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Coronavirus disease 2019 (COVID-19), caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has
developed into a global pandemic since its first outbreak in the
winter of 2019. An extensive investigation of SARS-CoV-2 is
critical for disease control. Various recombinant monoclonal
antibodies of human origin that neutralize SARS-CoV-2
infection have been isolated from convalescent patients and
will be applied as therapies and prophylaxis. However, the need
for dedicated monoclonal antibodies suitable for molecular
pathology research is not fully addressed. Here, we produced
six mouse anti-SARS-CoV-2 spike monoclonal antibodies that
not only exhibit robust performance in immunoassays
including western blotting, ELISA, immunofluorescence, and
immunoprecipitation, but also demonstrate neutralizing ac-
tivity against SARS-CoV-2 infection to VeroE6/TMPRSS2 cells.
Due to their mouse origin, our monoclonal antibodies are
compatible with the experimental immunoassay setups
commonly used in basic molecular biology research labora-
tories, providing a useful tool for future research. Furthermore,
in the hope of applying the antibodies of clinical setting, we
determined the variable regions of the antibodies and used
them to produce recombinant human/mouse chimeric
antibodies.

The outbreak of coronavirus disease 2019 (COVID-19)
caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) is a threat to global public health and economic
development (1, 2). Vaccine and therapeutic discovery efforts
are paramount to restrict the spread of the virus. Passive im-
munization could have a major effect on controlling the virus
pandemic by providing immediate protection, complementing
the development of prophylactic vaccines (3–5).

With the development of humanized mouse antibodies and
subsequent generation of fully human antibodies by various
techniques, monoclonal antibodies have become widely used
in therapy and prophylaxis for cancer, autoimmune diseases,
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and viral pathogens (3). Indeed, a humanized mouse mono-
clonal antibody neutralizing respiratory syncytial virus (RSV),
palivizumab, is widely used in clinical settings prophylactically
to protect vulnerable infants (6). In recent years, highly specific
and often broadly active neutralizing monoclonal antibodies
have been developed against several viruses (3, 7–10). Passive
immunization with a monoclonal antibody is currently under
consideration as a treatment for COVID-19 caused by SARS-
CoV-2 (4, 11–14).

Isolation of multiple human neutralizing monoclonal anti-
bodies against SARS-CoV-2 has been reported (15–29). These
antibodies can avoid the potential risks of human–anti-mouse
antibody responses and other side effects (30). However, since
they are recombinant human antibodies produced in HEK293
cell lines derived from human embryonic kidney, they have
a disadvantage compared with conventional hybridoma-
produced antibodies in terms of their lot-to-lot quality
control and manufacturing costs (31). Instead, monoclonal
antibodies produced by hybridomas are secreted into the
culture supernatant, thus their production is straightforward
and of low cost, and their quality is stable.

In addition to the impact of monoclonal antibodies on
therapy and prophylaxis, they significantly impact the char-
acterization of SARS-CoV-2. To overcome the long-term
battle with the virus, we need a detailed understanding of
the replication mechanisms underlying its life cycle, including
viral entry, genome replication, budding from the cellular
membrane, and interaction with host immune systems. These
essential pieces of information are required for drug discovery,
vaccine design, and therapy development. Despite the large
number of neutralizing antibodies reported to inhibit infec-
tion, there is an overwhelming lack of data on a well-
characterized antibody available for basic research tech-
niques such as western blotting (WB), immunofluorescence,
and immunoprecipitation to study the viral life cycle.

Here, we established six monoclonal antibodies against the
spike glycoprotein of SARS-CoV-2. The trimeric spike glyco-
proteins of SARS-CoV-2 play a pivotal role in viral entry into
human target cells through the same receptor, angiotensin-
converting enzyme 2 (ACE2) as SARS-CoV-1 (32). We eval-
uated these antibodies for application in molecular pathology
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Figure 1. Production of six monoclonal antibodies against spike protein. A, schematic of recombinant proteins used to establish anti-spike antibodies.
For mammalian expression constructs (SΔTM-SBP and RBD-SBP), the HRV3C cleavage site was placed upstream of the SBP tag so that the SBP tag could be
removed by HRV3C protease treatment after protein purification (Fig. S1A). B, Coomassie brilliant blue (CBB) staining of recombinant protein purified from
E. coli expression system. GST-RBD and MBP-RBD appeared as bands of 46 kDa and 62 kDa, respectively. C, CBB staining of recombinant proteins purified
from the mammalian expression system. The glycosylation of recombinant proteins caused smear bands and a lower migration rate of proteins on SDS-
PAGE compared with proteins treated with PNGase. D, ELISA-binding affinity of purified monoclonal antibodies to trimeric SΔTM and RBD glycoproteins
purified from the mammalian expression system. Error bars indicate standard deviation (n = 3). E, summary of isotype and EC50 of established monoclonal
antibodies. F, Western blotting (WB) against SΔTM and RBD glycoproteins (10 or 50 ng per lane) using purified monoclonal antibodies (1 μg/ml in PBS-T).

ACCELERATED COMMUNICATION: Mouse anti-SARS-CoV-2 spike monoclonal antibody

2 J. Biol. Chem. (2021) 296 100346



ACCELERATED COMMUNICATION: Mouse anti-SARS-CoV-2 spike monoclonal antibody
research. Among them, two antibodies were shown to atten-
uate the interaction of spike proteins with ACE2 and
neutralized infection of VeroE6/TMPRSS2 cells by SARS-
CoV-2. Our antibodies will accelerate research on SARS-
CoV-2 and lead to new therapies and prophylaxis.

Results

Production of six monoclonal antibodies against spike
glycoprotein

The SARS-CoV-2 spike glycoprotein is a homotrimeric
fusion protein composed of two subunits: S1 and S2. During
infection, the receptor-binding domain (RBD) on S1 subunit
binds to ACE2, resulting in destabilization of the spike pro-
tein’s metastable conformation. Once destabilized, the spike
protein is cleaved into the N-terminal S1 and C-terminal S2
subunits by host proteases such as TMPRSS2 and changes
conformation irreversibly from the prefusion to the postfusion
state (32–34), which triggers an infusion process mediated by
the S2 region (35, 36). The instability needs to be addressed to
obtain high-quality spike proteins for downstream applica-
tions. We adopted the design principle reported by Wrapp
et al. (37), in which the SARS-CoV-2 spike protein was engi-
neered to form a stable homotrimer that was resistant to
proteolysis during protein preparation. In our practice, re-
combinant spike protein RBD and ectodomain were con-
structed. A T4 fabritin trimerization motif (foldon) was
incorporated into the C terminal of the recombinant spike
ectodomain to promote homotrimer formation (38) (Fig. 1A).
Recombinant RBD proteins tagged with GST or MBP were
produced using an E. coli expression system (Fig. 1B). Both
recombinant spike protein RBD and ectodomain (SΔTM) were
produced using a mammalian expression system that retained
proper protein glycosylation equivalent to that observed dur-
ing virus replication (Figs. 1C and S1A). Mice were immunized
with these recombinant spike proteins to generate antibodies
against the SARS-CoV-2 virus, followed by cell fusion to
generate a hybridoma-producing antibody. Culture superna-
tants were prescreened by enzyme-linked immunosorbent
assay (ELISA), WB, and immunoprecipitation (IP), and six
monoclonal hybridomas were isolated and evaluated.

To characterize these antibodies in detail, they were first
purified from the culture supernatant and examined in terms
of ELISA and WB performance. Four monoclonal antibodies
derived from the antigen produced by E. coli (Clones R15, R22,
R31, and R52) and two from mammalian cells (S1D7 and
S3D8) showed remarkable performance. In the ELISA binding
assay, all six clones bound glycosylated RBD with high affinity.
When tested against spike glycoprotein (SΔTM), two clones
(R15 and R52) could not be distinguished from nonimmune
IgG (Fig. 1D). We noted that IgG2 subclass members tended to
have higher binding affinities. Half maximal effective
Clone S1D7 and S3D7 could not detect either SΔTM or RBD in WB. G, detectio
clones could detect SΔTM (30 ng per lane), regardless of glycosylation. H,
expressing artificial spikes carrying T4 foldon or wild-type spike glycoproteins w
fabritin trimerization motif; GST, glutathione S-transferase; MBP, maltose-bin
receptor-binding domain; SΔTM, spike lacking TM domain; SBP, streptavidin-b
concentration (EC50) required for these antibodies to bind
RBD and SΔTM glycoproteins falls at the low hundreds ng/ml
(Fig. 1E). In WB, where target proteins are reduced and de-
natured, all clones established by E. coli produced-antigens
performed well at detecting RBD and SΔTM proteins
regardless of glycosylation (Fig. 1F, left, and Figs. 1G and S1B).
Among them, clones R15 and R52 showed higher sensitivity in
WB. In addition, R52 was capable of detecting not only arti-
ficial spike glycoprotein carrying T4 foldon, but also native
spike glycoprotein expressed in 293T cells on WB (Fig. 1H).
However, neither RBD nor SΔTM could be detected by anti-
body clones established by the mammalian antigen (S1D7 and
S3D8) on WB, suggesting a strong preference for intact tertiary
structure (Fig. 1F, right, see also Fig. S3, B–D).

S1D7 and S3D8 antibodies showed higher performance on IP
and IF

An antibody capable of recognizing the intact tertiary
structure of spike proteins would contribute to research dis-
secting the molecular mechanism of SARS-CoV-2 infection,
especially cell entry, where these proteins play a significant
role. The IP activity of antibodies can be correlated with the
activity of capturing the native structure of the target protein
and neutralizing the infection. We examined the IP perfor-
mance of our monoclonal antibodies. Although all clones were
capable of immunoprecipitating RBD and SΔTM glycopro-
teins, clones R22, R31, S1D7, and S3D8 demonstrated superior
IP efficiency for SΔTM, whereas R22, S1D7, and S3D8 showed
higher IP efficiency for RBD glycoprotein (Figs. 2A and S2A).
As shown in Figure 2B, our antibodies recognize the spike
protein in a glycosylation-independent manner, and the IP
efficiencies of R22, R31, S1D7, and S3D8, although mild,
outperformed others. Noticeably, although clones S1D7 and
S3D8 are not capable of performing WB (Fig. 1F), a strong
preference for tertiary structure grants them remarkable per-
formance in IP, where RBD and SΔTM glycoproteins were
pulled down in their native conformation. Of note, we found
that S1D7 and S3D8 could maintain intact IP efficiency under
highly stringent experimental conditions where sodium
dodecyl sulfate (SDS) was present (Fig. S2B).

Next, we examined whether our antibodies could be used in
the immunofluorescence assay (IF). An antibody applicable for
IP would also have activity in IF. Cellular localization of spike
proteins is essential for elucidating the mechanism of pack-
aging and maturation of virions during release from the
cellular membrane. We tested our antibodies’ performance in
IF using HeLa cells overexpressing spike protein with the
transmembrane domain. Consistent with their performance in
the above-mentioned assays (Fig. 2, A and B), both S1D7 and
S3D8 could detect spike proteins expressed homogeneously on
the apical side of HeLa cells with a high signal-to-noise ratio
n of nonglycosylated SΔTM using established monoclonal antibodies. Four
detection of spike proteins expressed in 293T cells. Lysates of 293T cells
ere separated by SDS-PAGE, followed by WB using antibody R52. Foldon, T4
ding protein; n.i., nonimmune mouse IgG; NTD, N-terminal domain; RBD,
inding peptide; SS, signal peptide; TM, transmembrane domain.
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Figure 2. Application for immunoprecipitation and immunofluorescence. A, immunoprecipitation (IP) of trimeric glycosylated spike protein (SΔTM)
using established monoclonal antibodies. All clones were capable of pulling down RBD and spike glycoprotein. Higher IP efficiency of spike glycoprotein
was observed in clones R22, R31, S1D7, and S3D8. For RBD glycoprotein, clone R22, S1D7, and S3D8 showed higher IP efficiency. B, IP of trimeric spike
protein deglycosylated by PNGase F using established monoclonal antibodies. "SΔTM" indicates SΔTM glycoprotein untreated with PNGase F. All clones are
capable of pulling down deglycosylated spike protein. Higher IP efficiency was observed in clones R22, R31, S1D7, and S3D8. C, immunofluorescence (IF)
staining of spike glycoprotein expressed in HeLa cells with monoclonal antibodies S1D7 and S3D8. Spike protein localized on the apical surface of
transfected HeLa cells. Scale bar, 30 μm. HC, IgG heavy chain; In, input; LC, IgG light chain; ni, nonimmune mouse IgG; SΔTM, trimeric spike protein without
transmembrane domain; S1, S1D7; S3, S3D8.
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(Figs. 2C and S2C). However, their localization pattern is
different from that observed for SARS-CoV-1 spike proteins,
which are exclusively localized in the Golgi during infection
(39) (see also Fig. 4B). Mouse hepatitis coronavirus spike
4 J. Biol. Chem. (2021) 296 100346
protein localizes in the endoplasmic reticulum–Golgi inter-
mediate compartment (ERGIC) in a membrane (M) protein-
dependent manner (40). We then examined the effect of M
protein on cellular localization of spike proteins. As shown in
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Figure 3. Inhibition of ACE2–spike interaction by S1D7 and S3D8. A, a schematic of the spike pull-down assay designed to evaluate inhibition of ACE2–
spike binding by monoclonal antibody. Spike glycoprotein lacking TM domain (SΔTM) was mixed with a monoclonal antibody. ACE2-SBP was applied to
capture SΔTM onto streptavidin beads competitively. Captured SΔTM was detected by WB as a measurement of the antibody’s inhibitory ability. B, WB of
spike pull-down assay using antibody R52. In the presence of clones S1D7 and S3D8, ACE2 was not able to pull down SΔTM. C, schematic of bead-based
neutralization assay designed to quantify inhibition of ACE2–RBD binding by monoclonal antibody. RBD-SBP glycoprotein immobilized on streptavidin
beads was mixed with a monoclonal antibody. ACE2-FLAG was applied to bind competitively with RBD. ACE2–RBD binding was quantified by measuring the
signal given by an anti-FLAG antibody conjugated with APC fluorophore using FACS. D, one set of representative FACS results of a bead-based neutral-
ization assay in the presence of 4 μg/ml monoclonal antibodies. Clones S1D7 and S3D8 significantly inhibited ACE2-RBD interaction, shown as lowered
fluorescence intensity of APC. E, binding profiles of potent neutralizing antibodies. Error bars indicate standard deviation (n = 3). Clones R22 and R31
showed no inhibition of ACE2-RBD binding, while S1D7 and S3D8 inhibited ACE2-RBD interaction at lower ng/ml levels. ni, nonimmune mouse IgG; S1,
S1D7; S3, S3D8.

ACCELERATED COMMUNICATION: Mouse anti-SARS-CoV-2 spike monoclonal antibody
Figure S2, D and E, M protein did not appear to have any
impact on localization of spike proteins in HeLa cells, sug-
gesting that mechanisms of viral assembly in SARS-CoV-2 are
different from that of SARS-CoV-1 and mouse hepatitis
coronavirus.

ACE2–spike binding inhibition of the monoclonal antibodies

The manner in which antibodies bind and pull down spike
glycoproteins in an IP experiment resembles the process of
antibody-mediated neutralization, where spike–ACE2 inter-
action is intercepted by competitive binding between
neutralizing antibodies and spike glycoprotein. We then
examined whether they were capable of inhibiting spike–ACE2
binding or even neutralizing SARS-CoV-2 infection. First, we
performed a spike pull-down assay in which the spike glyco-
protein was pulled down by ACE2 in the presence of mono-
clonal antibodies (Fig. 3A and S3A). Clones S1D7 and S3D8
clearly inhibited spike–ACE2 binding, as shown by the
dimmed spike signal in WB (Fig. 3B). To quantify the inhibi-
tion ability, we performed a bead-based neutralization assay by
measuring the amount of ACE2 bound to RBD beads after
blocking with monoclonal antibodies (Fig. 3C). Antibodies R22
and R31 showed no disruption of ACE2–RBD interaction,
whereas S1D7 and S3D8 showed robust hindrance of ACE2–
RBD binding with IC50 values of 248.2 ng/ml and 225.6 ng/ml,
respectively (Fig. 3, D and E). S1D7 and S3D8’s abilities to
inhibit spike–ACE2 binding was consistent with their superior
performance in IP experiments. Four monoclonal antibodies
derived from the antigen produced by E. coli (Clones R15, R22,
R31, and R52) were found to recognize continuous epitope
549-TGVLTESNKKFLPFQQFGRD-568 of spike protein RBD
(Fig. S3, B–D). In contrast, an epitope of two antibodies from
mammalian cells (S1D7 and S3D8) could not be determined
(Fig. S3, B–D). The fact that they fail to recognize segmented
RBD suggests that they recognize an intact tertiary structure of
the spike protein.
J. Biol. Chem. (2021) 296 100346 5



Figure 4. S1D7 and S3D8 neutralized SARS-CoV-2 infection. A, Spike glycoprotein was expressed in VeroE6/TM2 cells during SARS-CoV-2 infection. Spike
glycoproteins were detected by western blots using anti-spike antibodies R22 and R52. B, immunofluorescence staining of spike glycoprotein expressed in
VeroE6/TM2 cells infected with SARS-CoV-2 at 7 h postinfection. Scale bar, 20 μm. C, S1D7 and S3D8 are capable of neutralizing live virus infections.
Although clone R22 failed to protect VeroE6/TM2 cells from SARS-CoV-2 infection, S1D7 and S3D8 blocked SARS-CoV-2 infection significantly with IC50
values of 405.2 ng/ml and 139 ng/ml, respectively. S1D7 and S3D8 cocktail showed intermediate neutralizing activity (200.1 ng/ml). Error bars indicate
standard deviation (n = 3).
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S1D7 and S3D8 showed neutralizing activity against
SARS-CoV-2

Next, we asked whether our antibodies inhibit SARS-CoV-2
infection in VeroE6/TMPRSS2 (TM2) cells, which is suscep-
tible to SARS-CoV-2 infection compared with the parental
VeroE6 cell line by expressing TMPRSS2 (41). In WB, anti-
bodies R52 and R22, but not S1D7 and S3D8, could detect
spike glycoprotein along with the progression of SARS-CoV-2
infection in VeroE6/TM2 cells (Fig. 4A). On the other hand,
S1D7 and S3D8 were applicable to IF in infected VeroE6/TM2
cells. Spike showed a punctate distribution pattern in the
perinuclear region resembling ER and ERGIC (42) (Fig. 4B).
The subcellular localization of spike resembled that of the N
protein in Vero cells infected with SARS-CoV-1 (39), sug-
gesting assembly of SARS-CoV-2 virion in the cytoplasm. We
then conducted a live virus neutralization assay to examine
whether clones S1D7 and S3D8 inhibit the live virus infection.
As expected, although clone R22 failed to protect VeroE6/
6 J. Biol. Chem. (2021) 296 100346
TM2 from SARS-CoV-2 infection, S1D7 and S3D8 blocked
SARS-CoV-2 infection significantly with IC50 values of
405.2 ng/ml and 139 ng/ml, respectively, even at relatively high
titers of 1500 TCID50 (Fig. 4C and Table S1). A cocktail of
S1D7 and S3D8 showed intermediate neutralizing activity
(200.1 ng/ml), suggesting that S1D7 and S3D8 share an
inhibitory mechanism.

Recombinant human/mouse chimeric antibodies R52h and
S1D7h are applicable for WB and IF, respectively

Our mouse antibodies would not be applicable for use in
clinical treatment, if not chimeric and humanized, due to their
immunogenicity (30, 43). In the hope of applying the anti-
bodies of clinical settings, the variable regions of the antibodies
were determined (Table S2), followed by the production of
recombinant antibodies based on plasmid transfection to
Expi293 or 293T cell lines. We selected three antibodies from
among these and generated humanized chimeric antibodies
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designated as R52h, S1D7h, and S3D8h by fusing them with
the constant region of human IgG1κ for R52, S1D7, and S3D8.
R52h was capable of detecting artificial spike glycoprotein
carrying T4 foldon, and native spike glycoprotein expressed in
293T cells on WB as well as R52 (Figs. 5A and S4A). In IF,
S1D7h could detect spike proteins expressed in HeLa cells
(Figs. 5B and S4B). Notably, S1D7h and S3D8h showed robust
hindrance of ACE2–RBD binding with IC50 values of 116.3 ng/
ml and 137.2 ng/ml, respectively (Fig. 5C).

Discussion

Emerging SARS-CoV-2 is a global public health threat to
society, which is predicted to be long-term for several years
(44). Although there are multiple ongoing endeavors to
develop neutralizing antibodies, vaccines, and drugs against
the virus (45, 46), the lack of adequate, licensed counter-
measures underscores the need for a more detailed and
comprehensive understanding of the molecular mechanisms
underlying the pathogenesis of the virus (47). Fundamental
knowledge has significant implications for developing
countermeasures against the virus, including diagnosis,
vaccine design, and drug discovery. Due to the above rea-
sons, and our experiences with routine antibody productions
(48, 49), we have established and characterized mouse
monoclonal antibodies that can be used to dissect the mo-
lecular mechanism of the virus life cycle. These antibodies
would serve as a reliable toolset for basic research investi-
gating the expression profile and subcellular localization of
spike glycoprotein during viral entry, replication, packaging,
and budding. These antibodies could help to identify novel
host factors interacting with spike glycoprotein when used in
IP in combination with mass spectrometry. Therefore,
advancement in basic research would accelerate the discov-
ery of drugs targeting virus transmission.

Our antibodies, S1D7 and S3D8, have been shown to
attenuate the interaction of spike proteins with ACE2 and
neutralize infection of VeroE6/TM2 cells by SARS-CoV-2. It
is worth noting that although their neutralizing activities
(IC50 of 405.2 ng/ml and 139 ng/ml) appeared to be lower
than those of human antibodies reported previously (Fig. 4C
and Table S1), the stringency of experimental conditions
(relatively high virus titer of 1500 TCID50) tend to under-
estimate neutralizing activities of our antibodies compared
with other research groups. Specifically, we used a high
multiplicity of live SARS-CoV-2 virus to infect VeroE6/TM2
cells, which are more prone to virus infection than the
commonly adopted VeroE6 cell line. Therefore, it is difficult
to compare antibody efficacy among them (50). In addition
to in vitro infection, their neutralizing activity in vivo should
be examined in animal models that recapitulate SARS-CoV-
2 disease. They may be valuable for investigating the
mechanism of immune responses to the virus during passive
immunization using mouse models for SARS-CoV-2 infec-
tion (28, 51–55). They could show stable performance due to
lot-to-lot consistency and act as benchmarks for other an-
tibodies and drug developments.

Experimental procedures

Experimental procedures are provided as supporting
information.
J. Biol. Chem. (2021) 296 100346 7
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Data availability

All data are contained within the article.

Supporting information—This article contains supporting
information (56, 57).
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