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ABSTRACT: This study presents the development of machine-learning-based quantitative structure−property relationship (QSPR)
models for predicting electron affinity, ionization potential, and band gap of fusenes from different chemical classes. Three variants of
the atom-based Weisfeiler−Lehman (WL) graph kernel method and the machine learning model Gaussian process regressor (GPR)
were used. The data pool comprises polycyclic aromatic hydrocarbons (PAHs), thienoacenes, cyano-substituted PAHs, and nitro-
substituted PAHs computed with density functional theory (DFT) at the B3LYP-D3/6-31+G(d) level of theory. The results
demonstrate that the GPR/WL kernel methods can accurately predict the electronic properties of PAHs and their derivatives with
root-mean-square deviations of 0.15 eV. Additionally, we also demonstrate the effectiveness of the active learning protocol for the
GPR/WL kernel methods pipeline, particularly for data sets with greater diversity. The interpretation of the model for contributions
of individual atoms to the predicted electronic properties provides reasons for the success of our previous degree of π-orbital overlap
model.

1. INTRODUCTION
The vast chemical space makes it difficult to screen potential
compounds using experiments or ab initio methods for specific
purposes. To overcome this challenge, data-driven models are
being used as low-cost tools to narrow down the search space.1

One such practice is the quantitative structure−properties
relationship (QSPR),2 where practitioners use easier-to-obtain
properties, such as molecular structures, to infer materials’
properties quantitatively and statistically.3 This approach is
particularly useful for modeling pertinent properties of organic
semiconductor materials1,4−6 that are difficult to experimentally
measure or require extensive quantum chemistry calculations for
predictions. These materials have applications in various
technologies, such as photovoltaics,7−9 light-emitting di-
odes,10,11 and transistors.12,13

Electronic properties, such as band gap, frontier orbitals’
energies, electron affinity (EA), and ionization potential (IP), of
organic semiconductors correlate with the materials’ stability,
charge transport properties, and other devices’ qualities12,14,15

and, thus, make pragmatic and vital objective functions for data-
driven optimization of materials. Fortunately, these properties
correlate well with the molecule’s 2-dimensional (2D) structure,
especially for polycyclic aromatic hydrocarbons (PAHs) by the
use of the degree of π-orbital overlap (DPO) descriptor, which is
based on the quantum mechanic 2D particle-in-the-box
model.16−19 Nevertheless, the attachment of electron accept-
ors/donors to PAH molecules complicates such a particle-in-
the-box physical model and, hence, undermines the simple “box”
model. This calls for a better approach to this problem.

Modern cheminformatics provides several widely used,
general-purpose 2D molecular fingerprints that summarize
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molecular structures as collections of substructures. These
fingerprints include the Molecular ACcess System
(MACCS)20,21 and the extended connectivity fingerprint
(ECFP) algorithm22 for structural representation in various
modeling disciplines.5,6,21,23−27 However, these fingerprints are
binary vectors that indicate the presence or absence of certain
structural features to fully capture the structures of molecules
that contain repetitive or similar subunits, such as polymers.27

This is a particularly relevant concern for polycyclic aromatic
hydrocarbons (PAHs) which are constructed by attaching a
number of benzene units, and their electronic properties are
strongly influenced by their size and shape.

Alternatively, models that operate on graph data structures
can be used to learn chemical data. These include graph kernel
methods,28 which employ a kernel function29 that computes the
similarity between two graphs. There are a variety of such
methods, including the marginalized graph kernel, which
compares graphs on the basis of collections of random walks
on both of them.30 The Weisfeiler−Lehman (WL) graph
kernels31,32 introduce a kernel function that compares graphs by
comparing substructures generated by the Weisfeiler−Lehman
algorithm, which is similar to chemists’ ECFP. Moreover,
different Weisfeiler−Lehman kernels are introduced that
incorporate different elements of the graphs into the
comparison, such as shortest paths and edges.

This work focuses on developing a generalized atom-based
QSPR model for electronic properties of PAHs, thienoacenes,
and PAH derivatives that are substituted with nitrile (−CN) and
nitro (−NO2) groups using the cheminformatic and graph
machine learning (ML) tools mentioned above. These diverse
data sets are gathered from our previous works, as well as those
created for the nitro-substituted PAHs in this work. All gathered
data are resampled into three different balanced data sets, which
are used to assess the accuracy of severalWL kernel methods and
the ECFP fingerprint, used in conjunction with the Gaussian
process regression (GPR) model. Furthermore, active learning
protocols are also implemented and assessed in this work. We
also discuss the linear-model-based interpretations of the WL
methods and the WL kernel methods’ potential pitfalls.

2. METHODOLOGY
2.1. Weisfeiler−Lehman Algorithm and Kernel. In

cheminformatics, molecules can be represented as undirected
graphs composed of a set of nodes ( ) and a set of edges ( ),
which represent a set of atoms ( ) and bonds ( ), respectively.
A labeled graph has the addition of a labeling function ( ), which
maps each atom to a label, which is an integer in our work:

. The Weisfeiler−Lehman (WL) algorithm is a
process that recursively computes the new labeling function of
a graph. Initially, atoms are labeled on the basis of their intrinsic
properties: , where “hash” is a hash function
and f(a) is a list of atom a’s properties, including but not limited
to its atomic numbers, chirality, degree (number of non-
hydrogen neighbor atoms), formal charge, number of attached
hydrogens, hybridization, whether it is in a ring or an aromatic
ring, and the number of radical electrons.33 The recursive
updating of each atom’s label can be described succinctly using
the message passing framework,34 as follows:

(1)

(2)

where the superscript [t] denotes the t-th iteration, is an
atom, is a set of atoms that a bonds with, “sort” is a
function for sorting lists in ascending order, and ⊕ denotes the
concatenation of lists. In other words, for each atom, t-th labels
(i.e., of t-th iteration) of its neighbor atoms are gathered into an
ascendingly sorted list, which is inserted at the beginning with
the t-th label of themain atom and then hashed to obtain the (t +
1)-th label of the main atom. The number of iterations of this
step is chosen by the users. For comparison, the ECFP method
has a similar style of updating atoms’ labels (which are called
identifiers), except that bonds are also used for sorting neighbor
atoms’ labels.

TheWL kernel methods use the result of theWL algorithm to
formulate a kernel function for a pair of molecular graphs and

as a kernel function for a pair of vectors, as follows:

(3)

The simplest feature vector ϕWL−A
[T] ( ) for a molecule is a

vector whose entries count the number of atoms with certain
labels, including all initial labels and all labels at the end of every
iteration up to the T-th iteration of the Weisfeiler−Lehman
(WL) algorithm. To construct this feature vector, we first
determine all the unique atomic labels that appear in the data set
and assign each of them an arbitrary index between zero and the
total number of unique atomic labels. Then, the ith entry of
ϕWL−A

[T] ( ) is the count of the number of atoms in that have
the label corresponding to the index i. In mathematical terms, if
we denote all the indexed labels as σ1, σ2,···, σN, then the i-th
entry of the feature vector ϕWL−A

[T] ( ) can be defined as follows:

(4)

where | | returns the number of elements in a set and is the set
of all atoms in the molecule. Since this method is mainly
concerned with atoms characterized by their surrounding
topology, in this work, we call it atom-based WL (WL-A),
instead of the original name subtree WL, kernel to facilitate
understanding in chemical applications.

The vector ϕWL−A
[T] ( ) shares many similarities with ECFP

vectors, as both record atoms’ labels. However, ECFP ignores
atom labels that represent duplicate substructures and option-
ally, but frequently, ignores duplicate atom labels, which results
in bit fingerprint vectors. Additionally, ECFP maps identifiers to
vectors using a feature hashing process; therefore, ECFP
fingerprint lengths are customizable.35,36 We believe that this
approach could be adapted by the WL kernel to improve the
memory and runtime efficiency.

Alternatively, atoms’ labels can be used to define other
elements of the graphs, such as edges for bond types and shortest
paths for interatomic distances,37 which can be counted and
vectorized in the atom, bond-based WL kernel (WL-AB)
method and the atom, distance-based WL kernel (WL-AD)
method, respectively. These items are characterized by labels of
atoms at their two ends and their properties. We define labels for
b o n d s a n d s h o r t e s t p a t h s , r e s p e c t i v e l y , a s

a n d
. H e r e ,

to avoid double-counting, f(a, a′) is the list of
properties of the bond between a and a′, and len(a, a′) is the
smallest number of bonds between a and a′, i.e., the length of the
shortest path. The properties of a bond that we consider in this
work include bond type (e.g., single, double, ...), bond stereo
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(e.g., E, Z, cis, trans, or none), and whether the bond is
conjugated.33 Similar to above, these methods can also be
defined mathematically as

(5)

(6)

As with the WL-A, all labels σ1, σ2,··· are determined
beforehand and assigned indices, is a set of tuples of atom
pairs that bond with each other, and is a set of tuples of
all possible pairs of atoms in the molecule.

Using the Rdkit package,38 the SMILES strings are converted
to graph representations of lists of node properties and
adjacency lists. From the graph representations, the described
algorithms for extracting WL vectors are implemented in
Python. The CRC32 hash function from the Zlib library of
Python is used. The Rdkit’s implementation of bit ECFP
fingerprint38 is used in this study.
2.2. Machine Learning Models and Active Learning.

We used the Gaussian process regression (GPR)39 in
combination with various WL kernels or the ECFP fingerprint
to predict electronic properties, which are denoted as GPR/WL
or GPR/ECFP. For the kernel function of the GPR model (i.e.,
the function k in eq 3), we used both a linear function and a

nonlinear radial basis function (RBF). One advantage of the
GPRmodel is that it can provide predictive uncertainty,30 which
is useful for use with an active learning protocol.30,40 This
protocol deals with the problem of selecting which samples to
add to the training set in order to improve the model the most
when the true values of the samples are unknown. We
implemented this active learning protocol30 with our WL kernel
and GPR model. Note that samples with the highest predictive
standard deviations computed by the trained GPR model are
assumed to have the most uncertain predictions and, thus,
including these samples in the training set would improve the
model.

In addition to the GPR model, we also used the ridge
regression (RR) method to map ECFP fingerprints and ϕ
vectors generated from WL algorithms [i.e., ϕWL−A

[T] ( ),
ϕWL−AB

[T] ( ), or ϕWL−AD
[T] ( ) vectors] to electronic properties.

These models are denoted as RR/ECFP and RR/WL,
respectively. RR is the same as linear regression except for the
use of regularization techniques to prevent overfitting.29 In this
study, implementations of these models from the scikit-learn
package41 were used.
2.3. Physical Interpretation of the Model. An advantage

of using the ridge regression model is its ability to provide some
physical insight into the model. In particular, the contributions
of individual atoms to the property predictions can be extracted.
Note that ridge regression is simply a linear regression whose
loss function includes a regularization term.29,42 Thus, the

Figure 1. Distribution of molecule classes for all three data sets.
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prediction from the T-iteration WL-A vector of the ith
compounds has the form:

(7)

Without losing the generality, suppose that an atom v has T +
1 labels , , ···, where σj, σk, ···,
σp are labels whose counts are kept track of at j, k, ···, pth entries
of the vector. Then, the contribution of atom v to
the prediction according to eq 7 is

(8)

where Wj, Wk, ···, Wp are the j, k, ···, pth components of the
parameters vector W of the RR model. Henceforth, the sum of
contributions of all atoms in the molecule plus a bias constant b
is the prediction of the model:

(9)

2.4. Data. In this study, we use a data set of a total of 2131
molecules from four classes of polycyclic aromatic compounds:
PAHs, thienoacenes, singly to quadruply cyano-substituted
PAHs, and singly to quadruply nitro-substituted PAHs.
Electronic properties data on PAHs, thienoacenes, and cyano-
substituted PAH molecules are from our previous studies.16−18

Electronic properties of the nitro-substituted PAH chemical
class were calculated in this study at the same level of theory as
other chemical classes, namely the B3LYP-D3/6-31+G(d) level
of theory, by using the GAUSSIAN package.43 Electron affinity
(EA) and ionization potential (IP) can be respectively
approximated to be the highest occupied molecular orbital
(HOMO) and the lowest occupied molecular orbital (LUMO)
energy levels according to Koopman’s theorem. The band gap
values are approximated to be the HOMO−LUMO gaps.16−18

Because of the fact that some substituted PAH chemical
classes have more structural variations than others, such as the
base PAH class, the four original data sets are severely
imbalanced, as illustrated in Figure S1 and Table S1, if fully
used to assess the performance of different ML models in this
study. To address this issue, we performed random and stratified
sampling on each original chemical class to create three different
balanced composite data sets, where representations of each
chemical class in a composite one are similar in magnitude.

The first data set is a mixed data set, which comprises 425 data
points from all four classes of molecules with similar
proportions. The distribution of these four classes is shown in
the pie chart of Figure 1A, and the number of data points per
chemical class is given in Table S2. The second data set, named
the PAH data set, is composed of all 246 PAH and thienoacene
class molecules from the original data pool, as shown in the pie
chart of Figure 1B and in Table S3. Finally, the substituted PAH
data set consists of 887 cyano- and nitro-substituted PAH
molecules that are resampled to balance the number of
molecules with different types and numbers of substituents, as
shown in the pie chart of Figure 1C and in Table S4.

For each experiment, we randomly split the data set into two
separate subsets, namely, the training and test sets, with
approximately 70% and 30% of the data, respectively. To ensure
that the training and test sets have similar distributions of band
gap values, we employed a band gap−bins-wise stratified
splitting method, as previously described in our work.18,19

3. RESULTS AND DISCUSSION
3.1. Effect of the Number of Iterations. Figure 2 shows

three WL vectors, ϕWL−A
[T] , ϕWL−AB

[T] , and ϕWL−AD
[T] , as functions of

the number of WL iterations. It demonstrates an exponentially
increasing relationship, thereby indicating that the number of
WL iterations should be carefully selected to avoid model
overfitting and a long training time, especially for the GPR
model.

Figure 3 shows the root-mean-square deviations (RMSD) of
band gaps for the ECFP-based models (Figure 3A−C) and WL-
based model (Figure 3D−I) as functions of the number of WL
iterations. Because of overfitting, some GPR/WL kernel
methods with high numbers of iterations produce RMSD values
larger than 2.00 eV, and therefore, they are not presented in
Figures 3D−F for the sake of visibility of other models’
performances. Such extreme overfitting issues are also observed
for the GPR/WL-AD model with radial basis function (RBF)
kernel, and henceforth, only the linear kernel function is
considered for these methods. However, Figure 3D−I also
suggests that if the number of iterations is too low (e.g., <2 for
most models), models are inaccurate because of underfitting.
Note that the accuracy of the ECFPmodel depends on its radius
of fingerprint, which is equivalent to the number of iterations of
WL methods, and thus, Figure 3A−C also displays the
relationship between ECFP-based model accuracy versus the
number of iterations for simple comparisons. As shown in Figure
3, ECFP-based models take more iterations to converge, and the
converged errors are generally higher than those of the WL
kernel methods with the same regressing learning model.

From this point onward, the number of iterations of the WL
model and the radius of ECFP as hyperparameters are optimized
via grid search and cross-validation. Table 1 lists the search range
for values of the number of WL iterations or ECFP radius and
the GPR kernel function used for each method, which is based
on the findings in this section.
3.2. Accuracy of GPR/WL Kernel Methods and ECFP

Model. Figure 4 shows the RMSDs of several models with
GPR/WL kernels or ECFP for all three data sets obtained from
20 different runs. In addition, Figure S6 similarly shows
corresponding R-squared values for these models, and Figures
S2−S4 plot the predictions by GPR/ECFP and GPR/WL
models against the DFT-calculated values. The results indicate
that threeWL kernel methods demonstrate similar accuracy and

Figure 2. Plot of the base 10 logarithms of lengths of feature vectors of
WL-A, WL-AB, and WL-AD as a function of the number of iterations.
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significantly outperform the model with ECFP. For the mixed
data set, the RMSD values for band gap, EA, and IP properties
are around 0.15−0.16 eV, 0.12−0.13 eV, and 0.08−0.09 eV,
respectively. The errors are lower for the PAH and substituted
PAHdata sets with 0.10−0.11 eV for band gap and less than 0.10
eV for EA and IP properties, as these data sets are more
homogeneous. These results suggest that GPR/WL kernel
methods can model the electronic properties of fusene

compounds with reasonable accuracy given the 0.1 eV
uncertainty of the DFT method.16

The GPR/ECFP model has an average RMSD value of ∼0.1
eV higher for the band gap property compared with the GPR/
WL kernel methods. This difference can be attributed to the fact
that bit ECFP vectors only register the presence of molecular
fragments with 0 or 1 bit, thereby leaving out critical information
regarding the size of the molecule, which is important for
modeling electronic properties of PAHs. On the basis of this
finding, we discourage the use of bit ECFP for modeling
properties that are correlated with the size of molecules.

Since the results on the performance of different ML models
are similar for the band gap, EA, and IP electronic properties, for
simplicity, we use only the band gap results to present the
performance of the active learning protocol and physical
interpretations of the learned models below. Results for the
EA and IP can be found in the Supporting Information.
3.3. Active Learning. To evaluate the active learning

capability of ourWL-A/GPRmodel, we begin with a training set
that comprises 20% of the full-sized training set, while the
remaining data points are placed in a test set. We then select
samples from the test set, either randomly or using the active
learning protocol described earlier, and then add them to the
training set. We repeat this process iteratively until the training
set reaches its full size. The accuracies of themodel are plotted as
a function of the training set size for both methods of training set
augmentation, namely, randomly and actively, in Figure 5 for the

Figure 3. Plots of root-mean-square deviations for band gap as the function of the number of iterations for themixed data set, the PAH data set, and the
substituted PAH data set, respectively, from top to bottom. Plots (A−C) are for ECFP-based methods, plots (D−F) are for RR/WL, and plots (G−I)
are for GPR/WL kernel methods.

Table 1. Table of Search Ranges for the Number of WL
Iterations and GPR Kernel Function Used for Each Method

model data set
number
iterations

GPR kernel
function

GPR/WL-A all [2, 3] RBF
GPR/WL-AB all [1, 2] RBF
GPR/WL-AD all [1, 2] Linear
GPR/ECFP mixed [4−8] RBF

PAH [3−6] RBF
substituted PAH [2−5] RBF

RR/WL-A all [3, 4, 5]
RR/WL-AB all [3, 4, 5]
RR/WL-AD mixed and PAH [1, 2, 3]

substituted PAH [1, 2]
RR/ECFP mixed [4−8]

PAH [3−6]
substituted PAH [2−5]
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band gap property and Figures S7 and S8 for the EA and IP
properties, respectively.

In general, the models trained with actively built training sets
outperform those trained on randomly built training sets in most
cases, although not by a largemargin, of 0.01−0.03 eV in RMSD.
This is particularly true for the mixed data set, which is the most
diverse data set among the three. For the substituted PAH data
set, the active learning protocol only demonstrates its superiority
for two kernel methods out of three (WL-A and WL-AB) and
performs comparably for the other. Finally, for the PAH data set,
which is the smallest of the three, the active protocol slightly
underperforms for onemethod and performs comparably for the
other two. In summary, the effectiveness of the active learning
protocol seems to significantly correlate with the degree of
diversity of the data sets. The result indicates that building or
refining the model via training set augmentation with active
learning can be achieved with slightly better results, which
subsequently may reduce the expenses associated with data
gathering.
3.4. Linear Models and Physical Interpretation of

LearnedModels. Figure 6 presents the errors determined over
20 runs of models with RR regressors and WL ϕ vectors (RR/
WL) or ECFP (RR/ECFP) as feature vectors for all three data
sets. Similarly, models’ accuracies in terms of R-squared are
presented in Figure S13, while Figures S9−S12 plot RR/ECFP
or RR/WLs model predictions versus DFT calculated values for
all three electronic properties. Linear models generally exhibit
lower accuracy than their nonlinear GPR-based counterparts.

However, the WL-based RR models demonstrate similar
accuracy to GPR/WL kernel methods for the PAH data set.
Additionally, RR/WL-AD exhibits better accuracy than RR/
WL-A or WL-AB and roughly the same accuracy as GPR/WL
models for all data sets, thereby suggesting that ϕWL−AD
demonstrates a better linear relationship with electronic
properties than ϕWL−A or ϕWL−AB. This can be attributed to
the fact that the shortest paths encoded in ϕWL−AD (or an atom
pair’s distance) represent the molecules’ sizes, which linearly
correlate with the electronic properties according to the
quantum mechanical particle-in-the-box model. These results
support our expectation that WL-based methods can be
engineered with domain knowledge to better represent
molecules for modeling certain properties.

Predictions bymodels that are trained in the PAH data set and
the substituted PAH data set are analyzed and visualized in
Figures 7 and 8. Each illustrates structures with the highest band
gaps (top row), lowest band gaps (bottom row), and median
band gaps (middle row). Overall, the lower the band gap, the
denser and more intense the red orbs are that mark atoms that
contribute negatively to the band gap properties or decrease the
band gap. The appearance of the darker red orbs (atoms that
contribute more negatively) in a molecule correlates with the
length of its longest segment in the molecule. This result
supports the concept of the reference segment of the DPO
model.16−18 Visualization for predictions of EA and IP
properties are respectively given in Figures S14 and S15 for
PAHdata sets and Figures S16 and S17 for substituted PAHdata

Figure 4. Boxplots for RMSDs obtained over 20 runs for GPR/WL kernel methods and GPR/ECPF model for band gap (A−C), EA (D−F), and IP
(G−I) from top to bottom. Square scatters are average values of RMSDs. Figures in the leftmost (A, D, G), middle (B, E, H), and rightmost (C, F, I)
columns are for the mixed data set, PAH data sets, and substituted PAH data sets, respectively.
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sets. In general, the visualization of themodels’ interpretation for
EA and IP properties is mostly the same as for band gap. Note
that since the EA trend is opposite to band gap or IP’s, the signs
of atomic contributions to IP are of opposite sign to the other
two.
3.5. Erroneous Out-of-Plane Structures. The leave-one-

out (LOO) method involves training a model with all samples
except for one and then using that sample as a test set to assess
the model’s error. This procedure is repeated for each sample,
thereby allowing the LOO error to be determined for all
samples. Therefore, we propose using this method to identify
structures that the present models predict with the largest errors.
Themean of LOORMSDs for each sample in the mixed data set
of the WL-A/GPR model for band gap is 0.10 ± 0.09 eV. Note
that LOO error is an overtly optimistic indicator of perform-
ance2 and also is highly variable. Figure 9 shows nine structures
with high LOO RMSD for band gap in the mixed data set. The
common feature among them is that they are likely to be out-of-
plane because of steric hindrance between substituents
(compounds 1, 3, 6, 7, 8, 9), between substituents and fused
rings (compounds 2,5), and between fused rings (compounds
4).

The planarity of PAHs is a recurring source of error for QSPR
models for the electronic properties of aromatic molecules. In
our previous work on the DPO-based model, we discussed this

issue in detail.16 Since the electronic properties of aromatic
molecules depend strongly on their planarity, which is not
explicit in 2D structural representation, the WL-A kernel
method, as well as other WL-AB and WL-AD methods, also
reflect this issue. The correction for this problem would be
developing additional descriptors that describe the structural
nonplanarity, which is a convoluted task given that the input is 2-
dimensional, and thus, will be added in future study.

4. CONCLUSION
This paper presents a study of various WL kernel models and
ECFP-based learning models for predicting the electron affinity,
ionization potential, and band gap of fusenes. We utilized three
balanced data sets from a diverse pool of more than 2000 PAHs,
thienoacenes, and −CN or −NO2-substituted PAHs to evaluate
the models’ accuracies. Our results demonstrate that WL kernel
models significantly outperform ECFP-based methods and
achieve accuracies within 0.15 eV, which is reasonably accurate
given the DFT uncertainty of 0.10 eV. We also implemented the
active learning protocol with the Gaussian process regressor,
which performs favorably, especially against diverse and large
data sets. Furthermore, the linear-model-based interpretation of
WL methods provides a physical picture supporting our
previous quantum-mechanics-based DPO descriptor.16,17

Figure 5. Plots of test RMSDs for the band gap as a function of the training set size for active learning and random selection. The leftmost, middle, and
rightmost columns are for the mixed, PAH, and substituted PAH data sets, respectively, while the top row (A−C), the middle row (D−F), and the
bottom row (G−K) are for the WL-A, WL-AB, and WL-AD kernel methods.
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Figure 6. Box plots for RMSDs obtained over 20 runs for the RRmodel with either ϕWL or ECFP as the feature vector. Figures in the leftmost column,
namely (A, D, G), are for the mixed data set; the middle column (B, E, H) is for the PAH data set; and the rightmost column (C, F, I) is for the
substituted PAH data sets.

Figure 7. Visualizations of the contributions of atoms to the prediction for band gaps of several PAHs and thienoacenes with the highest (top rows),
median (middle row), and lowest (bottom row) band gap values.
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Furthermore, the WL kernels/methods come in three basic
variants that have different expressive powers and complexity, as
demonstrated in this work. We expect that these methods will
benefit from future research that explores the customization
possibilities of the presented variants, particularly the shortest-
path-based WL-AD method. Moreover, the WL algorithm and
kernel methods have been a source of inspiration for graph
neural networks.44,45 Therefore, we hope that our work will
serve as inspiration for future studies on graph neural networks.
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Figure 8. Visualizations of the contributions of atoms to the prediction for band gaps of several cyano- and nitro-substituted PAHs with the highest
(top rows), median (middle row), and lowest (bottom row) band gap values.

Figure 9. Compounds with the largest leave-one-out (LOO) band gap errors.
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