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Abstract

While harmful algal blooms caused by the ichthyotoxic dinoflagellate, Cochlodinium (Marga-

lefidinium) polykrikoides, are allelopathic and may have unique associations with bacteria, a

comprehensive assessment of the planktonic communities associated with these blooms

has been lacking. Here, we used high-throughput amplicon sequencing to assess size frac-

tionated (0.2 and 5 μm) bacterial (16S) and phytoplankton assemblages (18S) associated

with blooms of C. polykrikoides during recurrent blooms in NY, USA. Over a three-year

period, samples were collected inside (‘patch’) and outside (‘non-patch’) dense accumula-

tions of C. polykrikoides to assess the microbiome associated with these blooms. Eukaryotic

plankton communities of blooms had significantly lower diversity than non-bloom samples,

and non-bloom samples hosted 30 eukaryotic operational taxonomic units (OTUs) not found

within blooms, suggesting they may have been allelopathically excluded from blooms. Differ-

ential abundance analyses revealed that C. polykrikoides blooms were significantly enriched

in dinoflagellates (p<0.001) and the experimental enrichment of C. polykrikoides led to a sig-

nificant increase in the relative abundance of eight genera of dinoflagellates but a significant

decline in other eukaryotic plankton. Amoebophrya co-dominated both within- and near- C.

polykrikoides blooms and was more abundant in bloom patches. The core bacterial micro-

biome of the >0.2μm fraction of blooms was dominated by an uncultured bacterium from the

SAR11 clade, while the >5μm size fraction was co-dominated by an uncultured bacterium

from Rhodobacteraceae and Coraliomargarita. Two bacterial lineages within the >0.2μm

fraction, as well as the Gammaproteobacterium, Halioglobus, from the >5μm fraction were

unique to the microbiome of blooms, while there were 154 bacterial OTUs only found in non-

bloom waters. Collectively, these findings reveal the unique composition and potential func-

tion of eukaryotic and prokaryotic communities associated with C. polykrikoides blooms.
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Introduction

Blooms of Cochlodinium (aka. Margaelefidinium) polykrikoides were first observed in Puerto

Rico in the mid-20th century [1], and have since been reported in regions across North Amer-

ica, Asia, Australia, and Europe [2]. Along the east coast of the United States, C. polykrikoides
blooms were first reported in Narragansett Bay, Rhode Island, during the early1980s [3]. Over

the past three decades, blooms have expanded to other regions along the US east coast, includ-

ing the York River and Chesapeake Bay, Virginia [4,5], Skidaway Estuary, Georgia [6], Indian

River Lagoon, Florida [7], multiple embayments across Long Island, New York [2,8–11], and

Cape Cod, Massachusetts [12]. This ichthyotoxic dinoflagellate is well-known for causing fish

kills across North America and Asia [1,2,13,14], causing significant financial losses (up to

$100M) during bloom events [15–17]. Hence, there remains great interest in determining

what causes these destructive blooms to recur and expand on a global scale.

Like many other harmful dinoflagellates, C. polykrikoides has a number of ecological strate-

gies that aid in bloom development and maintenance, allowing it to outcompete other phyto-

plankton. Among these strategies, diverse nutrient acquisition capabilities [8,18], including

mixotrophy [19,20], grazer inhibition [2,21,22] and the production of allelochemicals that lyse

or inhibit the growth of competing phytoplankton [23], have been elucidated. Recently, the

ability of C. polykrikoides to produce resting cysts in culture was confirmed [24] and cysts have

been identified in sediments around Long Island, NY [25] as well as Korea [26,27]. Further-

more, decadal ocean warming trends on the US east coast and in eastern Asia have increased

the growth rates of C. polykrikoides and expanded the bloom season of strains from these

regions by more than a month [28]. Beyond bloom development and maintenance, microbial

associations may influence the recurrence and expansion of C. polykrikoides blooms.

There have been a limited number of studies assessing bacterial associations and interac-

tions with C. polykrikoides. C. polykrikoides is capable of grazing on bacteria [20] and bacteria

capable of lysing this dinoflagellate have been described [29–31]. Using terminal restriction

fragment length polymorphism analysis of 16S rRNA genes Koch et al. [9] described signifi-

cant differences in bacterial community composition between C. polykrikoides bloom (patch)

and non-bloom (non-patch) samples in NY, although the method used, prohibited the identi-

fication of the microbes responsible for these differences. Park et al. [32] assessed bacterial

community dynamics during C. polykrikoides blooms in Korea using clone library analysis

and found Rhodobacterales increased and gamma-proteobacteria decreased in abundance

during C. polykrikoides blooms. Clone libraries, however, can be biased and often do not detect

rare microbes [33–35]. Recently, there have been a growing number of studies utilizing ampli-

con-based high-throughput sequencing to assess the microbial consortia associated with

HABs [36–41], an approach that provides a significant advance in resolution of taxa relative to

past effort [33–35,42]. Two recent studies used high-throughput sequencing to identify bacte-

ria associated with C. polykrikoides cultures isolated from Korea [40,41], however, there are

currently no studies using this technology to determine the microbiome associated with

blooms of C. polykrikoides.
Here, we used high-throughput amplicon sequencing to assess bacterial (16S) and phyto-

plankton assemblages (18S) associated with blooms of the ichthyotoxic dinoflagellate, C. poly-
krikoides, during recurrent blooms in two estuaries on eastern Long Island, NY, USA. Over a

three-year period, samples were collected inside (‘patch’) and outside (‘non-patch’) dense

accumulations of C. polykrikoides to determine the core bacterial and eukaryotic microbiomes

associated with these blooms. Size fractionation was used to describe and compare free-living

(>0.2μm) and potential epiphytic or intracellular (>5 μm) bacterial assemblages associated

with C. polykrikoides blooms. In addition, cultured C. polykrikoides cells were added to the
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natural plankton community to assess allelopathic effects on planktonic assemblages. This

study revealed the presence of a parasitic dinoflagellate, Amoebophrya spp., as well as a number

of novel bacteria associated with C. polykrikoides blooms.

Materials and methods

Study site sampling

Field samples were collected in 2011, 2012, 2013 and 2014 (field experiments) during C. poly-
krikoides blooms in Shinnecock Bay (40.860881N, 72.470632W) and Great Peconic Bay

(40.938729N, 72.515285W), New York, which have occurred annually since 2004 [10]. Shinne-

cock Bay is a shallow, well-mixed system that exchanges with the Atlantic Ocean through the

Shinnecock Inlet. Great Peconic Bay is a shallow, well-mixed system located between Long

Island’s north and south forks and exchanges with the Atlantic Ocean. All samples were col-

lected between 10:00am and 12:00pm. Sample collection did not involve any protected or

endangered species and did not require any specific permits as samples were collected in

regions open to the public. At each sampling point, samples were first collected within the

visually dense, darkly-colored bloom patches (>1,000 C. polykrikoides cells mL-1) and then in

regions adjacent to patches where the water was not discolored (<100 C. polykrikoides cells

mL-1), designated ‘patch’ and ‘non-patch’ samples, respectively. For molecular analysis, patch

and non-patch water was filtered onto 0.2μm and 5μm polycarbonate filters and immediately

frozen at -80˚C.

DNA extraction, illumina sequencing and analysis

To extract nucleic acids, 1 mL of cetyltrimethyl ammonium bromide (CTAB) buffer with fresh

beta-mercaptonethanol was added to the 0.2μm and 5μm polycarbonate filters, vortexed,

heated to 50˚C for 20 minutes, and frozen at -80˚C until processing. Genomic DNA extraction

was performed using the CTAB method [43]. Following extraction, double-stranded DNA was

quantified on a Qubit1 fluorometer using a dsDNA BR Assay kit. Alongside samples, 0.2μm

and 5μm filter controls were extracted and DNA quantified (dsDNA = 0 ng/μl) as above to

ensure that sample sequences were not a result from contamination during sample processing.

Samples were normalized to an equal quantity of DNA for sequencing and were sent to Molec-

ular Research Labs (Shallowater, Texas, USA) for amplicon sequencing. The 16S rRNA gene

V4 variable region (~300bp) was amplified using bacterial primers A519F: 5´CAG CMG CCG

CGG TAA and 802R: 5´TAC NVG GGT ATC TAA TCC [44]. The V7/V8 region of the 18S

rRNA gene (~450bp) was amplified using primers 1183F: 5´AAT TTG ACT CAA CAC GGG

and 1631aR: 5´TAC AAA GGG CAG GGA CG [45]. For each sample, an identifying barcode

was placed on the forward primer and a 30 cycle PCR using the HotStarTaq Plus Master Mix

Kit (Qiagen, USA) was performed. The following PCR conditions were used: 94˚C for 3 min-

utes, followed by 28 cycles of 94˚C for 30 seconds, 53˚C for 40 seconds and 72˚C for 1 minute,

and a final elongation step at 72˚C for 5 minutes. Successful amplification was determined by

visualizing PCR products using a 2% agarose gel. The amplification of filter controls did not

result in any products and therefore were not sequenced. Samples (31 for 18S and 24 for 16S,

S1 and S2 Tables, respectively) were pooled together for each respective primer region in equal

proportions based on their molecular weight and DNA concentrations. Pooled samples were

then purified using calibrated Ampure XP beads and subsequently used to prepare a DNA

library by following Illumina TruSeq DNA library. Paired-end (2x300) sequencing was per-

formed on an Illumina MiSeq following the manufacturer’s guidelines. Sequence data was pro-

cessed using the Quantitative Insights Into Microbial Ecology v1.9.1 pipeline (QIIME, http://

qiime.org [46]). Raw sequences were depleted of barcodes, paired-end reads joined, depleted
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of primers, demultiplexed, and quality filtered using the default parameters in QIIME. The

resulting quality filtered sequences were then clustered into operational taxonomic units

(OTUs) at 97% similarity with UCLUST [47] using the open reference clustering protocol

and SILVA release v119 (http://www.arb-silva.de/) as the reference set. The representative

sequence set was aligned using PyNAST [48] and taxonomically classified using UCLUST

[47]. For 18S specifically, all non-algal OTUs were not considered in order to focus specifically

on algal assemblages. Further, the classes Dinophyceae and Syndiniophyceae were considered

as a single group representing total dinoflagellates and from here on are referred to as Dino-

phyceae. Since species specificity with the QIIME pipeline was typically not possible, represen-

tative sequences for the most abundant OTUs were extracted and species specificity (percent

identity) was determined using BLAST. Similarly, for 16S, since our focus was on prokaryotes,

all chloroplast and mitochondria (S2 Table) related sequences were removed from OTU tables

and not further considered in analyses. In addition, OTUs identified as Prochlorococcus were

reassigned to Synechococcus II as another distinct group assigned as Synechococcus was already

identified within our dataset [49]. NCBI BLAST results supported this reassignment as ‘Pro-
chlorococcus’ OTU consensus sequences were 100% identical to Synechococcus sp. MV0605E

(accession ID KU867943.1). Furthermore, phylogenetic analysis of sequences from the infor-

matically identified Prochlorococcus and Synechococcus suggests that they are an intermixed

group (data not shown). Finally, the ecology of these two organisms further supports this reas-

signment as Prochlorococcus is absent from eutrophic coastal regions including estuaries

whereas Synechococcus inhabits a broader niche including eutrophic estuaries [50].

For the V7/V8 region of the 18S rDNA, the 30 samples generated 3,802,417 paired end

reads with an amplicon size of ~450bp. After quality filtering and joining reads a total of

3,345,085 reads clustered at 97% identity into 41,828 OTUs. Overall, algae represented 24 to

97% of total reads (prior to removal of non-algal OTUs) with an average of 78% for all 30 sam-

ples (S1 Table). For the 519F/802R region of 16S rDNA, the 24 samples generated 3,951,820

paired end reads with an amplicon size of ~300bp. After quality filtering and joining reads a

total of 3,617,344 reads clustered at 97% identity into 16,905 OTUs (S2 Table). The 870,170

and 4,570 reads assigned as chloroplasts and mitochondria, respectively, were removed from

the dataset and not considered in analyses (S2 Table).

Culture and culturing conditions

A locally isolated culture of C. polykrikoides (CP1, isolated from the Peconic Estuary, NY; [10])

was used for this study. CP1 was cultivated in sterile GSe medium [51] with a salinity of 32

PSU, made with autoclaved and 0.2 μm-filtered aged coastal Atlantic Ocean water (40.79698N,

72.46068W), at 21˚C in an incubator with a 12:12 h light:dark cycle, illuminated by a bank of

fluorescent lights that provided a light intensity of ~100 μmol quanta m-2 s-1 to cultures. Anti-

biotics (stock solution, Thermo Scientific HyClone Penicillin (10,000U mL-1) Streptomycin

(10,000μg mL-1) in 0.85% NaCl) were added to the CP1 culture at a final concentration of 1%

by volume to discourage microbial contamination.

Allelopathy experiment

An experiment was performed to assess the natural plankton community’s response to the

addition of environmentally relevant densities of C. polykrikoides. While the allelopathic effects

of C. polykrikoides on natural phytoplankton communities and cultures have been assessed

microscopically [23], the effects on smaller phytoplankton and bacterial communities have

never been examined. During October 2014, triplicate 330mL bottles were half-filled with

unamended water from Old Fort Pond, NY. A control was established whereby the other half
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of the bottle was filled with GSe media and, for the treatment, the other half of the bottle was

filled with C. polykrikoides (CP1) culture resulting in final cell densities of 2,200 cells mL-1. To

ensure that the effects seen by the addition of C. polykrikoides were due to allelochemicals and

not nutrients, saturating concentrations of N (88μM), P (3.6μM), and Si (88μM) were added to

all bottles. All experimental bottles were incubated at ambient light and temperature for 48 h

in Shinnecock Bay at the Stony Brook Southampton Marine Science Center [52]. At the end of

the incubation, contents of each experimental bottle were filtered onto 0.2μm polycarbonate

filters that were then preserved as above and sequenced, in triplicate, as individual biological

replicates.

Microbial diversity and statistical analysis

All microbial diversity analyses were conducted using QIIME v1.9.1. Prior to executing diver-

sity analysis scripts on field samples, mitochondrial and chloroplast related OTUs as well as all

non-algal OTUs were filtered from 16S and 18S OTU tables, respectively. Field sample datasets

were then processed using core_diversity_analyses.py scripts to rarefy samples and assess

alpha- (Chao1, Shannon Diversity Index and Simpson Index) and beta- (weighted unifrac

visualized via Principal Coordinates Analysis (PCoA)) diversity measurements. An Analysis of

Similarity (ANOSIM) was conducted using weighted unifrac distances to assess the differences

in community composition among variables.

In addition, the core microbiome of field samples for both 16S and 18S datasets were com-

puted for each variable (patch >0.2μm, patch >5μm, non-patch >0.2μm, and non-patch

>5μm) using compute_core_microbiome.py scripts in QIIME and visualized using Venny 2.0

[53]. Core microbiomes were defined as genera found in 100% of the samples within each vari-

able (as above). Differential abundance analyses were also conducted, using the Phyloseq and

DESeq packages [54–56] in R v3.2.3 (R Core Team 2013) to compare taxa abundances across

experimental treatments as well as field sample variables (patch >0.2μm vs non-patch

>0.2μm, and patch >5μm vs non-patch >5μm) for both 16S and 18S data. Briefly, raw 16S

and 18S read counts were loaded into a phyloseq object and modeled with Deseq using a nega-

tive binomial distribution. Prior to modeling, counts were internally normalized for size fac-

tors using the median ratio method [54] and dispersions were estimated using a parametric

fitting. Wald significance testing to test for significant log2 fold changes in abundance (α =

0.05) and p-values were adjusted using the Benjamini-Hochberg procedure to correct for mul-

tiple testing. Principal component analyses (PCA) were conducted on Hellinger transformed

(y0ij ¼
p yij

yiþ) abundances of bacterial sequences [57] using the prcomp function (stats package)

in R v3.3.3 to determine the groups of variables (region: patch, non- patch; size fraction: >0.2

and>5μm; year: 2011, 2012, 2013) that behaved similarly and the correlation of taxa (phylum

or genus) to each group (biplot arrows).

To investigate potential functional differences among the microbial communities between

regions, size fractions and years, predicted metagenomes were generated using PICRUST2

(Phylogenetic Investigation of Communities by Reconstruction of Unobserved States)

QIIME2 plugin with default settings [58–62]. Prior to analysis the 16S OTU abundances were

normalized (relative abundances) and the resulting predicted KEGG KO gene family and

Metacyc pathway abundances were visualized with PCoA (QIIME2 Version 2019.1). PERMA-

NOVA (QIIME2 diversity plugin) was used to test for significant differences among the pre-

dicted metagenomes between groups (region, size fraction, year) and was used to identify

differentially abundant gene families and pathways among groups. Differential abundance of

KEGG gene families and Metacyc pathways were assessed using STAMPS v 2.1.3 software [63]

with a multiple sample ANOVA and Tukey-Kramer post-hoc analysis with Benjamini-

Prokaryotic and eukaryotic microbiomes associated with Cochlodinium polykrikoides

PLOS ONE | https://doi.org/10.1371/journal.pone.0223067 November 7, 2019 5 / 26

https://doi.org/10.1371/journal.pone.0223067


Hochberg FDR multiple comparison correction. Genes and pathways were filtered for p<0.05

and an eta-squared effect size of>0.8.

Results

Phytoplankton assemblages within- and outside- of C. polykrikoides
patches

An Analysis of Similarity (ANOSIM) revealed significant differences in the community com-

position among patch and non-patch (p<0.001) samples, and among years (p<0.001) but not

among size fractions. All alpha diversity metrics revealed no significant differences among size

class (>0.2 or>5μm) or year (2011, 2012 and 2013) but indicated non-patch samples were sig-

nificantly (p<0.01) more diverse than within patch samples (S3 Table). A principal coordi-

nates analysis (PCoA) of weighted unifrac distances showed clustering among years (Fig 1A)

and sample type (patch, non-patch; Fig 1B) with the diversity between these variables being

significantly (p<0.05) different.

While differential abundance analyses revealed that Dinophyceae (dinoflagellates) was sig-

nificantly (p<0.01; S1 Fig) enriched within C. polykrikoides patches, it was also considered the

dominant phyla in all samples, contributing 86 ± 12% (mean ± SD) of algal sequences within

patches, and 65 ± 18% outside of patches, respectively (Fig 2). Bacillariophyceae (diatoms;

p = 0.15) was enriched in non-patch (21 ± 14%) communities (>5μm size fraction only), com-

pared with patch communities (8 ± 7%), but not significantly (S1 Fig). Both the dominant gen-

era in all samples and considered enriched in patch samples, C. polykrikoides (p<0.001; S2 Fig)

and Amoebophrya (p = 0.09) contributed 51 ± 27% and 22 ± 19% within patches, and

26 ± 16% and 15 ± 12% outside of patches (Fig 2). However, for the >0.2μm size fraction of

patches, while the range of relative abundances were higher for C. polykrikoides, Amoebophrya
often had a higher relative abundance on a per sample basis, especially during 2011 and 2012

(Fig 2). Gyrodinium and Chaetoceros were also found at modest abundances (<48%) but over-

all were more abundant outside of C. polykrikoides patches (Fig 2).

Comparing the core 18S microbiomes among each variable (patch >0.2μm, patch >5μm,

non-patch >0.2μm, and non-patch >5μm), there were 201 shared OTUs and 7–30 unique

OTUs (Fig 3A). The core 18S microbiome for all variables was dominated by C. polykrikoides
(>25%) and Amoebophrya (>11%; Fig 3B). Among these microbiomes, there were 26 (from

four lineages) and 30 (eight lineages) unique OTUs from patch >0.2μm and non-patch

>0.2μm samples, and 7 (one lineage) and 13 (one lineage) unique OTUs for patch >5μm and

non-patch >5μm samples, respectively (Fig 3A). Unique OTUs associated with patch samples

included lineages of Geminigera sp., Cylindrotheca closterium, Leptocylindrus spp. and an

uncultured eukaryote from MAST-3J, and Pirsonia sp. for the>0.2μm and>5μm size frac-

tions, respectively. Unique OTUs associated with non-patch samples included lineages of

Gonyaulax sp., Rhaphoneis sp. (Bacillariophyceae), two cryptophytes (Katablepharis sp., Leuco-
cryptos sp.), two Prymnesiales (uncultured eukaryote and OLI16029), and two uncultured

eukaryotes (Mamiellophyceae and Chrysophyceae), and an uncultured eukaryote from the

Syndiniales for the >0.2μm and>5μm size fractions, respectively.

Bacterial assemblages within- and outside- of C. polykrikoides patches and

between size fractions

The community composition of bacterial assemblages among the patch and non-patch sam-

ples were similar (ANOSIM; p>0.05) while the community composition between size fractions

(>0.2 vs >5μm) was significantly different (ANOSIM; p<0.001). Similarly, alpha diversity

Prokaryotic and eukaryotic microbiomes associated with Cochlodinium polykrikoides
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metrics revealed significant differences among size class (>0.2 or >5μm) with the>5μm size

fraction being significantly (p<0.01) more diverse than the>0.2μm size fraction (S4 Table). A

principal coordinates analysis (PCoA) of weighted unifrac distances displayed a high degree of

clustering among size fractions (>0.2 and>5μm; Fig 1C and 1D), with the diversity between

these variables being highly significantly (p<0.001) different. Consistent with this, principle

component analyses (PCA) of relative abundances at both phylum- and genus/species- level

revealed that samples separated based on size fraction (>0.2 and>5μm; Fig 4). At the phylum

level, the>0.2μm fraction was highly associated with Proteobacteria, while the >5μm was

associated with Planctomycetes and Bacteroidetes (Fig 4). At the genus/species level, the

>0.2μm fraction was highly associated with two uncultured bacteria from the SAR11 clade

and the AEGEAN-169 marine group, while the>5μm was more associated with Synechococcus
and the Flavobacteriaceae, Winogradskyella (Fig 4).

Fig 1. Principal Coordinate Analysis (PCoA) using weighted UniFrac distances of A & B) algal sequences and C & D) bacterial sequences for all field samples by year

(2011, 2012 and 2013), and region (patch vs non-patch) and size fraction (>0.2 and>5 micron).

https://doi.org/10.1371/journal.pone.0223067.g001

Prokaryotic and eukaryotic microbiomes associated with Cochlodinium polykrikoides
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While patch and non-patch samples were similar there were vast differences between size

fractions. Proteobacteria was the dominant phyla followed by Bacteroidetes contributing

60 ± 4% (mean ± SD) and 16 ± 2% of bacterial sequences for the>0.2μm fraction, and

30 ± 8% and 23 ± 7% for the>5μm size fraction, respectively (Fig 5). The SAR11 clade

(28 ± 4%) and Flavobacteriales (14 ± 2%) dominated bacterial sequences in >0.2μm fraction,

Fig 2. Class- (left panel) and genus/species- (right panel) level relative abundances of algal sequences from size

fractionated (>0.2 and>5 micron) samples collected within and immediately adjacent (<10m) to the Cochlodinium
bloom patches, designated ‘patch’ (P) and ‘non-patch’ (NP) samples, respectively, for years 2011, 2012 and 2013.

https://doi.org/10.1371/journal.pone.0223067.g002

Fig 3. Venn diagrams demonstrating the shared and unique A) 18S OTUs-, C) 16S OTUs- and average abundances of

corresponding B) 18S consensus lineages- and D) 16S consensus lineages- of the core microbiomes found among

Patch>0.2 and>5, and Non-patch>0.2 and>5 micron size fractioned samples. Venn diagrams colors represent the

following: patch>0.2 (blue), patch>5 (yellow), non-patch>0.2 (green) and non-patch>5 (red). Numbers within the

diagrams represent number of OTUs.

https://doi.org/10.1371/journal.pone.0223067.g003
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Fig 4. Principal component analyses using Phylum- and genus/species- level Hellinger transformed relative abundances of bacterial sequences from size

fractionated (>0.2 and>5 micron) samples collected within and immediately adjacent (<10m) to the Cochlodinium bloom patches, designated ‘patch’ (P) and

‘non-patch’ (NP) samples, respectively, for years 2011, 2012 and 2013. Percent variation explained by each principal component is indicated in parentheses.

https://doi.org/10.1371/journal.pone.0223067.g004

Fig 5. Phylum- (left panel) and Order- (right panel) level relative abundances of bacterial sequences from size

fractionated (>0.2 and>5 micron) samples collected within and immediately adjacent (<10m) to the Cochlodinium
bloom patches, designated ‘patch’ (P) and ‘non-patch’ (NP) samples, respectively, for years 2011, 2012 and 2013.

https://doi.org/10.1371/journal.pone.0223067.g005
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while for the>5μm fraction, the orders Flavobacteriales (20 ± 6%), Cyanobacteria Subsection

1 (which includes Synechococcus; 10 ± 5%), and Rhodobacterales (10 ± 7%) dominated bacte-

rial sequences (Fig 5). An uncultured bacterium (identified as ‘1’ in Fig 6) from the SAR11

clade (24 ± 3%) was the most dominant genus found in the>0.2μm fraction followed by a bac-

terium from the AEGEAN-169 marine group (9 ± 2%) and Coraliomargarita (9 ± 7%; Fig 6).

At the genus level, the>5μm fraction was dominated by sequences of Coraliomargarita
(6 ± 4%), an uncultured bacterium from Rhodobacteraceae (6 ± 5%) and Winogradskyella
(5 ± 4%; Fig 6).

Comparing size fractions within patch and non-patch communities. These differences

among size fractions are further highlighted when comparing size fractions within patch and

non-patch communities. Within Cochlodinium patches, differential abundance analyses dem-

onstrated that the SAR11 clade, Rhodospirillales, and Oceanospirillales were all significantly

(p<0.001) enriched in the>0.2μm compared to the >5μm fraction (S3A Fig). Among the

most abundant genera, two uncultured bacteria (identified as ‘1’ and ‘2’ in Fig 6) of the SAR11

clade and the AEGEAN-169 marine group were significantly (p<0.001) enriched in the

>0.2μm fraction of patches, while Winogradskyella and the cyanobacteria Synechococcus were

significantly (p<0.01) enriched in the>5μm fraction (S4A Fig). Comparing size fractions

within patch communities for all genera, there were 274 lineages that were significantly differ-

entially abundant, with 88 enriched in the>0.2 size fraction and 186 enriched in the>5μm

size fraction (p<0.05 for all; S6–S13 Figs).

For non-patch communities, differential abundance analyses demonstrated that the SAR11

clade, Rhodospirillales and Oceanospirillales were significantly (p<0.001) enriched in the

>0.2μm fraction, while Flavobacteriales and Cyanobacteria Subsection 1 were significantly

(p<0.01) enriched in the >5μm fraction (S3B Fig). Among the most abundant genera, two

uncultured bacteria (1, 2) of the SAR11 clade and AEGEAN-169 marine group were signifi-

cantly (p<0.001) enriched in the >0.2μm fraction of non-patch samples, while Winograds-
kyella and the cyanobacteria Synechococcus were significantly (p<0.01) enriched in the >5μm

fraction (S4B Fig). Comparing size fractions within non-patch communities for all genera,

Fig 6. Genus- level relative abundances of bacterial sequences from size fractionated (>0.2 and>5 micron)

samples collected within and immediately adjacent (<10m) to the Cochlodinium bloom patches, designated

‘patch’ (P) and ‘non-patch’ (NP) samples, respectively, for years 2011, 2012 and 2013.

https://doi.org/10.1371/journal.pone.0223067.g006
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there were 259 lineages that were significantly differentially abundant, 103 and 156 of those

lineages were enriched in the in the>0.2 and>5μm size fractions, respectively (S14–S21 Figs).

Patch vs non-patch within the >0.2μm fraction. Differential abundance analyses of

major microbial orders and genera (i.e. taxonomic orders and genera with the highest relative

abundances in Figs 5 and 6) revealed there were no significant differences between the patch

and non-patch samples within the>0.2μm fraction (S3C and S4C Figs). Comparing patch and

non-patch samples within the >0.2μm fraction for all genera, however, revealed that 2 lineages

(Thermoplasmatales Marine Group II uncultured and Thermoplasmatales Marine Group II

other) were considered significantly enriched in non-patch samples, while uncultured Acidi-

microbiaceae was significantly enriched in patches (p<0.01 for all; S5A Fig).

Patch vs non-patch within the >5μm fraction. Among the >5μm fraction, differential

abundance analyses demonstrated that the order Rhodobacterales was significantly (p<0.001)

enriched in patch samples while the orders Rhodospirillales and Flavobacteriales were signifi-

cantly (p<0.01) enriched in non-patch samples (S3D Fig). As for the major (i.e. most abun-

dant) genera in the >5μm fraction, an uncultured bacterium from Rhodobacteraceae was

significantly enriched in patch samples (p<0.001; S4D Fig). Comparing patch and non-patch

samples within the>5μm fraction for all genera, however, revealed two lineages (uncultured

Rictus and Stramenopiles MAST-12D other) that were significantly enriched in non-patch

samples and 19 lineages (including a number of Alphaproteobacteria and Bacteroidetes) were

significantly enriched in the patch samples (p<0.05 for all; S5B Fig).

Comparing the microbiomes among each sample type, there were 217 shared OTUs, and 4,

1, 154 and 13 unique OTUs for patch >0.2μm, patch >5μm, non-patch >0.2μm, and non-

patch >5μm, respectively (Fig 3C). The core bacterial microbiome was dominated by an

uncultured bacterium (designated as ‘1’ in Fig 6) from the SAR11 clade for patch and non-

patch samples in the>0.2μm fraction, and overall looked very similar (Fig 3D). For the>5μm

size fraction, the patch microbiome was co-dominated by an uncultured bacterium from Rho-

dobacteraceae and Coraliomargarita (Verrucomicrobia), while the non-patch samples were

co-dominated by Winogradskyella (Flavobacteriaceae), the cyanobacteria Synechococcus (type

II) and Coraliomargarita (Fig 3D). Among these microbiomes, there were four and 154 unique

OTUs for the patch and non-patch samples in the>0.2μm fraction, respectively, originating

from two (an unassigned bacterium, and an uncultured bacterium from Rickettsiales) and 66

unique lineages, respectively. There were one and 13 unique OTUs for the patch and non-

patch samples in the>5μm fraction, respectively, originating from one (the Gammaproteo-

bacteria, Halioglobus) and seven unique lineages, all of which, however, had relative abun-

dances of<1%.

The natural plankton community’s response to the addition of C.

polykrikoides
The addition of a culture of C. polykrikoides resulted in marked changes in the relative abun-

dances of the eukaryotic plankton (Fig 7). Differential abundance analyses between the control

and treatment revealed that eight dinoflagellates were significantly enriched with the addition

of C. polykrikoides including Amoebophrya (p<0.001), Gyrodinium spirale (p<0.001), Polykri-
kos (p<0.001), Karlodinium (p<0.001), Prorocentrum (p<0.001), Symbiodinium (p<0.001),

Gonyaulax (p<0.05), and Pelagodinium (p<0.001; S22 Fig). While the relative abundances of

Chaetoceros and Apedinella also increased in the treatment (Fig 7), the addition of C. polykri-
koides caused ‘other algae’ to decrease by nearly 50% compared to the control (Fig 7) and

caused the significant (p<0.05) decline of a number of cryptomonads, chrysophytes and other

non-dinoflagellate genera (S22 Fig). Due to the mode in which allelopathic agents are secreted
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by C. polykrikoides, the culture was not filtered prior to its addition to the appropriate experi-

mental bottles and, therefore, 16s data was not evaluated.

Discussion

Biotic interactions are likely to have a myriad of direct and indirect influences on the occur-

rence of harmful algal blooms. This study identified the microbial consortium associated with

C. polykrikoides blooms and revealed that C. polykrikoides blooms were enriched in dinoflagel-

lates and depleted in diatoms (>5μm fraction) among eukaryotes, and enriched in Rhodobac-

teraceae and depleted in Flavobacteriaceae, Rhodospirillaceae and the SAR11 clade among

prokaryotes. Amoebophrya was highly abundant both within and near blooms while lineages

of Geminigera sp., Cylindrotheca closterium, Leptocylindrus spp., an uncultured eukaryote

from MAST-3J, and Pirsonia sp., were unique members of the core eukaryotic microbiomes

found inside blooms. In contrast, lineages of Gonyaulax sp., Rhaphoneis sp. (Bacillariophy-

ceae), two cryptophytes (Katablepharis sp., Leucocryptos sp.), two Prymnesiales (uncultured

eukaryote and OLI16029), two uncultured eukaryotes (Mamiellophyceae and Chrysophyceae),

and an uncultured eukaryote from the Syndiniales were only found outside of blooms. Among

microbes, two lineages (an unassigned bacterium, and an uncultured bacterium from Rickett-

siales) from the>0.2μm fraction, and one (the Gammaproteobacteria, Halioglobus) from the

>5μm fraction were unique to the core microbiome of blooms. Collectively, these observations

provide new insight into the composition and potential function of the eukaryotic and pro-

karyotic communities associated with and inhibited by C. polykrikoides bloom.

Similar to prior studies [33,39,49], high-throughput sequencing facilitated the discovery of

a number of species that have yet to be described in C. polykrikoides blooms in the western

hemisphere. High-throughput amplicon sequencing provided an enhanced resolution of phy-

toplankton community diversity, revealing parasitic species (i.e. the dinoflagellates, Amoebo-
phrya and Duboscquella; the nanoflagellate, Pirsonia), picoplankton (i.e. Synechococcus), and

species found in low abundance (i.e. Katablepharis sp., Leucocryptos sp.), many of which have

yet to be identified via traditional microscopy within blooms. Consistent with prior studies uti-

lizing microscopy, high-throughput sequencing captured most of the common, larger phyto-

plankton species known to be present during the summer/fall season within this region ([8–

10] Hattenrath-Lehmann personal observation). Prorocentrum, a dinoflagellate known to co-

occur with C. polykrikoides blooms in New York [9], however, was detected at comparatively

Fig 7. Relative abundances of algal (18S) sequences for the experimental control, and the Cochlodinium
polykrikoides culture whole cell addition treatment during an experiment conducted using the natural

phytoplankton community of Old Fort Pond, NY.

https://doi.org/10.1371/journal.pone.0223067.g007
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lower relative abundances than expected, perhaps due to a lack of sequences of one of the most

common species found in NY, P. gracile, in the SILVA reference database [39]. For this reason,

it has been recommended [33,39] that both microscopy and sequencing be utilized for com-

prehensive descriptions of microbial communities. The importance of- and need for- assessing

the full microbiome, including both prokaryotes and eukaryotes has become increasingly obvi-

ous as it has been demonstrated that biotic interactions are better predictors of community

structure than abiotic factors [64]. In the future, long-term monitoring of the base of the food

chain of coastal ecosystems using a combination of microscopy and high-throughput sequenc-

ing would provide a more accurate and comprehensive assessment of the full suite of microbial

consortia that are likely to improve over time as informative databases expand and become

more accurately annotated [35,65].

While the parasitic dinoflagellate Amoebophrya spp. is known to form associations with

many other dinoflagellate species [66–68], observations of Amoebophrya infections during C.

polykrikoides blooms have never been reported outside of Korean waters [68–71]. Here, using

high-throughput sequencing, Amoebophrya was detected in all samples analyzed, regardless of

region, size fraction, or year. Moreover, Amoebophrya sequences were 95–100% identical to a

Korean isolate from Namhae (NCBI accession KF791348). Amoebophrya accounted for up to

54% of the eukaryotic community and was enriched within bloom communities. While Gyro-
dinium spirale and Polykrikos spp. were also present and have been previously described as

hosts of the parasite Amoebophrya [68], Amoebophrya was also dominant when these two

potential hosts were present at very low relative abundances (<1%; Fig 2). Therefore, while not

observed microscopically, we hypothesize that C. polykrikoides was the primary host of Amoe-
bophrya. Using high-throughput sequencing, Amoebophrya was also abundant in another NY

embayment, Northport Bay, in association with blooms of Alexandrium catenella [39]. Para-

sitic Amoebophrya infections may be more-widespread and important to HAB dynamics than

previously assumed and may require the use of molecular methods to clarify their importance

[71]. Since 2014, blooms of C. polykrikoides have become less intense in NY, with blooms

achieving a lower maximal biomass, persisting for a shorter period of time, and being less

widespread than blooms that occurred from 2006–2013 [8,10] (C. Gobler personal observa-

tion). While the role of Amoebophrya in this change is unknown, adaptation of Amoebophrya
and/or other parasitic communities toward the exertion of stronger biological control could

account for such a shift.

In a manner similar to several other HABs [39,72–75], C. polykrikoides can shape plank-

tonic community structure via the secretion of allelopathic compounds [23]. Allelochemicals

produced by C. polykrikoides have the capacity to lyse and inhibit the growth of several species

of dinoflagellates, diatoms, cryptophytes, haptophytes, raphidophytes, and pelagophytes in cul-

ture as well as natural plankton communities with effects being dependent on the densities of

C. polykrikoides as well as target species [23]. Consistent with these known allelopathic capabil-

ities, C. polykrikoides dominated both in- and outside- of patches, and phytoplankton commu-

nity diversity was significantly lower within C. polykrikoides patches compared to non-patch

samples, suggesting species vulnerable to allelochemicals were selectively eliminated. Further-

more, Chaetoceros and Gyrodinium were more abundant outside of Cochlodinium patches, a

finding consistent with prior observations [9] and the density dependency of these allelopathic

effects [23]. In experiments, the addition of C. polykrikoides to a natural plankton community

resulted in the enrichment of Amoebophrya, Gyrodinium spirale, Polykrikos, several other

dinoflagellates, Chaetoceros, and Apedinella, but the depletion of several other genera includ-

ing Thalassiosira, Picomonas and Micromonas (S22 Fig). Natural community experiments con-

ducted by Tang and Gobler [23] demonstrated that euglena populations were significantly

enhanced with the addition of C. polykrikoides culture, while Gyrodinium, Scrippsiella,
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Skeletonema, Chaetoceros and Thalassiosira all significantly decreased. While disparities

among these studies (i.e. Chaetoceros and Gyrodinium) are likely due to density, species, and

strain dependent allelopathic effects [23], it is clear that 18S sequencing was capable of describ-

ing allelopathic patterns and can enhance allelopathic studies by revealing rare members of the

community that would otherwise not have been captured using microscopic methods.

HABs can also influence prokaryotic communities [36–39,76]. To date, only two studies

have assessed the microbiome associated with C. polykrikoides blooms, both using molecular

techniques that differed from each other and from the current study [9,32]. Consistent with

what was found using clone library analysis of C. polykrikoides blooms in South Korea [32], C.

polykrikoides blooms during this study were dominated by bacteria of the Alphaproteobacteria

and Flavobacteria lineages. In addition, blooms of C. polykrikoides in NY were also dominated

by cyanobacteria, which had higher relative abundances in the >5μm fraction (up to 22%) and

were more abundant than in Korean blooms (<5.4%) [32]. Rhodobacterales had higher rela-

tive abundances in patches than outside of patches, a finding similar to Park et al. [32] who

reported that Rhodobacterales were more abundant during bloom peaks and had a significant

positive correlation with C. polykrikoides cell densities. Similar to NY, during blooms in Korea

Alphaproteobacteria were dominated by the SAR11 cluster, Rhodobacterales and Rhodospiril-

lales, but unlike NY blooms where the Gammaproteobacteria, Alteromonadales and Oceanos-

pirillales were consistently present, these bacteria were rarer in Korea [32]. Also consistent

with the present study, using terminal restriction fragment length polymorphism (TRFLP)

analysis of 16S rRNA genes, Koch et al. [9] found TRFs consistent with those predicted for

Alphaproteobacteria were more abundant in bloom samples. Despite the use of different

molecular techniques, there were numerous similarities among the present study, Koch et al.

[9] and Park et al. [32]. High-throughput sequencing, however, clearly provided a more in

depth analysis of the microbial community than the prior studies.

Recently, two studies [40,41] utilized high-throughput sequencing to describe the prokary-

otic community associated with Korean cultures of C. polykrikoides. While the C. polykrikoides
culture isolated by Park et al. [40] was dominated by Marivita sp. (Roseobacter) and Wino-
gradskyella sp. (Flavobacteria), the culture isolated by Shin et al. [41] was dominated by Methy-
lophaga, Marinobacter, Ponticoccus and Jannaschia. In New York, Marivita sp. (<3%),

Winogradskyella sp. (<17%), Methylophaga (<0.5%), Marinobacter (<0.5%), and Jannaschia
(<0.05%) were present among field samples at varying relative abundances, however, Ponticoc-
cus was not present in the dataset. Among these genera, Winogradskyella sp. had the highest

relative abundances and differential abundance analyses demonstrated it was more abundant

in non-patch samples and significantly enriched in the>5μm fraction (S4 Fig), with a PCA

further confirming a strong association between this bacteria and the>5μm fraction. Despite

low relative abundances, Methylophaga and Marinobacter were found to be significantly more

abundant in >0.2μm fraction of both patch and non-patch samples. As with any culture, both

of the Korean C. polykrikoides isolates were cultivated under environmental conditions opti-

mal for growth of this alga (i.e. ideal temperature, light intensity, and saturating nutrient con-

centrations) and these conditions will likely affect the free-living and epiphytic bacteria

associated with the cultures. As such, bacteria found in cultures would be expected to differ

from those in the field where environmental conditions will differ and are more dynamic.

Accordingly, only a single dominant genus (Winogradskyella sp.) from Korean cultures [40]

was also found at high relative abundances in NY field samples.

Phytoplankton blooms, in general [77], and HABs such as Alexandrium spp., Pseudo-
nitzschia sp., Akashiwo sanguinea, and C. polykrikoides, are known to be dominated by

members of specific heterotrophic bacterial lineages including Alphaproteobacteria, Gamma-

proteobacteria, and Flavobacteria [32,36,38,39,78–83]. During this study C. polykrikoides
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blooms in NY were also dominated by the classes Flavobacteria and Alphaproteobacteria,

while Gammaproteobacteria comprised a relatively smaller portion of microbial communities

compared to prior HAB studies. Within those classes, C. polykrikoides blooms shared a series

of microbial similarities with blooms of A. catenella and Dinophysis acuminata reported by

Hattenrath-Lehmann and Gobler [39] including dominance of the orders Flavobacteriales,

Rhodobacterales, and SAR11. While many of the bacteria from these two studies are members

of similar lineages [39], the NS5 marine group (Flavobacteriales), an uncultured bacterium

from Rhodobacteracea, Owenweeksia spp., Perlucidbaca spp. and Limnobacter spp were the

dominant genera among Alexandrium-associated field samples while Dinophysis-associated

field samples were dominated by ‘unassigned bacteria’ and an uncultured bacterium from

Rhodobacteracea. Differential abundance analyses demonstrated that C. polykrikoides blooms

were significantly enriched in an uncultured bacterium from Rhodobacteraceae, the core bac-

terial microbiome of the>0.2μm fraction of patches was dominated by an uncultured bacte-

rium from the SAR11 clade, while the>5μm size fraction was co-dominated by an uncultured

bacterium from Rhodobacteraceae and Coraliomargarita. Collectively, the high level of phylo-

genetic resolution provided by high-throughput sequencing demonstrates that each of these

NY HABs was associated with distinct microbiomes.

While the impacts of C. polykrikoides blooms on eukaryotic community composition and

diversity were highly significant, the effects on bacterial communities were somewhat less

intense. There were 154 16S OTUs that were unique to the >0.2μm, non-bloom samples, sug-

gesting these 154 OTUs were inhibited by allelochemicals present within blooms. This finding

is consistent with the observations of Koch et al. [9] who reported on four 16S T-RFLP frag-

ments found only in non-bloom samples. There were, however, only five OTUs (four in the

>0.2μm, one in the>5μm) unique to C. polykrikoides blooms and diversity analyses did not

reveal significant differences between bloom and non-bloom samples for the 16S community.

Given these bloom patches move horizontally with currents and tides, it is plausible that the

shorter generation times of bacteria make these communities less vulnerable to the effects of

C. polykrikoides, compared to eukaryotes that have significantly slower growth rates [84]. Fur-

thermore, the cell wall of bacteria may make them more resistant to reactive oxygen species

and similar allelochemicals released by C. polykrikoides [85]. Greater differences between bac-

terial communities may be more likely to manifest themselves over the course of the blooms as

described in Park et al. [32] as organic matter inventories build and temperatures change [86].

There were far more significant differences between the size fractions within patch and non-

patch samples among bacterial communities (S6–S21 Figs), demonstrating the strong differ-

ences in particle associated bacteria vs. free-living bacteria.

Predictive tools (PICRUST2) used to determine functional potential of microbial commu-

nities revealed significant differences between size fractions, and size fractions within- and

between- regions. For example, on multiple dates, the predicted metagenomic communities

associated with bloom patches had significantly higher levels of metabolic pathways associated

with the cytochrome c aerobic pathway than non-bloom samples. Beyond its role in mitochon-

drial respiration and the electron transport chain, cytochrome c can also act as an anti-oxida-

tive enzyme, removing reactive oxygen species (ROS) [87,88]. Given that the toxic effects of C.

polykrikoides are known to emanate from the production of ROS [3,16,85], this finding sug-

gests that bacteria with a greater abundance of cytochrome c may be better suited to co-exist

with dense blooms of C. polykrikoides where ROS-production is presumably high. Still, meta-

genomic predictive tools should be taken with caution given that functional potential results

are generated from a limited database of available genomes.

The roles of the dominant bacteria found associated with C. polykrikoides blooms can also

be surmised from the literature. For example, patch samples were dominated by bacteria such
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as Coraliomargarita, part of the phylum Verrucomicrobia, which preferentially grow on phyto-

plankton-derived high molecular organic compounds [89] that would likely be readily avail-

able in bloom formers such as C. polykrikoides that excrete extracellular polysaccharides

[9,16,90]. Flavobacteria (Winogradskyella co-dominate in patches) are known to facilitate mac-

romolecule conversions, converting high molecular compounds to low molecular weight com-

pounds [77], a process that may concurrently support the growth of C. polykrikoides by

providing smaller, labile compounds such as glutamic acid which this alga consumes readily

[8]. Other microbial members that co-dominated within C. polykrikoides patches, such as bac-

terium from the AEGEAN-169 marine group and the SAR11 clade, are part of the phylum

Alphaproteobacteria which are capable of assimilating dissolved organic matter (DOM)

including extracellular polymeric substances (EPS) [91] which are produced in copious

amounts by C. polykrikoides [16,90]. Beyond dominant microbes, it has been demonstrated

that if a rarer microbe is responsible for a key metabolic process that other microbes do not

carry out, it can have an enormous ecosystem impact [92] and the discovery of the metabolic

repertoire of rare microbes will likely continue to advance in parallel with high-throughput

sequencing efforts. C. polykrikoides has an obligate requirement for B-vitamins [18] and it has

been demonstrated that the availability of both, B1 and B12 can shape bloom dynamics [9,93].

Vitamin concentrations and turnover inside bloom patches of C. polykrikoides are elevated, a

fact not only attributed to the auxotrophic phytoplankton but also to the bacterial consortium

residing within the patches [9]. While the relative abundance of potential B12 producing-bacte-

ria belonging to the order Rhodobacterales (class Alphaproteobacteria) [94,95] was signifi-

cantly enriched in patch vs non-patch samples, the former has been shown to harbor 10-fold

higher heterotrophic bacterial densities, likely leading to the observed higher vitamin concen-

trations found in Koch et al. [9]. Interestingly, Rhodobacterales was also more abundant in the

>5μm fraction of patch samples, suggesting a potentially endosymbiotic association between

these potential vitamin producers and auxotrophic C. polykrikoides.
Synechococcus was part of the core microbiome but was significantly enriched in the >5μm

fraction of both patch and non-patch samples, despite it being a 1 μm cell. C. polykrikoides can

feed on Synechococcus [20,96,97]. Field samples revealed that the>5μm fraction of patches (1–

7%) had slightly lower relative abundances of Synechococcus than the same size fraction in

non-patch samples (1–13%; Fig 6). This finding is consistent with Koch et al. [9] who found

that Synechococcus densities were significantly lower in patches of C. polykrikoides and could

indicate C. polykrikoides is capable of consuming Synechococcus and/or inhibiting this popula-

tion via allelochemicals. Collectively, this suggests that these cyanobacteria may influence the

nutrition of C. polykrikoides and potentially the C and N cycles of the surrounding

microbiome.

In summary, this study revealed the profound effects of C. polykrikoides blooms on pro-

karyotic and eukaryotic plankton communities. The relative abundance of dinoflagellates in

general, and C. polykrikoides and Amoebophrya in particular, were enriched in bloom samples

and the experimental enrichment of C. polykrikoides led to a significant increase in the relative

abundance of eight genera of dinoflagellates but a significant decline in other eukaryotic plank-

ton. Patch and non-patch eukaryotic community composition were significantly different and

patch communities harbored significantly lower diversity than non-patch samples, with more

than 30 unique OTUs found within non-patch samples, suggesting blooms allelopathically

inhibited these OTUs. While differential abundance analyses demonstrated that the Rhodo-

bacterales were significantly enriched in C. polykrikoides patches and that there were more

than 150 unique OTUs in non-bloom samples, the overall impact of these HABs on bacterial

community composition and diversity was less intense compared to the impacts on eukaryotic

communities.
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including split libraries output (demultiplexed reads), total UCLUST assigned reads and
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UCLUST assigned reads) x 100.
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S2 Table. QIIME outputs for the sequencing of the V4 variable region of the 16S rRNA

gene, including split libraries output (demultiplexed reads), total UCLUST assigned reads

and the total number of chloroplast and mitochondria assigned reads for time series

(patch and non-patch) samples and size fractions (>0.2 and >5μm).
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S3 Table. Alpha diversity metrics for algal OTUs in field samples for region (patch vs non-

patch (NP)), size fraction (>0.2 vs >5μm) and year (2011, 2012 and 2013). ��p<0.001 and
�p<0.01. SD = standard deviation.
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and �p<0.01. SD = standard deviation.
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S1 Fig. Differentially abundant 18S lineages among representative classes (see Fig 2) in patch

and non-patch samples for A)>0.2μm and B)>5μm size fractioned samples. Negative log2

fold changes represent lineages enriched in non-patch samples, while positive log2 fold

changes represent lineages enriched in patch samples. Significant differential abundances

(alpha<0.05) are indicated by red circles.

(PDF)

S2 Fig. Genus level differentially abundant 18S lineages among patch and non-patch samples

for A) >0.2μm and B)>5μm size fractioned samples. Negative log2 fold changes represent lin-

eages enriched in non-patch samples, while positive log2 fold changes represent lineages

enriched in patch samples. Lineages that are part of the patch (+) and non-patch (-) core

microbiomes are in bold, and italicized if unique to a core microbiome. Only significant differ-

ential abundances (alpha<0.05) are shown. Taxa are colored by order.

(PDF)

S3 Fig. Differentially abundant 16S lineages among representative orders (see Fig 5) in A)

patch >0.2μm (-) vs patch >5μm (+), B) non-patch>0.2μm (-) vs non-patch >5μm (+), C)

non-patch >0.2μm (-) vs patch >0.2μm (+), D) non-patch>5μm (-) vs patch >5μm (+). Neg-

ative (-) and positive (+) log2 fold changes represent lineages enriched as above. Significant

differential abundances (alpha<0.05) are indicated by red circles, while black circles indicate

non-significant values.

(PDF)

S4 Fig. Differentially abundant 16S lineages among representative genera (see Fig 6) in A)

patch >0.2μm (-) vs patch >5μm (+), B) non-patch>0.2μm (-) vs non-patch >5μm (+), C)

non-patch >0.2μm (-) vs patch >0.2μm (+), D) non-patch>5μm (-) vs patch >5μm (+). Neg-

ative (-) and positive (+) log2 fold changes represent lineages enriched as above. Significant
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differential abundances (alpha<0.05) are indicated by red circles, while black circles indicate

non-significant values.
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S5 Fig. Genus level differentially abundant 16S lineages among patch and non-patch samples

for A) >0.2μm and B)>5μm size fractioned samples. Negative log2 fold changes represent lin-

eages enriched in non-patch samples, while positive log2 fold changes represent lineages

enriched in patch samples. Lineages that are part of the patch (+) and non-patch (-) core

microbiomes are in bold, and italicized if unique to a core microbiome. Only significant differ-

ential abundances (alpha<0.05) are shown. Taxa are colored by order.

(PDF)

S6 Fig. Differentially abundant 16S lineages among the Patch>0.2μm and Patch>5μm size

fraction samples for A) Acidobacteria and B) Actinobacteria. Negative log2 fold changes repre-

sent lineages enriched in>0.2μm samples, while positive log2 fold changes represent lineages

enriched in >5μm samples. Lineages that are part of the>5μm fraction (+) and>0.2μm frac-

tion (-) core microbiomes are in bold, and italicized if unique to a core microbiome. Only

significant differential abundances (alpha <0.05) are shown. Data is grouped by phyla (taxon-

omy) and colored by order. Unknown orders are listed as next lowest known taxonomy and

indicated with �.

(PDF)

S7 Fig. Differentially abundant 16S lineages among the Patch >0.2μm and Patch >5μm

size fraction samples for Bacteriodetes. Negative log2 fold changes represent lineages

enriched in >0.2μm samples, while positive log2 fold changes represent lineages enriched in

>5μm samples. Lineages that are part of the >5μm fraction (+) and>0.2μm fraction (-) core

microbiomes are in bold, and italicized if unique to a core microbiome. Only significant differ-

ential abundances (alpha<0.05) are shown. Data is grouped by phyla (taxonomy) and colored

by order. Unknown orders are listed as next lowest known taxonomy and indicated with �.

(PDF)

S8 Fig. Differentially abundant 16S lineages among the Patch >0.2μm and Patch >5μm

size fraction samples for Alphaproteobacteria. Negative log2 fold changes represent lineages

enriched in >0.2μm samples, while positive log2 fold changes represent lineages enriched in

>5μm samples. Lineages that are part of the >5μm fraction (+) and>0.2μm fraction (-) core

microbiomes are in bold, and italicized if unique to a core microbiome. Only significant differ-

ential abundances (alpha<0.05) are shown. Data is grouped by phyla (taxonomy) and colored

by order. Unknown orders are listed as next lowest known taxonomy and indicated with �.

(PDF)

S9 Fig. Differentially abundant 16S lineages among the Patch>0.2μm and Patch>5μm size

fraction samples for A) Betaproteobacteria and B) Deltaproteobacteria. Negative log2 fold

changes represent lineages enriched in>0.2μm samples, while positive log2 fold changes rep-

resent lineages enriched in>5μm samples. Lineages that are part of the>5μm fraction (+) and

>0.2μm fraction (-) core microbiomes are in bold, and italicized if unique to a core micro-

biome. Only significant differential abundances (alpha<0.05) are shown. Data is grouped by

phyla (taxonomy) and colored by order. Unknown orders are listed as next lowest known tax-

onomy and indicated with �.

(PDF)

S10 Fig. Differentially abundant 16S lineages among the Patch >0.2μm and Patch >5μm

size fraction samples for Gammaproteobacteria. Negative log2 fold changes represent
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lineages enriched in >0.2μm samples, while positive log2 fold changes represent lineages

enriched in >5μm samples. Lineages that are part of the>5μm fraction (+) and>0.2μm frac-

tion (-) core microbiomes are in bold, and italicized if unique to a core microbiome. Only sig-

nificant differential abundances (alpha <0.05) are shown. Data is grouped by phyla

(taxonomy) and colored by order. Unknown orders are listed as next lowest known taxonomy

and indicated with �.
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S11 Fig. Differentially abundant 16S lineages among the Patch >0.2μm and Patch>5μm size

fraction samples for A) other Proteobacteria and B) Planctomycetes. Negative log2 fold

changes represent lineages enriched in>0.2μm samples, while positive log2 fold changes rep-

resent lineages enriched in>5μm samples. Lineages that are part of the>5μm fraction (+) and

>0.2μm fraction (-) core microbiomes are in bold, and italicized if unique to a core micro-

biome. Only significant differential abundances (alpha<0.05) are shown. Data is grouped by

phyla (taxonomy) and colored by order. Unknown orders are listed as next lowest known tax-

onomy and indicated with �.
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S12 Fig. Differentially abundant 16S lineages among the Patch >0.2μm and Patch>5μm size

fraction samples for A) SAR, B) Lentisphaerae and C) Verrucomicrobia. Negative log2 fold

changes represent lineages enriched in>0.2μm samples, while positive log2 fold changes rep-

resent lineages enriched in>5μm samples. Lineages that are part of the>5μm fraction (+) and

>0.2μm fraction (-) core microbiomes are in bold, and italicized if unique to a core micro-

biome. Only significant differential abundances (alpha<0.05) are shown. Data is grouped by

phyla (taxonomy) and colored by order. Unknown orders are listed as next lowest known tax-

onomy and indicated with �.

(PDF)

S13 Fig. Differentially abundant 16S lineages among the Patch >0.2μm and Patch>5μm size

fraction samples for A) Other and B) Chlorobi and Chloroflexi. Negative log2 fold changes

represent lineages enriched in >0.2μm samples, while positive log2 fold changes represent lin-

eages enriched in>5μm samples. Lineages that are part of the>5μm fraction (+) and>0.2μm

fraction (-) core microbiomes are in bold, and italicized if unique to a core microbiome. Only

significant differential abundances (alpha <0.05) are shown. Data is grouped by phyla (taxon-

omy) and colored by order. Unknown orders are listed as next lowest known taxonomy and

indicated with �.

(PDF)

S14 Fig. Differentially abundant 16S lineages among the Non-patch >0.2μm and Non-patch

>5μm size fraction samples for A) Acidobacteria and B) Actinobacteria. Negative log2 fold

changes represent lineages enriched in>0.2μm samples, while positive log2 fold changes rep-

resent lineages enriched in>5μm samples. Lineages that are part of the>5μm fraction (+) and

>0.2μm fraction (-) core microbiomes are in bold, and italicized if unique to a core micro-

biome. Only significant differential abundances (alpha<0.05) are shown. Data is grouped by

phyla (taxonomy) and colored by order. Unknown orders are listed as next lowest known tax-

onomy and indicated with �.

(PDF)

S15 Fig. Differentially abundant 16S lineages among the Non-patch >0.2μm and Non-

patch >5μm size fraction samples for Bacteriodetes. Negative log2 fold changes represent

lineages enriched in >0.2μm samples, while positive log2 fold changes represent lineages
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enriched in >5μm samples. Lineages that are part of the>5μm fraction (+) and>0.2μm frac-

tion (-) core microbiomes are in bold, and italicized if unique to a core microbiome. Only sig-

nificant differential abundances (alpha <0.05) are shown. Data is grouped by phyla

(taxonomy) and colored by order. Unknown orders are listed as next lowest known taxonomy

and indicated with �.
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S16 Fig. Differentially abundant 16S lineages among the Non-patch >0.2μm and Non-

patch >5μm size fraction samples for Alphaproteobacteria. Negative log2 fold changes rep-

resent lineages enriched in>0.2μm samples, while positive log2 fold changes represent line-

ages enriched in >5μm samples. Lineages that are part of the >5μm fraction (+) and>0.2μm

fraction (-) core microbiomes are in bold, and italicized if unique to a core microbiome. Only

significant differential abundances (alpha <0.05) are shown. Data is grouped by phyla (taxon-

omy) and colored by order. Unknown orders are listed as next lowest known taxonomy and

indicated with �.

(PDF)

S17 Fig. Differentially abundant 16S lineages among the Non-patch >0.2μm and Non-patch

>5μm size fraction samples for A) Deltaproteobacteria and B) Betaproteobacteria. Negative

log2 fold changes represent lineages enriched in>0.2μm samples, while positive log2 fold

changes represent lineages enriched in>5μm samples. Lineages that are part of the>5μm

fraction (+) and>0.2μm fraction (-) core microbiomes are in bold, and italicized if unique to

a core microbiome. Only significant differential abundances (alpha <0.05) are shown. Data is

grouped by phyla (taxonomy) and colored by order. Unknown orders are listed as next lowest

known taxonomy and indicated with �.

(PDF)

S18 Fig. Differentially abundant 16S lineages among the Non-patch >0.2μm and Non-

patch >5μm size fraction samples for Gammaproteobacteria. Negative log2 fold changes

represent lineages enriched in >0.2μm samples, while positive log2 fold changes represent lin-

eages enriched in>5μm samples. Lineages that are part of the>5μm fraction (+) and>0.2μm

fraction (-) core microbiomes are in bold, and italicized if unique to a core microbiome. Only

significant differential abundances (alpha <0.05) are shown. Data is grouped by phyla (taxon-

omy) and colored by order. Unknown orders are listed as next lowest known taxonomy and

indicated with �.

(PDF)

S19 Fig. Differentially abundant 16S lineages among the Non-patch >0.2μm and Non-patch

>5μm size fraction samples for A) other Proteobacteria and B) Planctomycetes. Negative log2

fold changes represent lineages enriched in >0.2μm samples, while positive log2 fold changes

represent lineages enriched in >5μm samples. Lineages that are part of the>5μm fraction (+)

and>0.2μm fraction (-) core microbiomes are in bold, and italicized if unique to a core micro-

biome. Only significant differential abundances (alpha<0.05) are shown. Data is grouped by

phyla (taxonomy) and colored by order. Unknown orders are listed as next lowest known tax-

onomy and indicated with �.

(PDF)

S20 Fig. Differentially abundant 16S lineages among the Non-patch >0.2μm and Non-patch

>5μm size fraction samples for A) Other and B) Chlorobi and Chloroflexi. Negative log2 fold

changes represent lineages enriched in>0.2μm samples, while positive log2 fold changes rep-

resent lineages enriched in>5μm samples. Lineages that are part of the>5μm fraction (+) and
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>0.2μm fraction (-) core microbiomes are in bold, and italicized if unique to a core micro-

biome. Only significant differential abundances (alpha<0.05) are shown. Data is grouped by

phyla (taxonomy) and colored by order. Unknown orders are listed as next lowest known tax-

onomy and indicated with �.

(PDF)

S21 Fig. Differentially abundant 16S lineages among the Non-patch >0.2μm and Non-patch

>5μm size fraction samples for A) SAR and B) Verrucomicrobia. Negative log2 fold changes

represent lineages enriched in >0.2μm samples, while positive log2 fold changes represent lin-

eages enriched in>5μm samples. Lineages that are part of the>5μm fraction (+) and>0.2μm

fraction (-) core microbiomes are in bold, and italicized if unique to a core microbiome. Only

significant differential abundances (alpha <0.05) are shown. Data is grouped by phyla (taxon-

omy) and colored by order. Unknown orders are listed as next lowest known taxonomy and

indicated with �.
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S22 Fig. Differentially abundant 18S lineages among the control and treatments of experi-

mental samples. Negative log2 fold changes represent lineages enriched in control samples,

while positive log2 fold changes represent lineages enriched in treatment samples.

(PDF)
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