top-

ics. We design knowledge temperature, an intuitive and quantitative metrics to characterize

topic popularity dynamics by fully leveraging the scale and structure evolution of topic citation

network through skeleton tree. Our analysis unveals that a continuous stream of useful infor-

mation is the key to topics’ prosperity in the long run, to which the arrival of eminent child

papers contributes a lot. In the short term, critical events such as the merge and emergence of

new sub-topic also boost topic’s vigor. Based on knowledge temperature dynamics, we further

unearth four distinct life-cycles of scientific topics. In addition, we dive into each topic and
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examine its ineer heat diffusion. We discover that older articles and articles that earn relatively

high in-topic citation count generally have bigger chances to diffuse their ideas and thus tend

to be hotter. However, exceptions are not uncommon, suggesting thus a weak positive correla-

tion between heat-level and article’s age and in-topic citation number. Finally, we design a for-

est helping mechanism to better depict the idea inheritance and development in a topic group,

a set of intimately-associated topics. Although knowledge temperature cannot directly be used

as a scientific impact metrics, our study suggests a new possibility to quantify research impact

in a most intuitive way.
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