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1. Introduction
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In precision medicine, especially in the pharmacodynamic area, the lack of an adequate long-term drug effect monitoring model
leads to a quite low robustness to the instant drug treatment. Modelling the effect of drug based on the monitoring variables is
essential to measure the drug benefit and its side effect preciously. In order to model the complex drug behavior in the context
of time series, a sin function is selected to describe the basic trend of heart rate variable that is medically monitored. A Hawkes
self-exciting point process model is chosen to describe the effect caused by multiple and sequential drug usage at different time
points. The model considers the time lag between the drug given time and the drug effect during the whole drug emission
period. A cumulative Gamma distribution is employed to describe the time lag effect. Simulation results demonstrate the
established model effectively when describing the baseline trend and the drug effect with low noise levels, where the maximal
overlap discrete wavelet transformation is utilized for the information decomposition in the frequency zone. The real data of
the variables heart rate and drug liquemin from a medical database is analyzed. Instead of the original time series, scale
variable s4 is selected according to the Granger cointegration test. The results show that the model accurately characterizes the
cumulative drug effect with the Pearson correlation test value as 0.22, which is more significant for the value under 0.1. In the
future, the model can be extended to more complicated scenarios through taking into account multiple monitoring variables
and different kinds of drugs.

drug is rather essential in the drug prescription. During the
treatment process with a given drug dosage, the body condi-

Pharmacokinetics (PK) and pharmacodynamics (PD) are
aimed at building mathematical models to extract scientific
basis of modern pharmacotherapy. Specifically, pharmacoki-
netics describes the drug concentration-time courses in body
fluids resulting from the intake of a certain dose of drug, and
pharmacodynamics describes the observed effect arising
from a certain drug concentration [1]. Between PK and
PD, PD is more important for describing the variation of
body conditions after drug treatment. Following a drug
treatment, the original organ function can be enhanced or
suppressed. Thus, determining the accurate dosage of the

tion may be improved but may also suffer some untoward
reaction or adverse reaction, including side effect, toxic reac-
tion, allergy reaction, secondary reaction, residual effect, and
teratogenesis. Therefore, drug treatment can be helpful to
the patient but might be harmful as well, and monitoring
the drug effect by observing the clinically monitored vari-
ables plays an important role in understanding the
mechanism.

The major objective of PD is to explore how the drug
influences the monitored variables including heart rate, car-
diac output, and mean arterial pressure. Modelling the drug
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effect can help improve medical precision by applying more
suitable treatment for the patient under a target criteria of
the monitored variable. Drug effect modelling is critical to
realize the online forecasting of the dynamic status of
patient’s disease. On the other hand, this can reduce the
expenditure of medical resources including human resources
like physicians and caregivers, drug usage, and economic
cost.

Due to the special property of drug effect, the influence
of the drug on patient is complex. The instant usage of drug
has a long-term and dynamic effect on the patient. For
example, there may exist a time delay for some drug to show
the medical effects, which may be half an hour in some spe-
cial circumstances. The time length taken by the drug effect
is different not only among different drugs but also for dif-
ferent intake methods. For epinephrine, the effect of intra-
muscular injection is approximately maintained between
10 and 30 minutes, while the effect of subcutaneous injection
can take as long as around 1 hour. Drug effect may increase
rapidly and then decrease slowly afterwards before finally
vanishes. Before the drug effect vanishes, more drug dosage
may be required to be applied to the patient. Besides, multi-
ple drug usages can cause multiple cumulative effects. Deter-
mining the correct drug dosage becomes quite challenging as
the monitored variables vary with an unpredictable trend.
To give a precise dose under a target value of the monitored
variable, the whole past drug usage that is still effective
should be taken into consideration, as their influence on
the patient’s future health condition still affects the current
required dosage.

In this work, the influence of drug usage on the moni-
tored variables is specifically analyzed, particularly in terms
of the cumulative effect from the past drug usage. The rest
of the paper is organized as follows: Section 2 gives the
research review of drug effect modelling including the state
of the art and our contributions, Section 3 presents the
method proposed in this research, Sections 4 and 5 show
the analysis and the simulation using the real medical data,
and Section 6 presents a conclusion of the results and the
viewpoints on the further research. All computations are
implemented using the software R [2] of the version 4.0.2,
and “waveslim” [3] was used for the wavelet decompositions.
The hardware platform is iMac Pro (2017) configured with
the processor 3.2 GHz 8-Core Intel Xeon W, the memory
32 GB 2666 MHz DDR4, and the Graphics Radeon Pro VEga
56 8 GB.

2. Literature Review

The approaches to establishing the models for characterizing
the effect of drug on electrocardiogram (ECG) signals like
heart rate can be generally divided into three main groups.
The pros and cons of the available approaches are compared
in detail in the following. The first group includes the typical
statistical methods like linear regression, logit regression,
analysis of variance (ANOVA) and basic statistical descrip-
tion methods like box plot. In order to study how the choice
of anesthetic agent can greatly influence CSF tracer influx,
Hablitz et al. [4] used the linear regression analysis. Linear
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regression with extensions like Lasso, Ridge, and Elastic-net
such penalized linear regression methods are good at explana-
tion of the real application background and are simple to
understand. Capel et al. [5] used 1- or 2-way ANOVA to
investigate the propensity of hydroxychloroquine to cause bra-
dycardia. ANOVA is effective to compare the drug efficiency
difference among two or more comparison experiments. In
the research of Sun et al. [6], pairwise network meta-analyze
was performed using DerSimonian-Laird random effects
model to analysis the impact of GLP-1 receptor agonists on
blood pressure, heart rate, and hypertension among patients
with type 2 diabetes. Gilbert and Krum [7] analyzed the effects
of antihyperglycemic drug therapy on heart failure in diabetes
by using the meta analysis as well. The pros and cons of this
type of methods include that these methods are rather efficient
when the data has simple format including cross section data,
and the research purpose is more focused on producing the
medical experiment results instead of the method improve-
ment. When the data structure is complicated or the objective
is lied on the methodology, more interests are concentrated on
the subsequent second or third group of methods.

The second type of drug effect models mainly includes
machine learning and deep learning methods such as
ensemble decision tree methods (AdaBoost or XGBoost),
neural networks (convolutional neural network and long-
short term neural network), support vector machine, and
Bayesian classifiers [8, 9]. For example, Sherman et al. [10]
used machine learning methods to identify drug-cancer cell
interaction based on some large in vitro databases. Bresso
et al. [11] applied the methods decision trees and inductive
logic programming to characterizing each drug’s side-effect
profiles in terms of drug and target properties. Costabal
et al. [12] characterized the effect of 30 drugs on the QT
interval using Gaussian process regression, sensitivity analy-
sis, and uncertainty quantification. In the research of Juhola
et al. [13], several machine learning methods are compared
in the analysis of drug effects on iPSC cardiomyocytes,
including decision trees, K-nearest neighbor nearest search-
ing, multinomial logistic regression, and least squares sup-
port vector machines. Results show that random forests
classifier and least-squares support vector machines have
better performance than the other methods. Ekins et al.
[14] compared the performance of different machine learn-
ing methods for end-to-end drug discovery and develop-
ment including Naive Bayesian, support vector machines,
and more recently concerned deep neural networks. Madhu-
kar et al. [15] proposed a Bayesian approach to the drug tar-
get identification using diverse data types. Soft computing
techniques [16, 17], which although have not been directly
applied to the drug effect modelling, can still be the promis-
ing solutions to the problem. The pros and cons of this type
of methods include the following aspects. It is pretty impres-
sive that the machine learning methods have high prediction
accuracy and many of them have reliable generalization.
However, most of the machine learning methods are based
on quite complex parametric systems and lack of interpret-
ability of parameter meanings, such that may not be the
ideal tools for achieving both high accuracy and good
explanation.
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The third type of drug effect models mainly includes
mathematical models such as Cox hazard model based on
ordinary differential equations and partial differential equa-
tions. Chatterjee and Ahmad [18] applied the fractional-
order differential equation model to analyzing the COVID-
19 infection of epithelial cells. Huang et al. [19] gave the
hierarchical Bayesian inference for HIV dynamic differential
equation models which incorporated multiple treatment fac-
tors. Thirumalai et al. [20] proposed the fractional differen-
tial equations based method to analyze the combined drug
therapy for HIV infection. Leander et al. [21] used the sto-
chastic differential equations to analyze the mixed effects
involved in pharmacokinetic data of nicotinic acid.
Fuentes-Gari et al. [22] have compared the performance of
different differential equations in the leukemia treatment,
from which it can be found that stochastic differential mixed
effects models are useful tools for identifying incomplete or
inaccurate model dynamics. In general, those mathematical
models have sound performance in both prediction accuracy
and explanation.

The motivation of this research is that although the
existing results have achieved good performance in PD,
especially on drug effect modelling, they still have some
shortcomings unsolved due to the complex background of
pharmacodynamic, that is, the instant usage of drug can
have long and complicated effect on the patient that is
shown with the monitored variables. To illustrate this com-
plicated effect, a stochastic modelling approach called
Hawkes point process model is introduced to describe sto-
chastic point process. In this work, a Hawkes point process
model [23], namely, the self-exciting point process [24] is
proposed to characterize the complex drug effect. The essen-
tial property of self-exciting point process is the occurrence
of any event increased the probability of further events
occurring which is consistent with the behavior of drug on
patient. This model origins from the area of earthquake
behavior analysis [25] and is recently extended to the fields
of finance [26], disease prediction [27], and social media
[28], where the model has shown satisfactory performance,
but it has not been used for drug effect modelling yet.

The acquired data sets of the input variables in this work
are time series that have clearly nonstationary property.
They are also stochastic time series involved with random
noise. Instead of using the original data in the model, the
maximum overlap discrete wavelet transform (MODWT)
is applied for the feather extraction [29]. MODWT is a
method of decomposing the original time series into scaling
and wavelet coefficients on different resolution levels, which
can be seen as its smooth information and detail informa-
tion [30]. In this research, these coeflicients are used as the
deep information involved in the original information. The
method Fourier transform [31] can also decompose similar
information but it is not suitable for non-stationary time
series [32].

The innovation and contribution points in this research
mainly have three aspects. The first one and also the main
one is that self-exciting point process is proposed to describe
the complex behavior of drug on patient. The second one is
that MODWT is applied as the feather extraction method to

find deep information involved in the original time series.
The third one is that the drug effect model developed in this
research can describe the effect of a sequence of drug usage
on the monitored variables instead of only one usage. The
results can be further developed for assisting precision
medicine.

3. Method

The data contain two variables, the drug usage variable d,
and the monitored variable x,. d; denotes the ith drug dosage
at time t;, and x, gives the value of the monitored variable at
time ¢. The goal is to describe x, by using d,, that is

X =f(d»9), (1)

where g represents the other information included in the
prediction of x,. In this paper, we mainly analyze the moni-
tored variable heart rate as it is a typical variable that has
similar properties to the other monitored variables. Variable
x, such as the changes of the heart rate mainly contains three
components: the original waveform change involved in the
heart beat change itself, the trend change resulting from
the disease, and the trend change arising from the drug
usage. In order to keep track of the trend caused by the drug
and disease, the wavelet transform method MODWT is
applied before implementing the self-exciting point process.

Since the wavelet basis Haar wavelet is simple to under-
stand and has good modelling performance, it is chosen as
the basis for the MODWT. The Haar scaling function is

defined as
1 0,1),
8(1) - { el 2)

0 else.

Using dilation and translation, the scaling function at
resolution level j and location k is

(1) = 2P¢(2t-k). (3)

For more details, see Graps [33]. Then, the scale vari-
ables s;; can be given by

x,dt. (4)

Ik

Sik = <Xp P> = J X, (t)dt = Zﬂzj
R

The Haar mother wavelet function w/(t) is defined as

1 te[0,0.5),
y(t)=<{ -1 te[0.51), (5)
0 else.

And the wavelet function at resolution level j and loca-
tion k is y;;(t) =2"7y(2/t — k). The wavelet coefficients
dji are defined as d; = <x(f),y;, >. The scale variables

vector s;=(s;0,5;;, " $;,) and wavelet coefficient vector

. it
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Drug effect

Time

F1GURE 1: The drug effect of each drug entry. The black solid line represents the cumulative effect, and the dashed lines represent each drug entry.

TaBLE 1: Parameter setting under different value.

Parameter True parameter value Parameter value range
a 70 1, 100]
b 5 [0.1 10]
o 1 [0.1 10]
Bo 2 (0.1 10]
a 1 [0.1, 50]
b, 1 [0.01, 10]
K 0.3 [0.01, 1]
m 20 [-100, 98]
a, 3 [0.01, 10]
K 5 (2.1, 22]
b, 0.4 [0.01, 2]
d;=(d;y,d;y, -+ d;,) become new variables which can be

used for classification and regression [34, 35]. We name
them as scale variables (or scale information) and detail
variables (or detail information) in the following sections.

For convenience, s;, is rewritten as s,;. By applying the

Haar wavelet to the data x,, the new data W, is given by

dl,l dl,] S1.1 51’]
d21 e d2 S e S
> ] 2,1 2,]
w=1 - (6)
dT,l dT,] ST,] ST,]

So far, the step of feature extraction has been finished by
using MODWT with the input variables extracted as W.
Instead of regarding all the variables in W as the target vari-
ables, Granger cointegration test is performed to verify how
the drug influence the variables. The variable with the highest
significance is chosen as the final target variable. In the
Granger test, we set

m m
X = z ad,_;+ Z Bixei + & (7)
k=1 k=1

where ¢, is the random noise that follows the Gaussian dis-
tribution. Granger test is based on the F test, and the hypoth-
esis is defined as

Hy:a,=a,=-=qa,=0, (8)

m
and the corresponding F statistic is

(SSR, — SSR,,)/m

F= TSR, in-k) ®)

where SSR, is the residual sum of squares being restricted,
and SSR,, is that unrestricted. If F > F_(m, n — k), then, the
hypothesis H, that d, is not the Granger reason of x, is
rejected.

By applying the Granger cointegration test to all the var-
iables in W, the most significant variable can be selected as
the final target variable, and we can regard the variable as
the original x, without the rest information g. In that case,
the trend caused by the drug instead of x itself or the trend
incurred by the disease can be discarded to some extent.
For convenience, we still use the symbol x to represent the
final target variable.

After getting the final target variable x, it can be applied
to the Hawkes point process involved with the drug infor-
mation. In the self-exciting point process, the target variable
is a number that can be counted, and in this work, we extend
it to a continuous context. As a result, the conditional inten-

sity of x, during the time interval (;,;,,) is given by

b=, B [nes,
=N

a) (10)

where g, includes the information available up to time ¢.
After that, a fairly general self-exciting process can be
defined in terms of an intensity of the form

At:‘ut+2)}(t_ti’di)’ (11)

1<t

where t; is the time when the ith drug usage occurs. y,
>0 provides a base level for the process, and we set it as a
sin function for simplicity,

Yy = ag + by sin (apt + fB,). (12)

The function y(t—t;,d;) >0 is defined as the exciting
kernel of the process, which can be a Gamma distribution.
The kernel provides the contribution to the intensity at time
t that is made by all the previous drug usage events that
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FiGURE 2: The R* under different parameter settings. The true values are shown in Table 1.

occur at previous time ¢; < t, with the associated drug dosage
d;. The meaning of the intensity function is that each event
increases the intensity and then decays according to the
function y until the next drug usage occurs to push it up
again. The chosen kernel function is a sigmoid function
and a Gamma distribution function with the form as

1 |y b5
t—t. K=l =0, (11 )
TE GO o)

(13)

y(t—t,d;)=

where a,, a,, b;, b,, m;, k;, and «, are all parame-
ters to be determined using the real data. In this kernel
function, the sigmoid function is proposed to describe
the instant drug effect, which we assume the appropriate
drug dosage can bring about the corresponding correct
effect while using an extra dosage can make little effect

when the drug has been already too much or rare. In
that case, the sigmoid function is chosen to make it con-
sistent with the assumptions. The Gamma function can
be used to describe the trend of the drug effect from
the increasing stage to the decreasing stage slowly. It
can also describe the decaying process of the drug effect
with the time. In the function of A,, the cumulative of
the y(t —t; d;) describes all the previous drug effect until
the current time. In order to calculate the parameters
0 ={ay, by, g, B> ay, a5, by, by, my, Ky, k,}, the ordinary
least squares method (OLS) is used to estimate these
parameters. The target function to be minimized can
be expressed as
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Since X, is not easy to be obtained, A%, is used for the
replacement of it. Thus, the target function L can be given by

(Ax, - A%,)*. (15)

M=

-
I
—_

Replacing AX, with A, in L gives

(16)

M=

L= {Ax,— [ p+ Y y(t-t,d)

ti<t

~
Il
—

7.5
Noise level
It follows that
I 1 by :
L= - v _pyartgblet) P2 _
; {Axt (Mt +t,.z<tal + ble”‘ldr <“2(f tt) ¢ T(K2)>> }

(17)

Taking the derivative of each parameter in 0, for parame-
ter a,, we have

T - 3y
ay Z{A‘xt—nut_ZY(t_ti’di)}Zaal(t__ti’di):()' (18)

t=1 t<t t<t
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Similar results can be obtained for the other parameters in
0.1t is clear that we cannot get a closed form solution from the
derivation as the estimated parameters are mutually depen-
dent with each other. Hence, an optimization method of Broy-
den-Fletcher-Goldfarb-Shanno (BFGS) is proposed to
minimize L, which is a quasi-Newton method, also known as
the variable scale method. This algorithm improves the weak-
ness of Newton’s method from the aspects that BEGS will not
be easily affected by the initial value without the cost of com-
puting the exact hessian matrix and its inverse in the process
of each step of optimization. The NFGS, namely, the Newton
improved BFGS, has the characteristic of fast searching of
Newton’s method and has an improvement in efficient search-
ing for the global optimal solution.

The measurement of the goodness of fit has the metric
using R%, which ranges from 0 to 1, with 1 as the best fit.
R? has the form as

SST-SSE
RP=""_"", 19
SST (19)

where SST is the total sum of squares, and SSE is the
residual (error) sum of squares,

SST = i (Ax, - Ax,)%, (20)
SSE = i(Axt—Ait)z. (21)

t=1

In addition to the R?, the Pearson correlation test value is
also selected for comparison, which is formulated as

/SST-SSE
=4/———=R. 22
corr SST (22)

Some other evaluation criteria to assess the performance
of the models include mean absolute error and mean per-
centage error. They all give the measurement of the model
fitness, and R* and the correlation test can have similar or
better effect in measuring the results as their values are con-
strained in 0 to 1 or -1 to 1, such that the performance can
be compared with the significant level. In conclusion, we
develop a method to analysis the influence of drug usage
on the monitored variable by using self-exciting point pro-
cess with the kernel function of Gamma distribution.

4. Simulation

In this section, we analyze the performance of the method
under different noise levels. Since the drug effect can pro-
duce the cumulative effect, as shown in Figure 1, we will also
analyze how the drug effect influences the model perfor-
mance. In this Figure 1, the black line represents the cumu-
lative effect 3, _,y(t —t;,d;), and the dashed lines represent
the separate drug effect y(t —¢t;, d;) for each i.

In order to explore how the parameters influence the
model performance, the simulation is performed using dif-

Original monitored

. Drug information
variable 5

Wavelet | Transform

Scaling information selected by
the Granger cointegration test

Hawkes point process model

Results measured by R-squared and
the Pearson correlation test

FiGure 5: The flowchart of the proposed method.

ferent parameter settings. The true parameter and the simu-
lated parameters are shown in Table 1. With the parameter
given in Table 1, the R? results are shown in Figure 2. It
can be seen that some parameters have few influence on
the R?, including b,, a,, a,, b,, a,. The parameters that have
the apparent influence on the R? include b,, «,, k;, m,, by,
&y, 3, From Figure 2, it can be seen that when the values
of b, and «, keep in a fixed ratio around 10, the R* keeps
in its good performance. When «; increases from 0 to
around its best value 0.3, the R? increases, but deceases after-
wards when «, continues to grow. For the parameter m,, R*
has the similar trend. The model performance is not good
when m, is below its best value but performs relatively well
when m, is above its best value. For by, &, and 3, as they
are in the sin function, R?* shows some kind of routinely
performance.

The level of noise also influences the best fitting ability.
That is why MODWT is applied before the model training.
For example, as shown in Figure 3, by adding the noise
which follows the Gaussian distribution, the monitored var-
iable with noise becomes far away from the one without
noise. This gap causes the R* to be smaller than it should
be. By setting the noise level as 0.1 to 10, we can get the best
possible R? value by choosing the best parameters, and the
results are shown in Figure 4. The R? decreases as the noise
level increases. When the variance of the noise level is bigger
than 4, the R* decreases below 0.9. When the noise level is 5,
the R? decreases below 0.8. This result also shows the best
possible R* under different noise levels.

5. Real Data Analysis

The real data we use in this work is the circulatory failure
data Hyland et al. [36]. The original source of the data comes
from the Medical Information Mart for Intensive Care-
(MIMIC-) III database [37], which provides the critical care
data of over 40,000 patients admitted to intensive care units
at the Beth Israel Deaconess Medical Center. Importantly,
MIMIC-III was deidentified, and patient identifiers were
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FIGURE 7: The scale variables of the original heart rate time series with drug labelled as the vehicle lines.

removed according to the Health Insurance Portability and
Accountability Act Safe Harbor provision. MIMIC-III has
been integral in driving large amounts of research in clinical
informatics, epidemiology, and machine learning. The data
we use contain 812 observations, with 1-minute gap per
observation as the resolution level. There are totally 18 var-
iables in the data including heart rate, MAP, cardiac output,
and SpO2.

Instead of using all the variables, the variable heart rate is
selected as the monitored variable as it has quite few missing
values. The minimum and maximum of the heart rate are 61
and 117, respectively. The average and standard deviation
are 77 and 9.17, respectively. The drug data in use is the
amount of dosage of drug liquemin with unit 5000 U/ml

for per dosage. The dosage in use in this real data is 25.
The number of usage is 63 times. Liquemin is used to
decrease the clotting ability of the blood and help prevent
harmful clots from forming in blood vessels. This medicine
is sometimes called a blood thinner, although it does not
actually thin the blood. Specifically, it is also used in the
treatment of heart attacks and unstable angina. Two time-
series phases are selected for the real data analysis which
contain only liquemin. The flowchart of the proposed
method is shown in Figure 5. As shown in Figure 6, the orig-
inal heart rate variable is transformed by using MODWT to
leave out the noise, and the scaling information is selected by
using the Granger cointegration test. After that, the scaling
information and the drug information are put into the
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Hawkes point process model with the R? or correlation test
as the results. In this case, scale variable s4 on resolution
level is selected as the target variable x according to the
Granger cointegration test, and the results are shown in
Figure 7. The computed parameters are 0 = (75, 1.21,0.13,
1.39,0.30, 2.08, 0.80, 0.47, 0.0022, 2.77,0.12). The R? is not
big as there are other trend inside the original data, but the
correlation is obvious with a Pearson test value as 0.22.

Instead of comparing to the time series of the original
data, the scale variables on level 4 is compared with the
model output since it leaves out most of the noise and with
only the trend left for comparison. From Figure 7, we can
see that most of the increases and drops are caught by the
red line, which means the proposed Hawkes model can
effectively measure the drug effect. The Pearson test result
is 0.22 that is significantly below the level of 0.1. The
obtained model is given by

A, =75+1.21 sin (0.13¢ + 1.39)

£y :
0.3 +2.08¢708(-0:47+d)) (23)

1<t

0'122.77
. {00022(1‘ _ ti)1.77670.12(t7t1-) F<2 77) } .

To sum up, due to the complex development of the mon-
itored variables, there are still some trends caused by the dis-
ease that cannot be fully described by our model. We
propose a model that gives a different and efficient method
for the drug effect measurement in pharmacodynamic.

6. Conclusion

In this research, we develop a Hawkes model by using self-
exciting point process and sin function to describe the devel-
opment of medical monitored variable heart rate. Self-
exciting point process can describe the effect of the drug
and the dosage of the drug. The sin function can describe
the basic trend of heart rate. By combining these two func-
tions together, some of the heart rate trend can be described.
The model can be used for drug effect prediction and solve
the problem of drug precision suggestion. It can also be used
for the medical assistant by giving more precise drug dosage
description. Specifically, the results show that the model can
have a correlation Pearson test to be significant under the
significant level of 0.1. The increases and decreases of the
trained drug effect can fit the trend of the real drug effect.
The limitations of this research are summarized as the
following. In our research, only one kind of drug is mod-
elled, but if many kinds of drug are considered in the model,
the model can also be complex. Specifically, in the further
research, more complex model can be developed to describe
the details of the monitored variable trend including the
trend caused by the disease, in addition to the basic trend
and drug effect trend. The trend caused by the disease is
quite complex to be described but still can be modelled.
The analysis of multiple drugs is not simply based on the
adding of single drugs, in that case, using many self-

exciting point process cannot meet the demand of multiple
drug effect analysis. Mutual-exciting point process Hawkes
model can be considered to describe the effect of multiple
kinds of drug and cumulative drug effect dosage. If multiple
drug effect can be modelled, then the further analysis can be
concentrated on the inverse problem of drug dosage decision
under a predefined monitored variable value.

The proposed modelling solution can be further
extended to some other areas in addition to the medical area.
For example, in the financial area, the model can be used to
monitor the effect of economic events or political events to
predict the stock price and security price trend after the
event occurs. In the environmental area, the model can be
used to monitor the effect of air pollution by decomposing
the original time series into three aspects, namely, the basic
routine trend, the trend arising from events, and that caused
by solar circles. In conclusion, the model developed in this
research is an efficient and generalized model for time series
data which contains multiple kinds of trends either
embraced by the time series itself or caused by the external
events.
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