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Abstract: Around 350 million people are living with hepatitis B virus (HBV), which can lead to death
due to liver cirrhosis and hepatocellular carcinoma (HCC). Various antiviral drugs/nucleot(s)ide
analogues are currently used to reduce or arrest the replication of this virus. However, many studies
have reported that nucleot(s)ide analogue-resistant HBV is circulating. Cellular signaling pathways
could be one of the targets against the viral replication. Several studies reported that viral proteins
interacted with mitochondrial proteins and localized in the mitochondria, the powerhouse of the cell.
And a recent study showed that mitochondrial turnover induced by thyroid hormones protected
hepatocytes from hepatocarcinogenesis mediated by HBV. Strong downregulation of numerous
cellular signaling pathways has also been reported to be accompanied by profound mitochondrial
alteration, as confirmed by transcriptome profiling of HBV-specific CD8 T cells from chronic and
acute HBV patients. In this review, we summarize the ongoing research into mitochondrial proteins
and/or signaling involved with HBV proteins, which will continue to provide insight into the
relationship between mitochondria and HBV and ultimately lead to advances in viral pathobiology
and mitochondria-targeted antiviral therapy.
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1. Introduction

Mitochondria are double-membraned organelles of eukaryotic cells. The basic structure of
the mitochondrion is composed of an outer mitochondrial membrane (OMM), inner mitochondrial
membrane (IMM), intermembrane space, cristae, and matrix. There are 1000–2000 different proteins in
the mitochondria [1]. The most important functions of mitochondria are to generate energy, regulate
cell metabolism, and transmit calcium signaling to other organelles in the cells. Mitochondria also
play crucial roles in cell apoptosis [2]. The OMM can associate with the membrane of the endoplasmic
reticulum (ER), resulting in a structure called the mitochondria-associated ER-membrane (MAM).
This communication is important for calcium signaling between the OMM and ER [3]. The number of
mitochondria varies dependent on the cell types. Liver cells contain 500–4000 mitochondria per cell [4].
One study suggested that mitochondria play important roles in the innate immune system against
viral infection through the mitochondrial antiviral signaling protein (MAVS) [5].

Mitochondria can change their shape and location, and can undergo fusion, fission, and mitophagy
in response to cellular stresses in order to maintain homeostasis [6]. These mitochondrial dynamics
might be dependent on different pathological conditions, such as cancers and viral infection [6–8],
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and many viruses—including hepatitis B virus (HBV), hepatitis C virus (HCV), pseudorabies
virus, human cytomegalovirus (HCMV), Epstein–Barr virus (EBV), influenza A virus, measles virus,
Newcastle disease virus (NDV), and SARS corona virus [6]—may interfere with the mitochondrial
dynamics. These viruses have been found to interact with many mitochondrial proteins and disrupt
mitochondrial dynamics, resulting in cellular apoptosis, intracellular calcium signaling, and innate
immune signaling [6].

HBV is a partially double-stranded DNA virus belonging to the family of hepadnaviridae,
and causes an acute and chronic liver disease known as hepatitis B (HB) [9,10]. HBV contains a 3.2 kb
genome surrounded by an icosahedral capsid and an envelope. Its genome encodes four overlapping
open reading frames (ORFs) known as polymerase (pol; P), surface or envelopes (S), core (C), and X
protein (X) (Figure 1) [11–14]. HBV enters hepatocytes through sodium taurocholate cotransporting
polypeptide (NTCP) as a receptor to bind with the preS1 region in the envelope protein, and then
the uncoated nucleocapsid is transported to the nucleus, where the relaxed circular DNA (rcDNA)
genome is converted to covalently closed circular DNA (cccDNA) [15–17]. The cccDNA is competent
for transcription of 3.5 kb pregenomic RNA (pgRNA), and for transcription of several subgenomic
RNAs such as 2.4 kb preS-S mRNA, 2.1 kb S mRNA, and 0.7 kb X mRNA. The pgRNA is encapsidated
together with pol and then reverse- transcribed into negative strand DNA, resulting in the formation of
rcDNA. This newly formed nucleocapsid re-enters the nucleus as a result of intracellular cycling [17,18].
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frames (ORFs), preC-C, P, preS-S, and X. The ORF P overlaps the other three open reading frames (ORFs).
(B). An overview of the HBV life cycle. HBV infects hepatocytes through preS1-NTCP interaction
followed by uncoating and is transported to the nucleus where cccDNA is formed. The cccDNA
acts as a template for transcription of the 3.5 kb pregenomic RNA (pgRNA), and the 2.4 kb, 2.1 kb,
and 0.7 kb subgenomic RNAs. The pol translated from pgRNA is encapsidated along with pgRNA,
then reverse-transcribed, and the partially double-stranded DNA genome is formed. The core particle
is enveloped in ER-Golgi/MVB and secreted into the extracellular space.

HBV encounters many subcellular organelles and host factors/proteins during the viral life
cycle, including those involved in entry, nuclear transport of capsids, DNA replication, assembly,
and egress [19]. HBV also targets mitochondria and disrupts mitochondrial dynamics, and several viral
proteins localize at the mitochondria and interact with numerous mitochondrial proteins [7,20–23].

Recently, host factors involved in mitochondrial turnover have also been targeted for the HBV
treatment [24]. Therefore, it would be useful to elucidate further details and basic information about
the relationship between HBV and mitochondria. In this review, we summarize and discuss the recent
literature on the interaction of mitochondrial factors and HBV gene products.

2. Methods

We comprehensively reviewed published articles related to HBV and mitochondria, and associated
proteins. The key words we used to search the literature were “hepatitis B virus and mitochondria”,
“HBx and mitochondria”, “HBV polymerase and mitochondria”, “HBsAg and mitochondria”, “HBV
core and mitochondria”, “preS1 and mitochondria”, and so on. The related articles cited in the searched
articles were also reviewed.

3. HBV and Mitochondria

It was reported that leakage of endoplasmic reticulum (ER)-calcium stores was caused by ER-
stress on HBV infection and adjacent depolarized and/or dysfunctional mitochondria, leading to
ROS generation [25]. It was also reported that HBV might alter mitochondrial dynamics, leading to
mitochondrial injury of hepatocytes, and subsequently liver disease onset [7,25].

3.1. HBx

HBx is a multifunctional protein encoded by ORF X and enhances HBV replication [26]. It activates
various cellular transcription factors and plays roles in cell cycle regulation, calcium signaling, DNA
repair, apoptosis regulation, ROS regulation, etc. [26–28]. Many studies reported that HBx is localized
in mitochondria, either in the OMM, IMM, or matrix [29–33]. It has been demonstrated that the
C-terminal transactivation domain of HBx [34] and the amino acids 54 to 70 of HBx [30] are involved in
its mitochondrial localization in Huh7 and WRL68 cells transiently transfected with tagged based HBx,
as shown by immunofluorescence analyses (IFA). This mitochondrial localization of HBx has been
further confirmed by mitochondrial purification assay from HepG2 2.2.15 cells, a cell line persistently
expressing a dimer molecule of HBV DNA under the control of native promoter [30]. Clippinger and
Bouchard demonstrated that HBx was partially localized at the OMM in primary rat hepatocytes
and HepG2 cells transfected with HBx and it regulates mitochondrial membrane potential (∆ψm)
and activated NF-κB [32]. However, it is still unclear how mitochondria-associated HBx regulates
HBV replication.

HBx induces production of reactive oxygen species (ROS), including mitochondrial ROS (mROS).
Increased mROS damages mitochondrial DNA (mtDNA) that might play a role in hepatocellular
carcinoma (HCC), and HBx-mediated ROS generation activates transcription factors such as Foxo-4 in
Chang cells stably expressing HBx (Chang-HBx) and in primary hepatic tissues from HBx-transgenic
mice; STAT-3, as well as NF-κB in HBx-transfected HepG2 cells [27,35–37]. Alteration of mtDNA
has been reported in chronic HBV patients, and could be associated with HCC [38–41]. Chen et al.
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found significantly higher mtDNA in peripheral blood leukocyte (PBL) of chronic hepatitis B patients
compared with a healthy control [39]. Moreover, higher mtDNA have been quantified in serum
samples of HBV patients but revealed increased risk of HCC development with lower mtDNA
level [38]. Zhao et al. also reported that lower mtDNA in PBL lead to increased risk of HCC [40].
The mtDNA copy number in HCC tissue samples correlated with large tumor size and liver cirrhosis [42].
A recent clinical study detected considerably higher mitochondrial superoxide in the cells of chronically
infected patients and found extensively altered mitochondria [43]. Increased intrahepatic lipid
peroxidase has been also reported in HBx-transgenic mice [44]. HBx directly binds with Raf-1 and
stimulates its translocation to mitochondria in Huh7 cells transfected with pCMV4X, suggesting that
mitochondrial Raf-1 should protect cells from apoptotic stress [45]. Several studies showed that HBx
colocalized with COXIII, an inner mitochondrial membrane protein, and upregulated its expression in
HepG2 cells, and that HBx elevated ROS and altered mitochondrial biogenesis and morphology [46–49].
Endogenous COXIII colocalized with HBx in HepG2 cells generated by lentivirus transduction, which
leads to the upregulation of COX-2 expression, thereby promoting cell growth [46]. HL-7702 cells stably
expressing HBx generated by lentivirus transduction (HL-7702-HBx) led to swollen mitochondria,
as shown by transmission electron microscopy [49]. Yoo et al. analyzed the subcellular distribution
of HBx-Flag in Huh7 cells by confocal microscopy at different time points after transfection [50].
At 24 h after transfection, the HBx was found to be localized mainly in the nucleus and partly in the
cytoplasm. However, HBx accumulated in the cytoplasm and in mitochondria at 36 h, and more
than 50% of the HBx localized into mitochondria as dot-like aggregates at 48 h after transfection.
A mitochondrial E3 ubiquitin ligase, MARCH5 interacted and colocalized with HBx in mitochondria
and promoted the degradation of HBx aggregates by polyubiquitination in Huh7 cells co-transfected
with Myc-MARCH5 and mitochondria-targeted HBx (HBx-Mito-Flag) [50]. MARCH5 localized on
OMM and regulated mitochondrial dynamics by ubiquitinating several mitochondrial proteins such
as Drp1, Fis1, and Mfn1. MARCH5 along with Mfn1 maintain mitochondrial homeostasis and cell
survival [51–54]. Moreover, MARCH5 decreased the HBx-induced NF-κB and COX-2 activity which
may play important roles in carcinogenesis [50,55,56]. The authors further demonstrated that MARCH5
mRNA and protein expression in either HCC or HBV-mediated HCC liver tissue specimens of clinical
cases were significantly downregulated in a later stage (Stage IV) of cancers with high expression of
HBx [50]. In addition, AIM2 (absent in melanoma2) protein could be involved in cell proliferation
and tumorigenic reversion and Aim2 deficient mice are more susceptible to the development of
colonic tumor [57,58]. HBx reduced the expression of AIM2 which leads to HCC metastasis through
the activation of EMT (epithelial-mesenchymal transition) by increasing expression of mesenchymal
markers, vimentin, and N-cadherin and decreasing expression of E-cadherin, an epithelial marker
in AIM2-overexpressed Bel-7402 and SMMC-7721 cells [59]. These results strongly correlated with
the clinical cases as AIM2 expression has been found at significantly low level in tissues of HCC
patients [59].

Many reports have suggested that HBx induces apoptosis. Takada et al. reported that HBx
strongly interacted with p53 in the aggregated mitochondrial structure in tranfected Huh7 cells,
probably at the OMM, and led to cell death [29]. Other reports suggested that HBx interacted
with the human voltage-dependent ion channel (hVDAC3), which is an outer mitochondrial protein,
and decreased ∆ψm of transfected HepG2 cells and cultured primary rat hepatocytes, thereby leading to
cell death [21,22]. HBx increases cytosolic calcium by regulating the hVDAC component, mitochondrial
permeability transition pore (MPTP) of HepG2 cells transfected with an HBV replication competent
plasmid payw1.2 under control of endogenous promoter [60,61]. Moreover, HBx interacts with
endogenous Bax in HepG2 cells stably expressing HBx, which acts as a pro- apoptotic regulator,
and enhances the translocation of Bax to mitochondria, the release of cytochrome c, and the induction
of apoptosis [62,63]. Bax itself also interacts with hVDAC and causes a reduction of ∆ψm and release
of cytochrome c [31,33]. Cardiolipin (CL), a mitochondrial lipid, is predominantly located at IMM and
plays important roles in mitochondrial functions, including apoptosis and mitophagy [64]. You et al.
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demonstrated that HBx bound with CL and increased membrane permeabilization [65]. However,
Lee et al. reported that HBx did not activate apoptotic signaling in transfected HepG2 cells though it
increases mROS [44], and none of these above studies showed the involvement of mitochondria.

HBx upregulates the expression of mitochondrial serine/threonine-protein kinase (PINK1) [7].
PINK1 is localized at the OMM, and it selectively accumulates on the depolarized/dysfunctional
mitochondria and recruits parkin to destroy these mitochondria [66]. Parkin ubiquitinates
mitochondria-associated HBx to trigger selective mitophagy. HBx stimulates parkin translocation
to mitochondria for degradation of Mfn2 by ubiquitination in a PINK1/parkin-dependent manner
in HBV-replicating Huh7 cells transiently transfected with 1.3 mer HBV genome under the control
of native promoter [7]. Mfn2 is an outer mitochondrial membrane protein and plays a vital role for
mitochondrial fusion. Kim et al. demonstrated that HBV and its encoded HBx protein promoted
mitochondrial fragmentation (fission) via Drp1 stimulation, and mitophagy via parkin, PINK1, and
LC3B stimulation [7]. They also demonstrated that HBx-induced mitophagy to attenuate mitochondrial
apoptosis, suggesting that HBV-induced mitochondrial fission and mitophagy should facilitate cell
survival and viral persistence. Huang et al. reported that HBx-induced mitophagy through the
PINK1-parkin pathway by increasing mitochondrial LONP1, which plays roles in the unfolded protein
response (UPR) in the mitochondrial matrix. This phenomenon has been confirmed in HBV-replicating
HepG2.2.2.15 cell line [67,68]. Chi et al. investigated the mitochondrial localization of HBx with
its effect on mROS and ∆ψm, which correlated with their data from HBx transgenic mice and
clinical HBV-mediated HCC patients [69]. HBx-induced carcinogenesis in HBx transgenic mice and
predominantly localized into mitochondria in stably expressing HepG2 cells and interacted with
PINK1 and parkin [69]. Thyroid hormone (TH) simultaneously induces mitochondrial biogenesis
and autophagy of HBx-targeted mitochondria through PINK1 induction to suppress HBx-promoted
ROS generation and carcinogenesis [69]. They further demonstrated that TH abolished HBx-mediated
upregulation of transcription factors, phospho-STAT3, c-Jun, NF-κB, and AP-1 through the increase
of mROS and the reduction of ∆ψm, and these results are consistent with others reports [35,37,69].
These TH/PINK1/Parkin signaling effects on the reduction of HBx- mediated HCC are correlated with
clinical cases [69]. HBx promotes stem/progenitor cell markers in HBx-transgenic mice treated with
3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) [70]. These results were confirmed by the increase of
IL-6/STAT3 and Wnt/β-catenin signaling activities in HBx- transgenic mice [70].

It has been reported that HBx interacts with heat shock proteins (HSPs) in mitochondria [71,72].
HSP60 is matured in the mitochondrial matrix after cleavage [73]. Tanaka et al. demonstrated that
HBx interacted with endogenous HSP60 in transfected Huh7 cells and enhanced HBx-mediated
apoptosis [71]. Although HSP70 is mainly localized at the endoplasmic reticulum, mitochondrial
HSP70 plays a vital role for mitochondrial protein folding [74]. HBx binds with the mitochondrial
HSP70 and forms a complex with endogenous HSP60 and HSP70 in transfected COS7 cells to fulfill
its function [72]. Parvulin 17 (Par17) is targeted to mitochondrial matrix but parvulin 14 (Par14)
localizes in the cytoplasm, nucleus, and mitochondria as well [75,76]. Par14 and Par 17, which play
roles in protein folding, chromatin remodeling, cell cycle progression and so on, directly interact
with HBx and promote HBx translocation to the nucleus and mitochondrial fractions, and upregulate
HBV DNA replication [77]. The Par14/17-HBx interaction and colocalization have been confirmed
by cell fractionation assay followed by IP and by IFA in transfected HEK293T cells. However,
the authors hypothesized that the interaction between Par14/17 and HBx forms a complex with cccDNA
(cccDNA-Par14/17-HBx complex) and this complex upregulates the HBV RNA transcription [77].

Mitochondrial antiviral signaling protein (MAVS) localizes at mitochondria by its C-terminal
transmembrane anchor and mitochondria-associated membranes (MAMs) [78,79]. In addition, MAVS
directly interacts with a translocase of the outer mitochondrial membrane 70 (TOM70) during viral
infections, and TOM70 associates with HSP90 [80,81]. Several reports have suggested that HBx likely
interacts with MAVS and attenuates antiviral immune responses [5,82,83]. Kumar et al. confirmed the
interaction of HBx with MAVS in HBx-transgenic mice and transfected HepG2 cells [84]. Wei et al.
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also demonstrated that HBx interacted with endogenous MAVS in HEK293T cells, which were
transfected with Myc-tagged HBx [82]. Parkin is an E3 ligase that plays an important role in protein
ubiquitination [85]. HBx stimulates parkin to interact with MAVS through recruitment of the linear
ubiquitin assembly complex (LUBAC) for disruption of the MAVS signalosome and for attenuation
of IRF3 activation [83]. HBx also bind with parkin in Huh7 cells cotransfected with Flag- HBx and
mCherry-Parkin [7]. HBx promotes the degradation of MAVS through ubiquitination and blocks
MAVS-mediated IFN-β induction [82]. HBx-mediated MAVS degradation strongly correlated with the
results from clinical HCC samples from HBV patients and HBx transgenic mice [82]. Thus virus-induced
RIG-I-MAVS signaling is inhibited by HBx, which leads to attenuation of antiviral immune responses
of the innate immune system [5,82]. However, a recent study has been conducted by collecting liver
tissue samples from chronic HBV patients and demonstrated that HBV does not interfere with the
innate immune response [86].

Therefore, considering all of the above results, it might be stated that HBx has a role for development
of HBV-mediated HCC by modulating mROS, ∆ψm, and mtDNA through the activation of several
transcription factors. As discussed above, several reports also demonstrated that HBx may play a role
in mitochondria-mediated cellular apoptosis and attenuation of innate immune response. During
these processes, at least a fraction of HBx may localize at mitochondria, and directly or indirectly
interacts with many kinds of mitochondrial proteins, and exerts effects on the morphological and
functional changes of mitochondria, thereby regulating various kinds of cellular responses which are
advantageous to HBV replication (Figure 2). However, a few reports also demonstrated that HBx
localized into the nucleus either in Huh7 and HepG2 cells transfected with HBx-expressing plasmids
and HBV-infected PHH [87,88]. Kornyeyev et al. showed that HBx was mainly detected in the nucleus
in HBV-infected PHH cells. In contrast, the HBx mutant lost the DDB1- binding activity; which was
detected in both the cytoplasm and nucleus, suggesting that the nuclear localization of HBx depends
on the interaction of HBx with DDB1. Although authors explained that the cytoplasmic localization of
HBx may occur as results of saturation of the HBx–DDB1 interaction, because the cytoplasmic HBx
was detected only in the highly expressing cells [87].

3.2. Polymerase

HBV polymerase (pol) is a multifunctional reverse transcriptase protein, and its ORF overlaps
with the three other ORFs, S, X, and C. It has four domains: a terminal protein (TP), spacer, reverse
transcriptase (RT), and RNase H domain. Pol plays essential roles in viral εRNA binding to package
pgRNA into nucleocapsids, and initiates reverse transcription [89,90]. During HBV replication, pol
also interacts with many cellular proteins, including mitochondrial ones [20,91–93].

A recent study reported that pol has a mitochondrial targeting signal (MTS) and localizes at
the mitochondria in HBV-replicating Huh7 cells transfected with HBV genome under the control
of CMV immediate early promoter, but neither core nor pgRNA localizes there during viral DNA
replication [20]. Many reports have indicated that pol inhibits innate immune responses by preventing
the upregulation of interferon regulatory factor 3 (IRF-3) [92,94]. Liu et al. clearly demonstrated the
pol- mediated downregulation of IFN-β through direct interaction with stimulator of interferon genes
(STING) in Huh7 cells transfected with plasmid pHBV1.3 or pCMV-HBV [95]. RT domain of pol also
drastically reduces the K63-linked polyubiquitination of STING, which is necessary for the activation of
IFN induction pathway [95,96]. It has been reported that STING associates with MAMs [5]. Therefore,
Unchwaniwala et al. assumed that pol might interact with STING at mitochondria, although they
did not discuss the involvement of mitochondria in pol-mediated immune responses in their study
(Figure 2) [20]. Again it should be mentioned here, Suslov et al. demonstrated that HBV does not
interfere with the innate immune response in chronic HBV-infected patients [86].
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Figure 2. Interactions between HBV proteins and mitochondrial proteins. HBx interacts with different
mitochondrial proteins and/or translocates several cytosolic proteins into mitochondria, which affects
mitochondrial fission, morphology, and biogenesis and leads to mitophagy/dysfunction. Innate
immunity is lost due to decreased activities of IRF3 and IFN-β through MAVS/parkin/HBx interaction.
Cell death/apoptosis may occur due to loss of ∆ψm and release of cytochrome c induced by HBx.
Increase in mROS due to HBx causes mtDNA destruction and activation of oncogenic transcription
factors, which might lead to HCC development. Pol interacts with STING and reduces the antiviral
immunity through suppression of IFN-β. HBsAg interacts with and degrades GRP78 and up-regulates
IFN-β to suppress HBV replication. Viral replication is also suppressed by degradation of HBc and
HBx through interaction between HBc and hTid1. HBx translocates Raf1 into mitochondria. HBsAg
binds with JTB and reduces the mitochondrial localization of JTB. Double arrows indicate interactions
and dashed arrows indicate translocations.

3.3. HBsAg

The HBV nucleocapsid is surrounded by three surface (envelope) proteins encoded by an ORF
preS-S sharing a common S ORF. The large surface protein (LHBsAg, LS) consists of preS1, preS2, and S
ORF, and the middle one (MHBsAg, MS) consists of preS2 and S, whereas the smallest one (SHBsAg,
SS) contains only S ORF [97]. Subviral particles consisting of MS and SS are produced in greater excess
compared to mature viral particles, and all three envelope proteins are required for efficient infectious
HBV (Dane particles) formation [11], even though MS is not necessary. HBV attaches to cells by the
preS1 regions of the LS, whereas SS is an important determinant for diagnosis [12].

The ubiquitous molecular chaperone GRP78 generally localizes at ER, but a part of GRP78 is also
present in mitochondria, especially in the intermembrane space, inner membrane, and matrix under
the unfolded protein response (UPR) [98]. ER stress is activated by HBV infection through the ER-
associated degradation (ERAD) pathway in persistently replicating HepG2 2.2.15 cells, and reduces
the production of envelope proteins [99]. GRP78 is up-regulated in HepAD38 cells, a persistently
HBV genome-integrated cell line under the control of a tet operator/CMV promoter and inhibits viral
replication through the IFN-β-mediated pathway [100]. However, GRP78 expression was lower in liver
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tissues of post lamivudine treated clinical patients compared with pretreated cases though it showed
cytoplasmic and perinuclear staining pattern [100]. Moreover, Cho et al. demonstrated that GRP78
binds with preS1 of LS in HepG2 cells transfected with a replication competent plasmid pHBV5.2
under the control of autologous regulatory elements, although exact importance of GRP78 in HBV
replication has not been clarified [101]. Heat shock protein family A (HSP70) family member 9 (HSPA9),
also known as GRP75, is primarily localized in mitochondria but also found at lower levels in the
ER [102]. GRP75 is involved in cell proliferation by interacting with p53 [103]. The preS1 region of
LS physically binds with the GRP75 in co-transfected COS7 cells, where it is expected to regulate
proper folding of HBV envelope proteins [104]. Though, HBV envelope proteins are assembled with
naked capsids on the ER-Golgi and/or multivesicular body (MVB) [105–107] none of the above studies
showed colocalization of HBsAg and GRP75/78 specifically in mitochondria.

SS binds with enoyl-coA hydratase short chain 1 (ECHS1), which is located in the mitochondrial
matrix, acts on the fatty acid beta-oxidation pathway, and reduces the ECHS1 expression in hepatoma
cells [108]. A study reported that SS interacted with ECHS1 in the cytoplasm of co-transfected 293FT
cells, and that co-existence of ECHS1 and SS induced apoptosis by decreasing ∆ψm and upregulating
pro-apoptotic proteins (Bad, Bid, Bim, etc.) in HepG2 cells stably expressing HBs [109]. Jumping
translocation breakpoint (JTB) protein is overexpressed in HCC, and is thought to play an important
role in oncogenesis in the liver [110,111]. SS is reported to bind with JTB in transfected HepG2 cells
and reduce the mitochondrial localization of JTB, and to inhibit phosphorylation of p65, a subunit of
the NF-κB complex, implying that SS might have a role in HCC progression (Figure 2) [110].

These reports suggest that some SS is localized in the mitochondria, where it associates with a few
mitochondrial proteins and affects their function.

3.4. Core

HBV core (HBc) is a small protein, consisting of 183 amino acids produced by ORF C, which is
self-assembled to form viral capsids [112–114]. The hTid1, a family protein of HSP40, predominantly
localizes in mitochondria and is involved in apoptosis [115–117]. The hTid1 interacts with HBc and
reduces viral replication by degradation of HBc and HBx proteins (Figure 2) [118]. The authors
confirmed the hTid1-HBc interaction in Huh7 cells co-transfected with pcDNA6/V5-HisA (hTid1) and
pHBcHA (HBc) and investigated these effects in HepG2 cells transfected with replication competent
plasmid pHBV1.3 under the control of CMV promoter [118].

4. Conclusions and Perspectives

According to most of the studies discussed above, at least some fraction of HBx may localize and/or
associate with the mitochondria and associated proteins to disturb mitochondrial dynamics/signaling
and could play a momentous role in HBV-mediated HCC formation. Many host proteins/factors such
as transcriptional, anti-apoptotic, pro-apoptotic, and innate immune-related proteins are thought to
be involved during HBx-mitochondria mediated pathogenesis. There is a possibility that another
functional protein, pol, could benefit from mitochondria by suppressing STING-mediated antiviral
signaling. As for HBsAg, it is ubiquitous in and around mitochondria and could interact with some
factors therein. However, most of these studies regarding HBV and mitochondria have been conducted
in an overexpression system, and a few reports also showed that HBx predominantly localized into
nucleus even in infection condition. Therefore, such phenomena/mechanisms should be verified in
infection systems and also in HBV-infected patients.

In conclusion, HBV has been suggested to exert substantial effects on mitochondria to
change mitochondrial dynamics/signaling, leading to HCC development. Further investigations
of the relationships between HBV and mitochondria are needed to improve our understanding of
mitochondrial involvement in the HBV life cycle. Such research could open a door to novel therapeutic
strategies directed at mitochondria.
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