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the de novo proteome. For that, we established a novel 
method that enables both the visualization and identification 
of de novo synthesized proteins, by incorporating the non-
canonical methionine analogue, azidohomoalanine (AHA), 
into the nascent polypeptides, followed by reacting the azide 
group of AHA by ‘click chemistry’ with an alkyne-labeled 
tag. Our analysis of AHA-tagged peptides demonstrated that 
the decreased abundance of, for example, ribosomal proteins 
in aged animals is not solely due to degradation but also 
reflects a relative decrease in their synthesis. Interestingly, 
although the net rate of protein synthesis is reduced in aged 
animals, our analyses indicate that the synthesis of certain 
proteins such as the vitellogenins increases with age.

Keywords  Click chemistry · Heat shock proteins · 
iTRAQ quantitative mass spectrometry · Ribosomal 
proteins · Aging · C. elegans

Introduction

The cellular protein homeostasis (proteostasis) machin-
ery regulates protein translation, folding, trafficking, and 

Abstract  Protein misfolding and aggregation as a conse-
quence of impaired protein homeostasis (proteostasis) not 
only characterizes numerous age-related diseases but also 
the aging process itself. Functionally related to the aging 
process are, among others, ribosomal proteins, suggesting an 
intimate link between proteostasis and aging. We determined 
by iTRAQ quantitative proteomic analysis in C. elegans how 
the proteome changes with age and in response to heat shock. 
Levels of ribosomal proteins and mitochondrial chaperones 
were decreased in aged animals, supporting the notion that 
proteostasis is altered during aging. Mitochondrial enzymes 
of the tricarboxylic acid cycle and the electron transport 
chain were also reduced, consistent with an age-associated 
energy impairment. Moreover, we observed an age-associated 
decline in the heat shock response. In order to determine how 
protein synthesis is altered in aging and in response to heat 
shock, we complemented our global analysis by determining 
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degradation in a highly coordinated manner, thereby ensur-
ing the maintenance of a functional proteome [1]. However, 
as cells age, there is both an increased misfolding of pro-
teins and an increased accumulation of misfolded proteins, 
the latter in part because their clearance is impaired. Pro-
tein aggregation is particularly relevant in age-associated 
neurodegenerative conditions such as Alzheimer’s disease 
(AD) [2], for which a failure of proteostasis with aging has 
been suggested as an initiating factor [3]. Although it is not 
fully understood what causes the age-associated decline in 
proteostasis, an intimate link between proteostasis in gen-
eral and aging is evident, as supported by studies in the 
nematode Caenorhabditis elegans (reviewed in [4]).

Heat shock proteins (HSPs) are critical contributors to 
proteostasis. The HSPs are chaperones with an essential role 
in the proper folding of newly synthesized proteins and in 
preventing their premature interaction with other proteins. 
Under conditions of stress (with heat shock being a widely 
used experimental paradigm) heat shock proteins are rapidly 
upregulated and bind to partially unfolded proteins, thereby 
preventing misfolding and aggregation. The heat shock 
pathway is also important for aging, as demonstrated by 
the fact that reducing the activity of the transcription factor 
HSF-1, which regulates the heat shock response, accelerates 
tissue aging and shortens life-span in C. elegans [5]. Con-
versely, lifespan extension, i.e., deceleration of aging, can 
be achieved in C. elegans by increasing the expression of a 
small HSP, HSP-16 [6]. The dye Thioflavin T that stains pro-
tein aggregates in AD brain, promotes protein homeostasis in 
vivo and increases nematode longevity, and these beneficial 
effects depend, among others, on HSF-1 [7].

In addition to the heat shock pathway, the protein trans-
lation machinery has been implicated as a regulator of 
aging. In C. elegans, RNAi-mediated depletion of several 
translation initiation factors, ribosomal proteins and regu-
lators of translation extends lifespan significantly [8–10]. 
Age-associated changes in proteostasis are further reflected 
in the observation that protein aggregation increases with 
age in C. elegans, and seems to be an inherent property of a 
vast array of proteins [11, 12].

Mitochondria are also important regulators of aging, as 
indicated, for example, by observations that reduced func-
tion of components of the electron transport chain (ETC) 
extends lifespan in C. elegans and other organisms [13–
16]. These mitochondrial perturbations result in the induc-
tion of the mitochondrial unfolded protein response (UPR), 
characterized by increased expression of the mitochondrial 
chaperones HSP-6 (mt Hsp70) and HSP-60 (mt chaper-
onin) [17–22]. Similarly, the mitochondrial UPR is induced 
and nematode lifespan is increased by reduced function 
of mitochondrial ribosomal proteins [23]. These findings 
highlight the importance of mitochondrial proteostasis in 
longevity (reviewed in [24]).

Because of the intimate link between aging and the heat 
stress response, we set out to apply quantitative proteomics 
to analyze the aging proteome and the proteomic response 
to heat stress, and to uncover how this response changes 
with age. In addition to this global analysis, we specifi-
cally determined the pool of de novo synthesized proteins. 
To this end, we developed novel protocols for labeling and 
visualizing newly synthesized proteins in C. elegans. These 
protocols are based on two previously established in vitro 
methods, bio-orthogonal non-canonical amino acid tagging 
(BONCAT) for detection by Western blotting [25, 26], and 
fluorescent non-canonical amino acid tagging (FUNCAT) 
for detection by fluorescence microscopy [27]. Both meth-
ods depend on the incorporation of a methionine derivative, 
azidohomoalanine (AHA). The frequency of methionine 
in C. elegans proteins is in the order of only 2.5  % [28], 
which presents a significant advantage because toxicity 
due to the incorporation of AHA is minimized. Likewise, 
a low charging rate further reduces the potential toxicity of 
AHA. Importantly, AHA’s azide group can be selectively 
reacted with either an alkyne-labeled fluorescent dye or 
biotin, thereby enabling visualization of labeled proteins by 
fluorescence microscopy or Western blotting, respectively. 
These azide-alkyne cycloaddition reactions are examples of 
‘click chemistry’, a term coined by Sharpless and colleagues 
[29] to describe high-yielding, modular reactions that gener-
ate heteroatom links (C–X–C) and only inoffensive byprod-
ucts. As an add-on to our global proteome analysis, we iden-
tified AHA-tagged proteins using iTRAQ (Isobaric Tags for 
Relative and Absolute Quantitation) quantitative mass spec-
trometry, a method we have previously used to determine 
global proteomic changes quantitatively [30].

Our investigation reveals significant age-associated 
changes in the nematode proteome and in the capacity of 
nematodes to respond to heat stress. In addition to impaired 
protein clearance in aged animals, reduced rates of protein 
synthesis have previously been shown [31, 32]. Our unbi-
ased global proteomics approach supports this observa-
tion, demonstrating most notably a marked age-dependent 
decrease in the abundance of numerous ribosomal pro-
teins, together with reduced levels of several mitochon-
drial chaperone proteins. We extended our observations by 
additionally examining the AHA-tagged pool of de novo 
synthesized proteins and found specific changes to protein 
synthesis in aged animals.

Experimental procedures

Strain information

The C. elegans wild-type strain N2 variety Bristol and the 
E. coli strains OP50 and HB101 were obtained from the 
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Caenorhabditis Genetics Center (CGC, University of Min-
nesota, Twin Cities, MN, USA). Nematodes at the first 
larval (L1) stage were transferred to nematode growth 
medium agar plates. After incubation for 24 h at 25 °C, they 
were washed off the plates with S-medium [33] and trans-
ferred into 50 ml of liquid culture medium (S-medium sup-
plemented with 300  U/ml of nystatin (Sigma-Aldrich, St. 
Louis, MO, USA) and 50 μg/ml of streptomycin (Sigma), 
using concentrated HB101 bacteria for feeding) and then 
grown at 20 °C. Samples from the culture were monitored 
daily using a dissecting microscope to observe the develop-
mental stage and numbers of worms, until ≈220,000 were 
obtained (at approximately the 8th day of culture). Gravid 
adult worms were collected in 50-ml tubes and centrifuged 
with a low brake setting at 480 × g for 3 min at 15 °C. The 
supernatant was discarded and approximately 1 ml of com-
pact worms was transferred to 15-ml tubes. The nematodes 
were then synchronized using 7.5 % sodium hypochlorite, 
1.6 M NaOH. The worms were vortexed in this bleaching 
solution for 2  min and the tube was then topped up with 
10  ml of milli-Q water. After three washing steps, the 
nematodes were transferred into new flasks and hatched 
overnight (o/n) in liquid culture medium without HB101 to 
arrest at the L1 stage. On the following day, concentrated 
HB101 was added to the culture to reinitiate development. 
To prevent growth of progeny, 25 μM fluorodeoxyuridine 
(FUdR) (Sigma) was added as soon as the population had 
reached the fourth larval (L4) stage. Every second day, the 
nematodes were washed several times by sedimentation 
to remove any progeny, followed by resuspension in fresh 
medium.

Heat shock, AHA labeling, and sampling

At the three stages young adult (YA, L4 +  12  h), Day 5 
(D5, L4 + 6 days) and Day 10 (D10, L4 + 11 days), ani-
mals were washed in FUdR-containing M9 buffer [33], 
then cultures of up to 20,000 animals were set up, contain-
ing 2 mM AHA (4-azido-l-homoalanine; ABCR Karlsruhe, 
Germany) in S-medium together with OP50. For fluores-
cence analysis, 0.5 or 2  mM AHA was used. Heat shock 
(HS) was administered at 34 °C for 2 h with constant agi-
tation, whereas controls were incubated at 20  °C. Both 
groups were recovered at 20  °C for 4  h. For analysis of 
AHA incorporation by fluorescence microscopy and West-
ern blotting, control animals were incubated in S-medium 
with OP50 without AHA. After treatment and recovery, the 
cultures were transferred to 1.5-ml DNA-lo-binding tubes 
(Eppendorf, Sydney, Australia) and nematodes allowed to 
sediment at room temperature (RT) for 10–15  min. The 
supernatant was removed and the nematodes washed with 
S-medium. The nematodes were then incubated at RT 
for 30  min to allow digestion of residual bacteria in the 

gastrointestinal tract. After discarding the supernatant, dis-
tinct procedures were used to prepare samples for either 
fluorescence imaging, Western blotting, or proteomics.

‘Click chemistry’ for fluorescence microscopy

Nematode samples were prepared for fluorescence micros-
copy after AHA labeling using peroxide tube fixation 
as described [34]. Specifically, the worms in the DNA-
lo-binding tubes were washed three times briefly in M9 
buffer by sedimentation. All but 500 μl of the supernatant 
was removed after the final washing step. Then, 500 μl of 
ice-cold 2× MRWB (Modified Ruvkun’s Witches Brew): 
160 mM KCl, 40 mM NaCl, 20 mM EDTA, 10 mM spermi-
dine hydrochloride, 30 mM NaPIPES, 50 % methanol, 4 % 
formaldehyde in milli-Q water was added, followed by a 
brief vortexing step. The worms were frozen in liquid nitro-
gen and then defrosted. Following two additional freeze–
thaw cycles, the samples were fixed o/n at 4 °C. Permeabi-
lization was performed as described [35] with the exception 
that samples were finally washed in PBS with 0.5 % Triton 
X-100 for 15 min. More specifically, samples were spun at 
10,000 rpm for 1 min to remove the fixative, followed by 
three washes in Tris-Triton buffer (0.1  M TRIZMA base 
minimum 99.9 %, pH 7.4, 1 % Triton X-100, 1 mM EDTA 
in milli-Q water) and one wash in 1× borate buffer (2.5 % 
40× borate stock buffer, 0.01  % Triton X-100 in milli-Q 
water, pH adjusted to 9.5 with NaOH; 40× borate stock 
buffer: 1 M H3BO3, 0.5 M NaOH in milli-Q water, titrated 
to pH ≥ 9.5). The worms were then incubated in 1 ml of 
1  % 2-mercaptoethanol in borate buffer for 2  h at 37  °C 
with vigorous shaking in a Thermomixer at a 1,400  rpm 
setting. After spinning at 3,000 rpm for 2 min, the superna-
tant was removed and the worms incubated in 1 ml 10 mM 
DTT (borate buffer) for 15 min at RT with gentle agitation, 
followed by one wash in 1× borate buffer. Then, the worms 
were first incubated in 0.3  % hydrogen peroxide (borate 
buffer) for 15 min at RT with gentle agitation, followed by 
one wash in 1× borate buffer, and then in 1× PBS with 
0.5 % Triton X-100 for 15 min at RT.

A ‘click chemistry’ solution was prepared with final 
concentrations of 200 μM triazole ligand, 5 μM (fluores-
cent) Chromeo™-546-alkyne (BaseClick, Tutzing, Ger-
many), 400  μM TCEP (Sigma), and 200  μM CuSO4 in 
PBS. After each addition, the ‘click chemistry’ reaction 
mix was vortexed vigorously. Negative controls were only 
reacted with 5  μM Chromeo™-546-alkyne in PBS (that 
is, without the triazole ligand, TCEP and CuSO4). Then, 
250  μl of the ‘click chemistry’ solution was aliquoted 
into fresh 1.5-ml Eppendorf tubes to which 10 μl of fixed 
worms were added. Worms were incubated o/n at RT on 
a rotisserie rotator. Then, the samples were washed 4 
times for 30 min in PBDTT (PBS with 1 % DMSO, 0.1 % 
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Tween 20, 0.5 % Triton X-100) containing 0.5 mM EDTA, 
followed by two 1-h washes in PBDTT. Samples were then 
mounted onto slides using Fluoromount G (SouthernBio-
tech, Birmingham, AL, USA). A Zeiss LSM710 confocal 
microscope was used to collect images. De novo synthe-
sized proteins tagged with Chromeo™-546-alkyne were 
excited with 561 nm and light captured between 560 and 
600 nm.

‘Click chemistry’ for Western blotting

After AHA labeling, worms were sedimented for 10–
15 min at RT or for 3 min on ice, and the supernatant dis-
carded. Nematode pellets were washed with chilled PBS-
MC (PBS, 1 mM MgCl2, 0.1 mM CaCl2) then with chilled 
PBS-MC-PI [PBS-MC with complete EDTA-free protease 
inhibitor (Roche, Penzberg, Germany)], with the superna-
tant being removed following centrifugation at 2,000 × g 
for 5  min at 4  °C after each wash. The nematode pellets 
were then frozen at −80  °C. The pellets were defrosted 
on ice and 200 μl lysis buffer (0.5 % (w/v) SDS, 1 % Tri-
ton X-100 with complete EDTA-free protease inhibitor 
(Roche) in PBS) was added. The samples were sonicated 
10× with 1 s pulses for eight cycles with a 20–40 % ampli-
tude. Complete lysis of the worms was confirmed under 
the microscope. Then, 1  μl benzonase (>500  U, Sigma) 
was added and samples boiled for 10 min at 96 °C. After 
chilling on ice, 800 μl PBS was added, adjusting the solu-
tion to 0.1  % (w/v) SDS and 0.2  % (w/v) Triton X-100. 
Samples were centrifuged at 13,000  ×  g for 10  min at 
4  °C to remove debris. A total of 500 μl of the superna-
tant was transferred to Amicon Ultra 0.5-ml centrifugal 
tubes (Merck Millipore, Kilsyth, Australia) for protein 
concentration. More specifically, the samples were centri-
fuged at 14,000 × g for 30 min at RT. Then, the filter unit 
was placed upside down in a new Amicon microcentrifuge 
tube. Proteins were recovered by spinning at 1,000 × g for 
2 min at RT. This centrifugation step was repeated twice, 
using the same filter unit for the remaining 500 μl of the 
supernatant. Then, the total concentrated protein sample 
was transferred into new 1.5-ml tubes. Only then, a 10-mg/
ml copper bromide suspension in molecular biology grade 
water was prepared by vigorously vortexing for 20  s. For 
‘click chemistry’, the following reagents were added to 
the concentrated sample by vortexing in this order: 1  μl 
200 mM triazole ligand (Sigma); 2 μl 25 mM biotin-alkyne 
tag (biotin–PEG3–propargylamide); 10 μl 10  mg/ml cop-
per (I) bromide suspension (Sigma) in molecular-grade 
water (Sigma). The samples were vortexed thoroughly for 
15–20 s after each reagent was added. After incubation on 
a rotisserie rotator o/n at 4 °C samples subjected to ‘click 
chemistry’ appeared light-green whereas non-reacted con-
trols remained colorless. The supernatant was collected 

after centrifuging at 2,000 ×  g for 5  min at 4  °C. 30 μg 
protein was separated on a 10 % Tris–glycine gel, followed 
by transfer to a nitrocellulose membrane. To detect de novo 
synthesized proteins tagged with biotin, mouse anti-biotin-
AP (Sigma) was used o/n at 4 °C, followed by incubation 
with goat anti-mouse-HRP (Santa Cruz, Texas, USA) anti-
body and reaction with HRP-substrate. Rabbit anti-actin 
(Sigma) was used as loading control.

iTRAQ quantitative mass spectroscopy and data analysis

For full experimental details of proteomics analysis, see 
Supplementary methods. Briefly, nematode lysates were 
extracted and labeled with four iTRAQ 4-plex peptide labe-
ling reagents (using isobaric tags 114, 115, 116, and 117). 
Four experimental runs were conducted, with aliquots of 
three pooled heat shocked young adult (YA) samples used 
in all runs as an internal control. In detail, in the first run, 
samples consisted of heat shocked and non-heat shocked 
YA and D5 adults. In the second experiment, samples con-
sisted of two heat shocked YA samples (one being the inter-
nal control) as well as heat shocked and non-heat shocked 
D10 adults. The third experiment ran the control sample 
together with non-heat shocked YAs and heat shocked and 
non-heat shocked D5 adults. The fourth experiment con-
sisted of the control sample as well as two samples of heat 
shocked D10 adults and one sample of non-heat shocked 
D10 adults. The samples were pooled and fractionated 
prior to analysis via nanoLC-ESI–MS/MS. Data were ana-
lyzed using ProteinPilot V4.2 (AB Sciex).

Results

Proteomic analysis of aging and the heat shock response 
in C. elegans

We set out to examine the relationship between proteosta-
sis and aging in C. elegans using quantitative proteomics. 
In addition to profiling the aging proteome by investigat-
ing three age groups, we examined the heat shock response 
during aging, since the heat shock pathway is not only 
important for aging, but because heat shock is also a well-
established experimental paradigm in organisms ranging in 
complexity from yeast to mammals [36, 37]. Alongside a 
global proteomic analysis, we were particularly interested 
in the pool of newly synthesized proteins, and how this de 
novo proteome changes with age and under conditions of 
stress.

To profile the aging proteome and enable a comparison 
between early adulthood and aged animals, three represent-
ative time points were selected: day 1 of adulthood (young 
adult/YA), day 5 (D5) and day 10 (D10). For each time 
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point, two populations of nematodes were examined; one 
grown at 20 °C and another subjected to heat shock for 2 h 
at 34 °C followed by 4-h recovery at 20 °C (Fig. 1).

De novo synthesized proteins can be visualized 
by bio‑orthogonal labeling in vivo

To enable the identification of de novo synthesized pro-
teins, we established protocols for bio-orthogonal tagging 
of proteins in C. elegans using the methionine homologue 
AHA. Metabolic labeling of proteins with AHA has previ-
ously been reported in cultured mammalian cells [25] and 
in larval zebrafish [38], but not C. elegans. We therefore first 
delineated suitable conditions for AHA incorporation into 
proteins in adult nematodes, growing them for 6 h at a range 

of concentrations (0–2  mM). After fixation and permeabi-
lization, fluorescent Chromeo-546-alkyne was applied and 
reacted with AHA using ‘click chemistry’, and subsequently 
detected by confocal microscopy. Compared with untreated 
controls, where the alkyne tag was added, AHA was not 
added, and no ‘click chemistry’ was performed, increased 
fluorescence was detected in all tissues of nematodes grown 
in the presence of AHA, indicating successful incorporation 
(Fig. 2a). Thus, such an approach enables the visualization 
of de novo protein synthesis at a cellular level in response to 
any insult or stimulus. Toxicity as determined by impaired 
thrashing was only found at higher AHA concentrations 
and for prolonged incubation times (Online resource 1a 
and data not shown). To specifically assess whether AHA 
exposure might initiate the mitochondrial UPR, a hsp-6::gfp 
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reporter [21] was monitored. No change in expression of 
this reporter following a 6-h incubation in 2 mM AHA was 
observed (Online resource 1b).

We next tested whether AHA can be incorporated at 
the relevant life stages and under conditions of heat stress. 
We cultured YA, D5 and D10 nematodes with and without 
0.5 mM AHA and subjected them either to control condi-
tions or heat shock. Following reaction with Chromeo-
546-alkyne, increased fluorescence was detected in all sam-
ples grown with AHA (Fig. 2b, c).

As a complementary approach to visualize AHA incor-
poration, Western blotting was used. We established 

suitable conditions by obtaining protein lysates from 
nematodes that had been grown for 6 h in 0–8 mM AHA. 
‘Click chemistry’ was used to react the incorporated AHA 
with biotin that was, in contrast with the BONCAT pro-
tocol [25], directly coupled to an alkyne-reactive group. 
The samples were analyzed by Western blotting, using an 
anti-biotin antibody to visualize AHA-tagged proteins. 
This established that AHA incorporation is detectable at all 
tested concentrations (data not shown). We next examined 
incorporation into YA, D5 and D10 nematodes under both 
control and heat shock conditions. For all conditions tested, 
AHA was incorporated into proteins over a wide range of 
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this experiment, labeling was conducted with 0.5 mM AHA and ‘click 
chemistry’ was performed only when AHA was added. c Representa-
tive fluorescence images at 546 nm of 0.5 mM AHA-labeled (+‘click 
chemistry’) non-heat shocked and heat shocked nematodes shown 
at YA, D5, or D10 of adulthood. d Immunoblot detection of biotin-
labeled AHA-tagged proteins in YA animals in non-heat shocked and 
heat shocked samples. Actin was used as loading control. The right-
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(other than a non-specific signal at 70 kDa) when no AHA is added 
before ‘click chemistry’, or when AHA is added but ‘click chemistry’ 
is not performed
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molecular weights (Fig. 2d). A 70-kDa band was observed 
in all samples even in the absence of AHA labeling and 
‘click chemistry’, indicating cross-reactivity with an unla-
beled nematode protein. While incubation time- and AHA 
concentration-dependent changes in relative AHA incor-
poration can be visualized using Western blotting (data not 
shown), this method is not sufficiently sensitive to detect 
age-dependent or heat shock-dependent changes in AHA 
incorporation (Fig.  2d and data not shown). We therefore 
proceeded to identifying de novo synthesized proteins by 
direct detection of the incorporated AHA using proteomics.

iTRAQ analysis identifies 3,387 unique proteins

To prepare samples for quantitative proteomic analysis, nem-
atodes were cultured in bulk until the relevant time points, 
and then split into ‘control’ and ‘heat shock’ samples. Two 
mM of AHA was added before heat shock commenced. Fol-
lowing a 2-h heat shock and 4-h recovery (6 h at 20 °C for the 
control), nematode samples were harvested. Fifteen samples 
including a minimum of two biological replicates for each of 
the six tested conditions were analyzed in four iTRAQ 4-plex 
experiments. To enable comparisons, one sample (‘young 
adult, heat shocked’, YAHS) served as an internal reference 
and was included in all four mixtures. iTRAQ-labeled sam-
ples were fractionated and subjected to nanoLC-ESI–MS/MS 
mass spectrometry. The data were analyzed using Protein-
Pilot V4.2 software with reference to the UniProt database 
collection from both C. elegans and E. coli.

To determine the global proteome, AHA modification 
was not included in the database search parameters. A total 
of 3,387 unique proteins from 20,182 unique peptides were 
identified, with an estimated protein identification false dis-
covery rate of 0.15 %. Less than 0.2 % of all identified pro-
teins were derived from the nematodes’ bacterial food source.

For the nematode proteins, the relative abundance for 
each condition was determined as the geometric mean of the 
iTRAQ ratios from replicate samples and the p value of this 
combined ratio was calculated according to Stouffer’s z test 
method. Proteins for which the combined ratio was <0.83 or 
>1.2, with p values <0.05, were considered to be either signif-
icantly less or more abundant. The changes observed were in 
the order of up to 25-fold. The thresholds were set with refer-
ence to the literature suggesting that iTRAQ in fact underesti-
mates fold changes such that, for example, an iTRAQ ratio of 
1.2 may reflect an actual twofold difference [39].

The global proteome of aged animals is characterized by a 
relative abundance of vitellogenins and diminished levels 
of ribosomal, mitochondrial, and myosin‑related proteins

We first considered the aging proteome. When comparing 
D5 aged adults with YA, 221 proteins were increased in 

abundance (Online Resource 2a). When we used Wormbase 
to classify the Gene Ontologies of these 221 increased pro-
teins at the level of subcellular structures and macromolecu-
lar complexes (i.e., cellular components) we found nuclear 
and extracellular as the two most represented categories, 
with 41 and 26 proteins, respectively (Fig.  3a; Table  1). 
Among the identified nuclear proteins were replication 
licensing factors (MCM-2–7), DNA topoisomerase TOP-2, 
nuclear lamin LMN-1 and several histone proteins includ-
ing HIS-1, -4, -35, and -71, and the histone H1 variant, 
HIS-24. The latter is involved in the regulation of immune-
related genes [40]. Increased were also several extracellu-
lar proteins that belong to the Transthyretin-Related family 
(TTR-2, -15, -16, -45, and -51). A major increased group of 
proteins within the extracellular category are the yolk pro-
teins, vitellogenins, which are required for oocyte develop-
ment. Importantly, levels of all six vitellogenins (VIT-1–6) 
were elevated in the aged animals.

We next considered the group of proteins that is 
decreased in abundance with age. A total of 327 proteins 
were reduced at D5 compared with YA (Online Resource 
2b). Among these decreased proteins, the two most repre-
sented cellular components are mitochondrial and ribo-
somal, with 79 and 56 proteins, respectively (Fig.  3b; 
Table 2). The decreased mitochondrial proteins include 20 
components of the ETC and 14 enzymes of the tricarbox-
ylic acid (TCA) cycle. Also decreased were several factors 
that play roles in mitochondrial proteostasis. These include 
Hsp70 (HSP-6), the co-chaperone grpE (C34C12.8), Tim44 
(T09B4.9), Hsp60 (HSP-60), Hsp90 (R151.7a), clpX 
(D2030.2), two mitochondrial translation factors (GFM-1 
and TSFM-1), a mitochondrial ribosomal protein (MRPL-
12) and structural proteins (ATAD-3 and the prohibitins 
PHB-1 and PHB-2) (reviewed in [24]).

The decreased ribosomal proteins at D5 compared with 
YA include 22 components of the small (40S) ribosomal 
subunit and 28 components of the large (60S) ribosomal 
subunit. This striking decrease in abundance of numerous 
ribosomal subunits in aged animals is consistent with the 
observation of a decrease in protein synthesis during aging 
[31]. Other decreased proteins that contribute to the regu-
lation of protein synthesis include RACK-1, a scaffolding 
component of the 40S ribosomal subunit (reviewed in [41]) 
and C08H9.2, the nematode ortholog of vigilin, which 
associates with 80S ribosomes and is proposed to regulate 
the translocation of tRNAs from the nucleus to the cyto-
plasm for association with ribosomes [42]. Among the 
decreased proteins were also a translation initiation factor 
(eIF5A homologue, IFF-2), a translation elongation fac-
tor (EF-2 homologue, EEF-2) and a polyA binding protein 
(PAB-1).

Outside these two major categories of decreased pro-
teins, 12 myosin-related proteins were also decreased in 
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D5 aged animals, including myosin heavy chain isoforms 
(MYO-1, -2, -3, UNC-54), myosin light chain isoforms 
(MLC-1, MLC-3), troponin T (MUP-2), tropomyosin 
(LEV-11), and paramyosin (UNC-15).

Since 42  % (94/221) of proteins that were increased 
and 32 % (104/327) of proteins that were decreased in D5 

aged animals did not have a Gene Ontology (cellular com-
ponent) term listed in WormBase (identified as “Unclassi-
fied” in Fig. 3a, b), we extended our analysis by identifying 
the human orthologs of these proteins and classifying the 
proteins based on the cellular component Gene Ontologies 
of these orthologs (Online Resource 2a and 2b). Similar to 
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Table 1   Proteins increased in abundance in day 5 animals compared with young adults

UniProt accession Gene Name Fold change

Extracellular

 Vitellogenins

  P55155 vit-1 Vitellogenin-1 3.5

  P05690 vit-2 Vitellogenin-2 11.1

  Q9N4J2 vit-3 Vitellogenin-3 5.6

  P18947 vit-4 Vitellogenin-4 4.7

  P06125 vit-5 Vitellogenin-5 7.5

  P18948 vit-6 Vitellogenin-6 10.4

 Transthyretins

  P34500 ttr-2 Transthyretin-like protein 2 3.7

  O17345 ttr-6 Transthyretin-like protein 6 2.9

  Q22288 ttr-15 Transthyretin-like protein 15 3.2

  Q2EEM8 ttr-45 Transthyretin-like protein 45 3.5

  O62289 ttr-51 Transthyretin-like protein 51 5.0

 Chitin metabolic processes

  Q11174 cht-1 Probable endochitinase 1 5.7

  Q18143 cht-3 Probable endochitinase 3 3.7

  P41996 cpg-2 Chondroitin proteoglycan-2 3.0

  Q18529 C39D10.7 Orthologous to human mucin-2 3.7

 Others

  Q21265 cri-2 Conserved regulator of innate immunity,  
orthologous to human metalloproteinase inhibitor

2.5

  Q20224 lbp-2 Fatty acid-binding protein homolog 2 2.1

  G5EFP4 sym-1 Synthetic lethal with mec 2.3

  Q18594 C44B7.5 Uncharacterized protein C44B7.5 4.8

  O62053 C08F11.11 Uncharacterized protein UPF0375 3.6

Nuclear

 DNA replication and cell cycle

  P34556 cdk-1 Cyclin-dependent kinase 1 2.6

  Q9XXI9 mcm-2 Mini-chromosome maintenance protein 2 2.9

  Q9XVR7 mcm-3 Mini-chromosome maintenance protein 3 2.6

  Q21902 mcm-5 Mini-chromosome maintenance protein 5 2.5

  P34647 mcm-6 Mini-chromosome maintenance protein 6 2.7

  O16297 mcm-7 Mini-chromosome maintenance protein 7 2.9

  O02115 pcn-1 Proliferating cell nuclear antigen 3.5

  P53016 rfc-4 Replication factor C subunit 4 3.7

  Q19537 rpa-1 Replication protein A homolog 2.0

  Q95Y97 rpa-2 Replication protein A homolog 2.0

  Q19555 scc-3 Cohesin complex subunit 1.9

  Q23670 top-2 DNA topoisomerase 2.0

 Histones

  P62784 his-1 Histone H4 1.8

  Q27894 his-4 Histone H2B2 3.1

  P10771 his-24 Histone H1.1 1.8

  Q10453 his-71 Histone H3.3 type 1 2.7

 Transport

  P91276 ima-2 Importin subunit alpha-2 1.8

  O17915 ran-1 GTP-binding nuclear protein 1.8

 Others

  B6VQ74 F08B12.4 Uncharacterized protein F08B12.4, isoform a 2.1

  G5EF53 swsn-4 SWI/SNF nucleosome remodeling complex component 1.9

Proteins showing the greatest fold changes from among the cellular component categories “extracellular” and “nuclear” are listed
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Table 2   Proteins decreased in abundance in day 5 animals compared with young adults

UniProt accession Gene Name Fold change

Mitochondrial

 Electron transport chain

  Q19126 asb-2 ATP synthase B homolog 0.4

  Q18803 asg-2 ATP synthase subunit G2 0.5

  P46561 atp-2 ATP synthase subunit beta 0.6

  O16517 atp-4 ATP synthase subunit 0.5

  G5EDD1 ucr-2.1 Ubiquinol-cytochrome c oxidoreductase complex 0.4

  Q22370 ucr-2.2 Ubiquinol-cytochrome c oxidoreductase complex 0.6

 Chaperones

  P11141 hsp-6 Heat shock 70-kDa protein F, Hsp70 family 0.6

  P50140 hsp-60 Chaperonin homolog, Hsp60 family 0.6

  P90788 D2030.2 Orthologous to human ATP-dependent Clp protease ATP-binding  
subunit clpX-like, Hsp100 family

0.5

 Fatty acid metabolic processes

  H2KZG6 acdh-1 Acyl CoA dehydrogenase 0.2

  O18693 acs-2 Fatty acid CoA synthetase family 0.6

  Q9BI69 alh-13 Aldehyde dehydrogenase 0.5

  P34559 ech-6 Enoyl-CoA hydratase 0.4

 Tricarboxylic acid (TCA) cycle-related

  P34575 cts-1 Citrate synthase 0.6

  O44451 pdhb-1 Pyruvate dehydrogenase beta 0.6

  Q09545 sdhb-1 Succinate dehydrogenase complex subunit B 0.5

 Others

  P54688 bcat-1 Branched-chain-amino-acid aminotransferase 0.6

  Q18885 icd-1 Inhibitor of cell death; orthologous to human beta-subunit of the  
nascent polypeptide-associated complex

0.5

  Q21752 vdac-1 Voltage-dependent anion-selective channel homolog 0.6

  O45011 W10C8.5 Orthologous to human isoform 1 of creatine  
kinase U-type, mitochondrial

0.5

Ribosomal

 Large subunit

  O02056 rpl-4 60S ribosomal protein L4 0.6

  Q9XVE9 rpl-14 60S ribosomal protein L14 0.6

  P34334 rpl-21 60S ribosomal protein L21 0.5

  P52819 rpl-22 60S ribosomal protein L22 0.6

  P48162 rpl-25.1 60S ribosomal protein L23a 1 0.4

  Q9BKU5 Y37E3.8 60S ribosomal protein L27a 0.6

  P49181 rpl-36 60S ribosomal protein L36 0.5

  P48166 rpl-41 60S ribosomal protein L44 0.6

 Small subunit

  P48156 rps-8 40S ribosomal protein S8 0.6

  P51404 rps-13 40S ribosomal protein S13 0.5

  O01692 rps-17 40S ribosomal protein S17 0.6

  O18240 rps-18 40S ribosomal protein S18 0.5

  O18650 rps-19 40S ribosomal protein S19 0.6

  Q8WQA8 rps-20 40S ribosomal protein S20 0.6

  Q1XFY9 rps-24 40S ribosomal protein S24 0.6

  P52821 rps-25 40S ribosomal protein S25 0.5

  P37165 ubl-1 Ubiquitin-like protein 1, 40S ribosomal protein S27a 0.6
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the primary analysis described above, the most represented 
categories among the increased proteins were nuclear, 
cytoplasmic, extracellular and membrane, while cytoplas-
mic and mitochondrial were most represented among the 
decreased proteins (Online Resource 2c).

How does the proteome change when we analyze even 
older worms? We next compared D10 adults with YA. 
Here, relative protein abundance was calculated indirectly 
since these conditions were not assayed in the same iTRAQ 
4-plex experiment. That is, the D10 versus YAHS and YA 
versus YAHS ratios were calculated directly and then the 
former were divided by the latter to yield the D10 versus 
YA ratio. A p value was calculated using a Student’s t test 
and p < 0.05 was considered significant. Using this method, 
33 proteins were identified as increased in abundance at 
D10 compared with YA, while 36 proteins were decreased 
in abundance (Online Resource 3a–3c). Although the num-
ber of proteins showing changes in abundance at D10 is 
much smaller than those identified at D5, this most likely 
reflects the more stringent statistics applied to these indi-
rectly calculated data, rather than suggesting that the 
proteome of D10 adults is more similar to YA than that 
of D5 adults is. Importantly, Wormbase analysis of the 
Gene Ontologies of the proteins that were increased and 
decreased at D10 compared with YA revealed enrichment 
of the same cellular components as had been observed in 
the D5 proteome. That is, nuclear and extracellular proteins 
are most prominent among those increased at D10, while 
mitochondrial and ribosomal proteins are most prominent 
among those decreased at D10 (Online Resource 4a and 
4b).

The majority of proteins identified at D10 were also 
identified at D5 (28/33 and 29/36) (Fig.  3c, d). Interest-
ingly, among those proteins in the overlapping dataset, 
25 of the increased proteins showed higher abundance at 
D10 compared with D5, while 20 of the decreased proteins 
showed lower abundance at D10 compared with D5, sup-
porting the notion that these proteins are regulated with age 
(Fig. 3e, f).

Given that the indirect comparison of protein abun-
dance described above found relatively few proteins to 
be changed at D10 compared with YA, we complemented 
these analyses of the aging proteome by also comparing the 

proteome of YA and D10 animals following heat shock. To 
identify only those changes that characterize the aging pro-
teome, rather than the response to heat shock, we excluded 
from this analysis any protein that changed in abundance 
in response to heat stress at either of the examined life 
stages (67 proteins in total). This revealed 381 proteins 
as increased in abundance at D10 compared with YA and 
474 proteins as decreased in abundance (Online Resource 
3d–3f). Wormbase analysis of the Gene Ontologies of the 
increased proteins identified nuclear and extracellular as 
the two most represented cellular component categories, 
with 48 and 34 proteins, respectively. Among the decreased 
proteins, mitochondrial and ribosomal were the two most 
represented categories, with 92 and 73 proteins, respec-
tively (Online Resource 4c and 4d).

Furthermore, these proteomic changes identified in D10 
animals overlap substantially with those described above in 
D5 animals. That is, 160 proteins are increased at both D5 
and D10 compared with YA and 247 proteins are decreased 
at both D5 and D10 compared with YA. Within the set of 
proteins increased at both D5 and D10 are the replication 
licensing factors, topoisomerase, nuclear lamin, histone 
proteins, Transthyretin-Related family proteins and vitel-
logenins that were described above. Similarly, among the 
proteins decreased at both D5 and D10 are the myosin-
related proteins and proteins involved in mitochondrial 
proteostasis and ribosomal protein synthesis. In these latter 
categories, additional proteins were identified as decreased 
in abundance at D10, including three mitochondrial ribo-
somal proteins (MRPS-9, MRPS-22, and MRPS-26), trans-
lation initiation factors (EIF-1.A, EIF-3.H, IFFB-1, IFG-1, 
INF-1) and a translation elongation factor (EEF-1G).

Heat shock proteins and intermediate filaments 
increase in abundance following heat shock while P 
granule‑associated proteins decrease

We next determined proteomic changes in response to 
heat shock. At YA stage, 40 proteins were increased and 
36 decreased in heat shocked nematodes compared with 
controls (Online Resource 5a and 5b). Analysis of Gene 
Ontologies revealed an association of the increased pro-
teins with the following cellular components: cytoplasmic, 

Proteins showing the greatest fold changes from among the cellular component categories “mitochondrial” and “ribosomal” are listed

Table 2   continued

UniProt accession Gene Name Fold change

 Others

  O01504 C37A2.7 60S acidic ribosomal protein P2 0.5

  O18180 mrpl-12 Mitochondrial Ribosomal Protein, Large 0.6

  Q93572 rpa-0 60S acidic ribosomal protein P0 0.6
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endoplasmic reticulum, Golgi apparatus, intermediate fila-
ment and extracellular (Fig. 4a). The intermediate filament 
proteins, consisting of IFA-1, MUA-6, and IFC-2, are of 
particular interest since such proteins are critical in the 
formation of aggresomes that form in response to protein 
misfolding [43]. Decreased upon heat shock were proteins 
associated with the cellular components: P granule, extra-
cellular and mitochondrial (Fig.  4b). The P granule-asso-
ciated proteins were PGL-1, CGH-1, CAR-1, and GLH-1, 

and the extracellular proteins included vitellogenins VIT-2 
and VIT-6.

While the analysis of cellular component Gene Ontolo-
gies had successfully classified the majority of proteins 
identified as changed in abundance with age, 44 of the 76 
proteins changed upon heat shock were not classified using 
this ontology. Among them were HSPs belonging to sev-
eral families: hsp70 (HSP-4, HSP-70, F44E5.4), hsp110 
(C30C11.4 [44]), hsp90 (DAF-21) and the small HSPs 
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(HSP-16.1, HSP-16.41), which increased in abundance up 
to 25-fold upon heat shock. Interestingly, several stress-
related proteins decreased, including catalases CTL-1 and 
CTL-2 and small heat shock protein SIP-1.

The heat shock response diminishes with age

We next compared the proteomic response to heat shock 
across the three age groups. In this case, since all compari-
sons were made directly between the proteomes of the heat 
shocked animals and non-heat shocked counterparts of the 
same age, and the same statistical thresholds were applied, 
the scale of the response at each time point can be directly 
compared. Interestingly, when compared with young 
adults, fewer proteins changed in abundance in response 
to heat shock in the aged animals (Fig. 4c, d). Specifically, 
while at YA 40 proteins were increased and 36 decreased, 
at D5 only 11 proteins were increased and 8 decreased 
(Online Resource 5c and 5d). Similar to the profile at D5, 
at D10, only 16 proteins increased and 6 decreased follow-
ing heat shock (Online Resource 5e and 5f). Comparing 
the three time points, we found no proteins that uniformly 
decreased in abundance after heat shock in both young 
and old animals. We did, however, identify four HSPs that 
were increased in both young and old animals: two hsp70s 
(HSP-70 and F44E5.4) and two small HSPs (HSP-16.1 and 
HSP-16.41) (Fig. 4c). When their abundance at each time-
point following heat shock is expressed relative to the age-
matched control, there is a striking reduction in the scale 
of the increase of these proteins in response to heat shock 

in D10 animals and this reduction is most marked for the 
small HSPs (Fig. 4e). We additionally expressed the abun-
dance of these proteins at each time-point relative to the YA 
control sample and found that all 4 proteins were increased 
in D5 and D10 control samples (Fig.  4f). However, the 
diminished scale of induction in response to heat shock 
means that the abundance of small HSPs following heat 
shock in D10 animals is reduced to <50  % of the levels 
attained in young adulthood. Together, these observations 
suggest that the heat shock response diminishes with age.

AHA‑containing peptides are identified and relative 
abundance quantified by iTRAQ

We next identified the subset of MS/MS-identified pep-
tides that contain AHA by including ‘AHA modification’ 
in the ProteinPilot search parameters. This identified 323 
AHA-modified peptides corresponding to 205 proteins. 
It is not surprising that this number is small relative to 
the number of peptides identified in our global proteomic 
analysis, since peptides synthesized de novo during the 6-h 
AHA incubation would represent only a small portion of 
the total protein pool. Furthermore, the low charging rate 
and relatively low abundance of methionine mean that 
not all de novo peptides will be AHA-tagged. The relative 
abundance of the AHA-tagged peptides was computed as 
the geometric mean of the iTRAQ ratios from all measure-
ments of a given peptide across the replicate experiments, 
and <0.83 or >1.2 were fixed as thresholds for decreased 
and increased abundance, respectively.
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1 3

Analysis of AHA‑tagged peptides reveals increased 
vitellogenin synthesis and decreased synthesis of distinct 
ribosomal, mitochondrial and myosin‑related proteins 
in aged animals

We first considered those AHA-tagged peptides that were 
detected as increased in abundance in D5 aged animals. 
When we classified these 33 peptides using the cellular 
component ontology, the most represented components 
were extracellular and nuclear, mirroring the components 
that were enriched in our global analysis of proteins with 
increased abundance at D5 (Fig.  5a). We next examined 
all AHA-tagged peptides that were detected at D5 and/or 
D10 (Table 3 and Online Resource 6a) and compared these 
with the proteins identified in our global analysis. 42 AHA-
containing peptides were increased at D5 and/or D10 com-
pared with YA and of these, 31 peptides correspond to pro-
teins that were also increased in abundance in aged animals 
in our global analysis. These include 23 peptides derived 
from vitellogenins as well as peptides corresponding to 
other extracellular proteins such as the transthyretin-like 
protein TTR-15 and to nuclear proteins such as the histone 
H4 HIS-1. For these proteins, our analysis of the AHA-
tagged protein pool indicates that the observed increased 
abundance with age is not solely due to accumulation, but 
rather reflects a relative increase in synthesis.

We next considered those AHA-tagged peptides that 
were detected as decreased in abundance in D5 aged ani-
mals. When we classified these 38 peptides using the cellular 
component ontology, the most represented components were 
mitochondrial, myosin-related, ribosomal and cytoplasmic, 
mirroring the components that were enriched in our global 
analysis of proteins showing decreased abundance at D5 
(Fig.  5b). We then examined all AHA-tagged peptides that 
were detected as decreased at D5 and/or D10 (Table 4 and 
Online Resource 6b) and compared these with the proteins 
identified in our global analysis. Fifty-three AHA-containing 
peptides were decreased at D5 and/or D10 compared with 
YA and of these, 42 peptides are derived from proteins that 
were also decreased in abundance in aged animals in our 
global analysis. These include 6 from ribosomal (including 
RPS-17, RPL-23, UBL-1), 15 from mitochondrial (including 
SDHA-1, MDH-1, FUM-1, and ATP-2) and 8 from myosin-
related proteins (MYO-1, MYO-2, MLC-1/2/3, UNC-15, 
UNC-54). For these proteins, their relative decrease in abun-
dance with age is not solely due to degradation but addition-
ally reflects a relative decrease in their synthesis.

Analysis of AHA‑tagged peptides affirms a decrease in the 
heat shock response with age

To complement our global analysis of the heat shock 
response, we secondly examined changes to AHA-labeled M
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peptides in response to heat shock and identified 12 
increased and 17 decreased peptides in YA animals 
(Fig. 6a, b and Online Resource 7a and 7b). Increased were 
AHA-labeled peptides corresponding to the categories 
mitochondrial (ZK836.2 and GAS-1) and myosin-related 
(UNC-54 and UNC-15), and HSPs [HSP-3 (hsp70) and 
C30C11.4 (hsp110)]. The nascent polypeptide-associated 
complex (NAC) alpha subunit, ICD-2 was also increased 
in response to heat shock. This is particularly interest-
ing because this complex is a key regulator of proteostasis 
[31]. Not detected were other HSPs that were dramatically 
increased in response to heat shock through our global 
proteome analysis, possibly because of the timing of the 
addition of AHA and a lag before incorporation. Among 
the AHA-labeled proteins decreased after heat shock were 
vitellogenins (VIT-2, -5, -6), P granule components (PGL-1 
and GLH-1) and cytoskeletal proteins (ACT-1/2/4, TBA-2 
and TBB-2).

Examining the AHA-labeled peptides that changed 
in abundance in D5 and D10 heat shocked nematodes 
revealed fewer labeled peptides in aged animals, 25 at D5 
and 14 at D10, compared with 29 at YA (Online Resource 
7c-f). Interestingly, no AHA-labeled peptides correspond-
ing to heat shock proteins were detected as increased in 
abundance relative to control at either D5 or D10. As indi-
cated by our global proteomic analysis, these analyses of 
de novo synthesized proteins suggest that the response to 
heat shock is diminished in aged animals.

Discussion

To obtain a snapshot of the aging process and the stress 
response at the level of the proteome, we subjected young 
and aged C. elegans to quantitative proteomics and deter-
mined both changes in total protein abundance as well as 
specific changes in the pool of de novo synthesized proteins 
using ‘click chemistry’. These profiles collectively suggest 
specific changes in the protein control system as the worms 
age.

The proteome of aged animals contains abundant yolk 
proteins and suggests reduced mitochondrial function 
and sarcopenia

In addition to the ribosomal proteins that we discuss sep-
arately below, we observed major alterations in the abun-
dance and synthesis of three key groups of proteins that 
represent an altered proteomic profile with aging: vitel-
logenins, mitochondrial and myosin-related proteins. The 
vitellogenins are yolk proteins that, synthesized in the nem-
atode intestine, are secreted into the body cavity and taken 
up by the gonad to provision developing oocytes [45]. We 

observed a significant increase in both the abundance and 
de novo synthesis of vitellogenins in aged animals, sup-
porting the finding that yolk accumulation in the body cav-
ity is a marker of aging [46]. Yolk proteins fall into three 
groups: YP170, formed from proteins encoded by vit-1, -2, 
-3, -4, and -5; YP115 and YP88, both derived by cleavage 
from a vit-6-encoded precursor [47]. VIT-6 was previously 
identified as a major carbonylated protein in aged worms, 
suggesting decreased turnover due to oxidative damage 
[48]. Evidence for a role of vitellogenins in the aging pro-
cess comes from several observations: down-regulating vit-
2 and vit-5 increases lifespan [49], long-lived daf-2 mutants 
have decreased yolk proteins [50], and knockdown of sev-
eral factors that increase lifespan also decreases vitellogen-
ins [51]. Why accumulation of yolk facilitates aging is not 
clear, although lipotoxicity due to ectopic deposition may 
have a role [52].

We found aged animals to be additionally characterized 
by reductions in mitochondrial proteins, both globally and 
considering the de novo synthesized pool. These mitochon-
drial proteins included numerous components of the ETC 
and enzymes of the TCA cycle. Changes to mitochondrial 
structure and function during aging have previously been 
reported in C. elegans, including enlargement of mitochon-
dria and decreased activity of the ETC in aged animals 
[53]. Altered mitochondrial metabolism also characterizes 
age-associated neurodegeneration [30, 54]. Therefore, a 
reduction in mitochondrial activity, such as in supplying 
cellular energy, may characterize both pathological and 
physiological aging.

Aged animals were also characterized by reduced abun-
dance and reduced synthesis of several myosin-related pro-
teins. An age-associated decline in muscle integrity, sarco-
penia, has been observed in C. elegans [46] and a reduction 
in the levels of myosin-related proteins is consistent with 
this. Interestingly, a recent proteomic analysis revealed 
an increase in the abundance of several muscle proteins 
in long-lived worms compared with chronologically aged 
matched wild-type counterparts [55]. In addition to com-
ponents of the contractile sarcomere that we have identi-
fied as reduced in aged animals, increases in other proteins 
relevant to muscle activity were noted in the long-lived 
worms, including mitochondrial creatine kinase (W10C8.5) 
and calsequestrin (CSQ-1) [55], both of which were also 
reduced in our analysis of aged animals.

Reduced ribosomal proteins, reduced mitochondrial 
chaperones, and diminished heat stress response in aging 
suggest perturbed proteostasis in old animals

It was observed several decades ago in the free-living 
nematode Turbatrix aceti, by measuring the incorporation 
of radiolabeled leucine, that protein synthesis was slowed 
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in old animals [32]. More recently, analysis of polysomes 
revealed that global rates of protein synthesis decline dur-
ing aging in C. elegans [31]. Consistent with this, we 
observed an age-dependent decrease in ribosomal subunits 
using quantitative proteomics; both the total abundance of 
numerous ribosomal proteins, as well as their representa-
tion in the de novo pool, was found to decrease with age. 
While this suggests decreased synthesis with age, other 
factors that contribute to the observed decreases could be 
increased degradation and/or reduced solubility. Since our 
extraction protocol was not designed to investigate the 
insoluble proteome, those proteins that shift to this pool 
with age would be identified as decreased in our analysis 
of soluble proteins. Indeed of the proteins for which we 
identified reduced levels of AHA-labeled peptides in aged 
animals, one-third show increased insolubility with age 
as published previously [12]. In either case, together with 
aggregation-related toxicity, the removal of these proteins 
from the functional protein pool is likely to contribute to 
the aging process.

The contribution of globally reduced translation to pro-
teostasis in aging is intriguing. Reduced protein synthesis 
may contribute to proteostasis by reducing levels of dam-
aged proteins and hence reducing the chaperone load [31]. 
Another possibility is that the energy savings associated 
with global reduction in translation enable cells to redirect 
resources towards maintenance and repair [9]. Reduction of 
global protein synthesis is likely to be important in aging 
since reduced translation increases lifespan [8–10]. Life
span extension is also achieved by knocking down a sin-
gle translation initiation factor that results in differential 
translation by changing ribosomal loading [56]. A recent 
comparison of the proteome of wild-type animals with 
that of long-lived daf-2 mutants, which carry a mutation 
in the Insulin/Insulin-like Growth Factor (IGF-1) receptor, 

revealed a role for protein translation in Insulin/IGF-1-me-
diated lifespan regulation [57]. Interestingly, this study 
found marked reductions both in the abundance of numer-
ous ribosomal proteins and in polysomal protein translation 
in daf-2 mutants at day 1 of adulthood compared with wild-
type animals of the same age [57]. Similarly, in a separate 
study, global rates of protein synthesis were recently shown 
to be reduced in both daf-2 mutants and in diet-restricted 
worms [55]. Our finding of reduced abundance of ribo-
somal proteins in aged wild-type animals appears then to 
represent a beneficial change that occurs in the aging pro-
teome, contrasting, for example, with increased levels of 
vitellogenins, which represents an apparently detrimental 
change.

Beyond alterations to the translational machinery, our 
proteomic data also indicate changes in mitochondrial pro-
teostasis with age. Decreased abundance and decreased 
synthesis of several mitochondrial chaperones, includ-
ing HSP-6 and HSP-60, was detected in aged animals. 
Decreased abundance of both HSP-6 and HSP-60 in 20 day 
old wild-type animals has previously been reported [58] 
and a role for hsp-6 in longevity regulation is suggested by 
the findings that knockdown of hsp-6 reduces lifespan [58] 
and that numerous treatments that extend lifespan induce 
the expression of hsp-6 [22, 59]. Our analyses reveal that 
additional components of the mitochondrial proteosta-
sis network are also decreased during aging, including 
ATAD-3 and the prohibitins PHB-1 and PHB-2. Mamma-
lian ATAD3 and prohibitins interact with mitochondrial 
nucleoids, structures containing condensed mitochon-
drial DNA, and are, among several functions, required for 
mitochondrial protein synthesis [60]. The prohibitins have 
previously been identified as longevity determinants in  
C. elegans; while knockdown of PHB-1 or PHB-2 reduces 
the lifespan of wild-type C. elegans, the lifespan of a range 
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of C. elegans mutants, including the long-lived daf-2 
mutant, is increased by prohibitin depletion [61]. Knock-
down of ATAD-3 increases the lifespan of wild-type C. ele-
gans [62]. These observations highlight the importance of 
the mitochondrial proteostasis network during aging.

Our finding of reduced ribosomal proteins and mitochon-
drial chaperones in aged animals suggests that proteostasis 
is altered during aging, and our observation of a decrease 
in heat stress-responsiveness in aged animals provides fur-
ther evidence for this. As in earlier studies examining the 
induction of gene transcription [63, 64] and protein expres-
sion [65, 66] in the nematode in response to heat shock, 
our proteomic analysis identified several HSPs as being 
significantly induced in response to heat shock in YA ani-
mals. We also observed that basal levels of expression of 
certain HSPs increased in aged animals, as has previously 
been reported in both C. elegans [67] and Drosophila [68]. 
Despite this basal increase, we observed a dramatic reduc-
tion in the induction of these HSPs in response to heat 
shock in aged animals. This mirrors measures of the tran-
scriptional response to heat shock, which found that the 
induction of genes encoding several hsp70s and small HSPs 
was diminished by day 4 of adulthood [69], and the obser-
vation that HSP-16 induction following heat shock is dimin-
ished in aged animals compared with young adults [67, 
70]. Furthermore, thermotolerance, as measured by nema-
tode survival at 35 °C, is reduced in aged animals [69, 71]. 
Together, these findings indicate that the capacity of animals 
to respond to proteotoxic stress diminishes with age.

Future directions and conclusion

In the current study, we determined both the global and de 
novo proteome using quantitative mass spectrometry. By 
coupling the proteins that have incorporated AHA with a 
biotin-FLAG-alkyne tag, followed by enrichment via the 
biotin moiety, in future studies, the AHA-modified pool 
could be significantly increased by enriching specifically 
for these peptides [25]. Furthermore, given the increased 
propensity of proteins to aggregate with aging, extending 
the proteomic analysis to the insoluble protein fraction 
would provide an additional layer of information.

Tissues vary in their capacity to respond to protein dam-
age during aging, with neurons appearing to be particularly 
sensitive [72]. Cell type-specific differences in chaperone 
activity may contribute to this variation [73]. Targeted 
incorporation of the bio-orthogonal label and identification 
by ‘click chemistry’ in defined cell types and tissues could 
be achieved by selective expression of a modified tRNA 
synthetase [74]. Such a focused analysis could provide fur-
ther information on the role de novo protein synthesis has 
in the response to age-associated cellular damage in spe-
cific tissues.

Together, our work provides a proteomic snapshot of 
aging and evidence that the proteostasis network is altered 
in aged animals, both in physiological conditions and in 
response to heat stress. In addition, we have established 
for the first time a ‘click chemistry’ protocol in C. elegans 
that offers the possibility, with the same tagging method, 
to firstly visualize in which cells and subcellular compart-
ments de novo protein synthesis has occurred and secondly 
to identify the newly synthesized proteins. Since nema-
todes are amenable to experimentation using a variety of 
physical and chemical stressors, our protocol enables a 
powerful whole organismal analysis of proteomic changes 
in response to these stresses.
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