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Abstract: Pseudorabies virus (PRV) can infect most mammals and is well known for causing substan-
tial economic losses in the pig industry. In addition to pigs, PRV infection usually leads to severe
itching, central nervous system dysfunction, and 100% mortality in its non-natural hosts. It should be
noted that increasing human cases of PRV infection have been reported in China since 2017, and these
patients have generally suffered from nervous system damage and even death. Here, we reviewed the
current prevalence and variation in PRV worldwide as well as the PRV-caused infections in animals
and humans, and briefly summarized the vaccines and diagnostic methods used for pseudorabies
control. Most countries, including China, have control programs in place for pseudorabies in do-
mestic pigs, and thus, the disease is on the decline; however, PRV is still globally epizootic and an
important pathogen for pigs. In countries where pseudorabies in domestic pigs have already been
eliminated, the risk of PRV transmission by infected wild animals should be estimated and prevented.
As a member of the alphaherpesviruses, PRV showed protein-coding variation that was relatively
higher than that of herpes simplex virus-1 (HSV-1) and varicella-zoster virus (VZV), and its evolution
was mainly contributed to by the frequent recombination observed between different genotypes or
within the clade. Recombination events have promoted the generation of new variants, such as the
variant strains resulting in the outbreak of pseudorabies in pigs in China, 2011. There have been
25 cases of PRV infections in humans reported in China since 2017, and they were considered to be
infected by PRV variant strains. Although PRV infections have been sporadically reported in humans,
their causal association remains to be determined. This review provided the latest epidemiological
information on PRV for the better understanding, prevention, and treatment of pseudorabies.

Keywords: pseudorabies virus; epidemiology; variation; pig; human pseudorabies encephalitis

1. Introduction

Pseudorabies virus (PRV), the causative agent for Aujeszky’s disease, belongs to the
family Herpesviridae, subfamily Alphaherpesvirinae, and genus Varicellovirus [1]. Similar
to other members of the Varicellovirus, PRV is neurotropic and can establish latent infection
in the peripheral nervous system [2,3]. Pigs are the natural hosts of PRV, showing neuro-
logical disorders in newborn piglets and reproductive failure in sows after infection [4].
Worldwide attempts to control PRV infection in pigs have been ongoing for decades by
attenuated marker vaccines with virulence-associated gene deletion and respective sero-
logical diagnostic tests [5]. However, long-term immune pressure could promote PRV
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variation for immune escape, creating new challenges for the future prevention and control
of pseudorabies. Moreover, PRV infection in humans has been reported recently, and the
number of cases has been increasing since 2017, but the causative association and the
pathogenic mechanism remain unclear. In addition to its pathogenicity, PRV has been
widely studied as an ideal model for investigating herpesviruses’ molecular biology and
pathogenic mechanism [6]. It has also been utilized as a living tracer in neural circuits and
a promising oncolytic virus [7]. Therefore, it is of significant importance to understand the
current clinical prevalence and variation in PRV for the better understanding, prevention,
and control of pseudorabies and the appropriate application of PRV.

2. Epidemiology of PRV
2.1. The Prevalence of PRV in the World

PRV infection was first defined as “mad itch” in bovines in America in 1813 [8], and
PRV was successfully isolated about 100 years later [9]. With the global development of
the pig industry, pseudorabies caused by PRV firstly broke out in pigs worldwide during
the 1970s–1980s and was a pandemic for decades (Figure 1A). Currently, PRV is mainly
circulating in domestic pigs in Argentina, Bosnia and Herzegovina, China, Croatia, Cuba,
France, Hungary, Italy, Mexico, Papua New Guinea, Poland, Portugal, Spain, and the
United States of America, according to OIE reports from 2019 to 2021 [10]. Due to efficient
vaccination and eradication measures, pseudorabies in domestic pigs has been eliminated
in Germany, the United Kingdom, Ireland, South Korea, Sweden, Colombia, Denmark,
New Zealand, and many other countries. However, it is difficult to maintain the elimination
status, as indicated by second outbreaks of pseudorabies in Argentina in 2019 and France
and Mexico in 2020 [10].

In the countries or districts in which pseudorabies has eliminated in domestic pigs,
virus transmission from infected wild boars is a critical threat for these domestic pigs.
Therefore, serological investigations in wild boars have been conducted in many countries
to monitor the transmission risk (Figure 1B). In Italy, the PRV prevalence in wild boars
varied from 4% to 30% because of the different densities of wild boar populations, and
30.39% of 1425 sera samples collected from wild boars between 2011 and 2015 in northwest
Italy were positive for PRV antibodies [11]. An overall nationwide PRV seroprevalence
of 12.09% was detected from 108,748 sera samples from wild boars in Germany from
2010 to 2015 [12]. The PRV seroprevalence rate of wild boars in Switzerland is the lowest
among those recorded in Europe, with samples collected between 2008 and 2013 having a
seroprevalence of 0.57% [13]. In the United States, 8498 sera samples were collected from
wild boars in 35 states from 2009 to 2012, among which the samples from 25 states had a
total positivity rate of 18% [14]. The above data indicate a high prevalence of PRV in wild
boars and a risk of transmission to domestic pigs. Therefore, routine measures, including
fencing and disinfection, should be taken in the epizootic areas with pseudorabies to
prevent direct transmission from contact between wild boars and domestic pigs or indirect
transmission mediated by people and hunting tools. Moreover, it has been proposed to
reduce PRV prevalence in wild boars by controlling the density of wild boars [11] and the
reactivation and spillover of latent PRV. In summary, for the pig farms in most countries, it
is essential to ensure a sufficient biosafety distance between domestic pigs and wild boars
and to ensure appropriate control of pseudorabies prevalence in wild boars.
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Figure 1. The prevalence of pseudorabies worldwide: (A) epidemic history of PRV worldwide. The 
red explosion shape represents outbreaks of pseudorabies. (B) The reported surveillance of PRV 
infection in wild boars, as illustrated by PRV gE antibody positive rate. (C) Epidemic history of PRV 
in China. The red explosion shape represents outbreaks of pseudorabies. (D) The positivity rate of 
PRV gE antibody and PRV gE nucleotide sequences detected in nationwide samples in China from 
2012 to 2019. 
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Pig farms in China have suffered from large-scale outbreaks of pseudorabies since 

the 1970s (Figure 1C). The natural attenuated vaccine strain Bartha-K61 was imported in 
1979, and several attenuated strains developed from local classical PRV strains such as Ea 
and Fa were also utilized to control the pandemic, leading to a remarkably reduced prev-
alence after 1990. However, by the end of 2011, another PRV outbreak occurred from var-
iant PRV strains, even in the pig farms with routine immunization. Since then, the PRV 
prevalence rate in China has raised sharply and remains high in some provinces (Table 1). 

PRV gE sequences and antibodies in samples collected nationwide from 2012 to 2021 
were detected to monitor the prevalence of pseudorabies in pigs in China. Since the com-
mercial PRV vaccines are all strains with gE gene deletion, the gE antibody is considered 
to be an indicator of infection caused by wild strains. Additionally, the detection of the gE 
sequence indicates the presence of the virus in pigs. gE antibody prevalence has increased 
rapidly since the occurrence of variant strains in 2011, and it peaked at 39.92% (3733/9350) 
in 2016, when the positive rate of gE specific sequence was as high as 14.06% (399/2837). 
Subsequently, the PRV gE antibody and sequence positivity rate gradually decreased to 
15.38% (5971/38,821) and 1.52% (53/3503) in 2021, respectively, probably attributed to by 

Figure 1. The prevalence of pseudorabies worldwide: (A) epidemic history of PRV worldwide. The
red explosion shape represents outbreaks of pseudorabies. (B) The reported surveillance of PRV
infection in wild boars, as illustrated by PRV gE antibody positive rate. (C) Epidemic history of PRV
in China. The red explosion shape represents outbreaks of pseudorabies. (D) The positivity rate of
PRV gE antibody and PRV gE nucleotide sequences detected in nationwide samples in China from
2012 to 2019.

2.2. The Prevalence of PRV in China

Pig farms in China have suffered from large-scale outbreaks of pseudorabies since the
1970s (Figure 1C). The natural attenuated vaccine strain Bartha-K61 was imported in 1979,
and several attenuated strains developed from local classical PRV strains such as Ea and Fa
were also utilized to control the pandemic, leading to a remarkably reduced prevalence
after 1990. However, by the end of 2011, another PRV outbreak occurred from variant PRV
strains, even in the pig farms with routine immunization. Since then, the PRV prevalence
rate in China has raised sharply and remains high in some provinces (Table 1).

PRV gE sequences and antibodies in samples collected nationwide from 2012 to
2021 were detected to monitor the prevalence of pseudorabies in pigs in China. Since the
commercial PRV vaccines are all strains with gE gene deletion, the gE antibody is considered
to be an indicator of infection caused by wild strains. Additionally, the detection of the gE
sequence indicates the presence of the virus in pigs. gE antibody prevalence has increased
rapidly since the occurrence of variant strains in 2011, and it peaked at 39.92% (3733/9350)
in 2016, when the positive rate of gE specific sequence was as high as 14.06% (399/2837).
Subsequently, the PRV gE antibody and sequence positivity rate gradually decreased to
15.38% (5971/38,821) and 1.52% (53/3503) in 2021, respectively, probably attributed to by
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the development and application of vaccines based on the variant strains (Figure 1D). The
updated variant vaccine strains and the decreased prevalence supported the importance
of the high genomic identity between vaccine strains and field strains. However, several
provinces in China still show a serious epidemic situation of pseudorabies, with gE antibody
prevalence varying from 7.50% to 62.74% (Table 1). Although pseudorabies in domestic
pigs in China is currently under control, it is necessary to monitor the variation in PRV
strains and to accelerate the current elimination programs.

Table 1. The gE antibody positivity rate in different provinces in China.

Region
gE Positive Rate (gE Positive Samples/Total Samples)

Reference
2016 2017 2018 2019

Beijing 33.66% (662/1966) / 20% (4/20) / [15,16]
Chongqing 1.6% (11/702) 9.4% (60/637) 7.5% (60/798) 11.5% (53/460) [17]

Fujian 37.37% (111/297) 26.11% (53/203) 27.32% (50/183) / [18]
Guizhou 1.89% (27/1480) 16.85% (538/3192) 16.85% (538/3192) 8.5% (92/1078) [19]

Guangdong / / 33.60% (1084/3226) / [16]
Guangxi 22.87% (854/3734) 23.71% (996/4200) 20.60% (766/3718) / [16,20]
Henan 26.21% (3513/13,404) 28.82% (4755/16,497) 25.31% (3000/11,854) 26.69% (3460/12,963) [21]
Hebei / / 62.74% (367/585) 50.05% (5245/10,479) [16,22]

Heilongjiang 15.36% (474/3086) 15.50% (539/3478) 11.64% (318/2731) / [23]
Hubei / / 13.21% (123/931) / [16]
Hunan 24.4% (344/1410) 23.2% (349/1504) 44.64% (1011/2265) / [24]
Jiangxi 40.1% (362/902) 34.6% (318/919) 27.41% (1769/6455) / [16,25]

Qinghai 28.17% (131/465) 19.75% (157/794) / / [26]
Shandong 57.8% (2909/5033) 50.4% (2476/4915) 55.2% (2072/3753) / [27]
Sichuan / / 32.49% (952/2930) /

[16]Yunnan / / 17.07% (306/1793) /
Tianjin 40.43% (970/2399) 37.02% (2219/3793) 51.59% (1957/3793) / [28]

/ Data not provided in the reference.

3. Genotyping and Variation in PRV
3.1. Genotyping of PRV

Different PRV strains differ in biological characteristics even though they are in one
serotype. The restriction fragment length pattern (RFLP) was used in PRV genotyping [29],
especially in RFLP based on BamHI. BamHI-RFLP divides the PRV strains into genotypes I-
IV [30–32]. BamHI-mPCR is a method that combines BamHI-RFLP with the highly sensitive
multiplex PCR. It can be applied to PRV genotyping in samples with a low DNA content
without virus isolation [33]. Genotyping based on the gC gene and genomes has been
increasingly applied in the development of sequencing technology. The gC gene is one
of the most variable regions in the genome [34]. Based on the phylogenetic analysis of
729 global gC sequences, PRV can be divided into two genotypes with Chinese isolates in
genotype II and with isolates from other places in genotype I. The most recent common
ancestor of the two genotypes was divided into two genotypes and evolved separately
around A.D. 1013 [35]. PRV strains in genotype I can be divided into six subtypes, and
subtype 1.6 includes Chinese isolates that are closely related to Bartha-k61 [35]. Genotype
II can be divided into two subtypes. Subtype 2.1 contains Chinese classical strains isolated
in the 1990s, and subtype 2.2 mainly consists of the variant strains isolated after 2011 [36].
In addition, tandem short sequence repeats (SSRs), a class of nucleic acids motifs, might be
another molecular basis for PRV genotyping in future studies. SSRs exist in almost 20%
of the PRV genome. The changes in length in the SSRs have been associated with DNA
binding site efficiency, transcription regulation, and protein interactions [37]. Therefore,
the differences in SSR length between strains might explain the differences in the biological
characteristics of different PRV strains in the same serotype.
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3.2. The Evolution of PRV Based on Natural Mutation-Selection

Alphaherpesvirinae genomes are relatively stable with minor variation in the sequences
among strains. The average rate of protein-coding variation in PRV was 1.6%, which is
higher than the 1.3% of herpes simplex virus-1 (HSV-1) and the 0.2% of varicella-zoster virus
(VZV) [37]. The mean substitution rate of the PRV genome is 4.82 × 10−5 substitutions per
site annually [35]. Furthermore, Bayesian skyline coalescent reconstruction illustrated that
the relative genetic diversity of genotype I remained unchanged, while in genotype II, the
diversity decreased from 2004 to 2010 and increased sharply from 2010 to mid-2012 and
was maintained at a high level in 2016 [36]. The time points of the diversity changes in
genotype II are consistent with those of pseudorabies control and epidemic in China.

Natural mutation-selection could contribute to the diversity changes in the PRV
strains in genotype II. Positive selection has been detected in the amino acid residues at
site 43/75/505/834/848/908/922 of gB, site 348/575/578 of gE, and site 59/75/194 of
gC but not in gD [36,38,39]. In addition, site 929/934 of gB, site 495/540 of gE, and site
59/75/76/191 of gC are involved in the adaptive evolution after cross-species transmission.
The amino acid residue at site 59 of gC participates in positive selection and adaptive
evolution, the function of which is related to the viral adsorption process [36]. The variation
in the gB, gE, and gC proteins in Chinese variants of PRV may facilitate escaping from the
host immune response and adapting to the new host after cross-species transmission.

The genetic diversity supported by SSRs might also promote PRV evolution. SSRs have
been found in all herpesviruses. Their length varies in different strains of PRV and HSV-1,
and a few SSRs diversity can be detected, even during the PRV plaque purification. In the
SSR analysis of Kaplan, Becker, Bartha, and other strains, it was observed that SSRs existed
in both coding and non-coding sequences, promoters, and open intergenic sequences,
mainly in the IR-US-TR region. Furthermore, 62% of the SSRs in PRV, including most of
the SSRs in the coding region, contain triplet-based repeats, such as 3-mer, 9-mer, 27-mer,
etc. These triplet-based SSRs not only contribute to genetic diversity but also remain the
original frame of the coding sequence [37]. These subtle changes, such as changes in SNPs
and SSR length, support genetic diversity and promote PRV evolution.

3.3. Frequent Recombination between PRV Strains Significantly Contributes to Virus Evolution

The frequent inter- and intra-genotype recombination of PRV has been reported
(Table 2). Recombination between the field strains is important for PRV evolution since
alphaherpesviruses have DNA polymerases with high proof-reading activity and exonucle-
ase activity [40]. There was a high recombination rate in vivo after co-inoculating different
PRV strains in sheep and pigs [41,42]. In another report, a South Korean isolate (Yangsan)
was located between genotype I and genotype II in the phylogenetic tree base on UL21
when located in genotype II in the phylogenetic trees based on US2, gD, and US9, which
suggested recombination between genotypes I and II in UL21 [35]. Similarly, inter-clade
recombination between genotypes I and II was detected in gB of PRV FJ-W2, FJ-ZXF, and
FJ62 [38,43]. There was a recombination analysis of 29 full-length genomes, and more
than four of the seven methods showed that almost all of the PRV strains demonstrated
recombination. It was suggested that intra-clade recombination was more frequent than
inter-clade recombination. Moreover, Chinese variant strains such as HeN1 and Qihe547
may have originated from the recombination between the isolates in genotype I and the
vaccine isolates in genotype II (such as Ea and Fa) [36].

In addition, recombination between the field isolates and vaccine strain Bartha-K61
has been frequently detected. JSY13, which was isolated in Jiangsu in 2018, has been
found to be a natural recombinant strain between Bartha-K61 in genotype I and JSY7
in genotype II. The recombination involves the genes UL42, UL19, UL18, and UL10 [44].
Moreover, the earlier isolates in genotype II such as SC and LA may have originated from
recombination between the foreign isolates (such as Bartha-K61) and the early epidemic
PRV in China [36]. Consistently, it has been reported that SC is a recombinant strain
between the Chinese early local PRV isolate and the vaccine strain Bartha-K61 [45]. In our
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recombination analysis based on 55 PRV genomes, a total of 23 recombination events were
identified, with 16 events observed between Bartha-K61 and the Chinese strains [39]. The
vaccine strain Bartha-K61 has been widely used to control porcine pseudorabies in China
for decades. These recombination events, especially those between vaccine strains and
field strains, suggest that long-term immunity has dramatically contributed to the variation
and evolution of PRV, which may explain the pseudorabies variant outbreak in China in
late 2011.

Table 2. The reported recombination events of PRV.

Strain Isolation Country Recombination Pattern Recombination Site Reference

Yangsan South Korean genotype I and genotype II UL21 [35]
FJ-W2, FJ-ZXF Fujian, China genotype I and genotype II gB [38]

FJ62 Sichuan, China genotype I (Wild boar) and genotype II gB [43]

JSY13 Jiangsu, China genotype I (Bartha) and genotype II (JSY7) UL42, UL19,
UL18, UL10 [44]

SC China genotype I (Bartha) and genotype II gC [45]
HeN1, Qihe547 China genotype I and genotype II (vaccine strains) /

[36]SC, LA China genotype I and genotype II (early strains) /
ZJ01 China genotype I and genotype II /

/ Data not provided in the reference. The gene names were shown in italics.

4. PRV Infections in Animals and Potentially in Humans
4.1. PRV Infections in Pigs and Other Animals

Pigs are the natural host and reservoir of PRV. Infected newborn piglets can show neu-
rological symptoms on the second day after birth, including screaming, ataxia, opisthotonos,
and padding, and mortality can be as high as 100%. In contrast, infected fattening pigs
generally show temporary temperature elevation, respiratory symptoms, and low mortality
with occasional neurological symptoms. Moreover, PRV infection causes severe reproduc-
tive disorders, including orchiditis and epididymitis in boars and pregnancy failure in
sows [46,47]. Additionally, PRV can establish latency in the peripheral nervous system of
the tolerated pigs after infection. Latent infection is characterized without virus replication
and clinical symptoms. After latency, virus reactivation can be triggered by certain factors
that interfere with host immunity [6], resulting in virus spillover and disease outbreaks.
Thus, latency in pigs is a major risk and an obstacle in the late stage of PRV elimination.
Future research on the virus latency is critical for establishing PRV-free domestic pig herds.

PRV is also infectious to many other mammals, including ruminants, carnivores,
and rodents, and is characterized by severe itching and central nervous system (CNS)
dysfunction with 100% mortality [48]. PRV infections in non-natural hosts are generally
experimental infections or natural infections likely associated with pigs. Natural infections
in farmed cattle have been reported worldwide and are related to contact with infected
pigs [49,50]. Infected cattle show mad itch, epilepsy, and paralysis [51]. In 2018, nine cattle
were infected by the Chinese variant PRV strain SDLY-China-2018. The infected cattle
were raised very close to the pigs positive for the gE antibody, suggesting possible virus
transmission from pigs to cattle [49]. In addition, an outbreak of pseudorabies was reported
in a flock of 160 ewes housed next to PRV-infected pigs under virus spillover, and 5 cats on
this farm were also infected by PRV [52]. Moreover, it has been observed that PRV cannot
be horizontally transmitted between infected sheep and healthy sheep [53].

In companion animals, cats and dogs can be infected by PRV through contact with
infected pigs, and hunting dogs are more susceptible due to frequent contact with wild
animals [54,55]. These dogs died shortly after showing neurological symptoms [56].

PRV infections in wild animals have also been widely reported, including in wild
boars [57], foxes [58], wolves [59], brown bears [60], black bears [61], Florida cheetahs [62],
lynx [63], and raccoons [64]. In the experimental infection of raccoons and pigs, PRV
transmission did not occur between raccoons but did occur between raccoons and swine
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via contact or predation [64], which was similar to the transmission pattern between sheep
and pigs. In 2014, a mink farm in northern China suffered from PRV infection due to
feeding raw pork contaminated PRV, resulting in diarrhea, neurologic signs, and 80–90%
mortality [65].

According to the above virus transmission patterns of pig–cattle, pig–sheep, pig–cat,
pig-dog, and wild boar–hunting dog, it is likely that pigs are the core reservoir for the PRV
cross-species transmission. However, PRV infection in non-reservoir animals is different
from that in pigs. Under natural infection conditions, these non-natural hosts develop
itching, severe neurological symptoms, and even death, while there is no latent infection.

4.2. Potiential PRV Infections in Humans

It is controversial whether PRV can infect humans for the past one hundred years. No
PRV-specific neutralizing antibody has been detected in 455 individuals with suspicious
symptoms or occupations that put them at risk for infection, and no symptoms have been
observed in volunteers injected with PRV at doses of 103.4 TCID50 (intradermal) or 106.1

TCID50 (subcutaneous) [66]. These results indicate that humans are not susceptible to PRV
infection, or at least not to the PRV strain used. However, in 1914, two laboratory workers
had their hands injured during contact with a PRV-infected cat and developed itching and
swelling of the wound. As a result, PRV infection was suspected [66]. Moreover, three
human cases have been reported in Europe, showing positive responses to PRV-specific
neutralizing antibodies and neurological symptoms such as dysphagia, paresthesia, and
tinnitus [67]. From 1914 to 1992, there were 17 reported cases of suspected PRV infection,
and these patients developed pruritus, weakness, and pain (Table 3).

Table 3. Suspected case reports of human infection with PRV between 1914 and 1992.

Case Year Occupation Contact History Clinical Symptoms Antibody
Detection

Pathogen
Detection Outcome Reference

1 1914 Lab
technician A laboratory cat

with pseudorabies

Swelling, reddening, and
intense itching of the

wound and the
surrounding area

/ / Survived
[66]

2 1914 Lab
technician / / Survived

3 1940 Lab
technician

Got injured during
contacting with a
dog infected with

PRV

Pruritus, erythema, pain,
and aphthous stomatitis

/ / Survived
[68]

4 1940 Lab
technician / / Survived

5 1963 Animal
handler

A dog infected
with PRV following

an outbreak of
pseudorabies on a

pig farm

Severe throat pain and
weakness in the legs

/ / Survived

[66]6 1963 Animal
handler / / Survived

7 1963 Veterinary / / Survived
8 1963 Nightwatchman / / Survived

9 1983 Tourist in
Denmark

Indirect contact
with

a sick cat

Anorexia, weight loss,
headache, arthralgia Neutralizing

antibody
Titer:

1:8–1:16

/

Survived [67]
10 1986 Tourist in

France
Close contact with

cats and other
domestic animals

Dysphagia, experienced
strange smells and taste

/

11 1986 Tourist in
France /

12–17 1992
Six workers
on a cattle

farm

Direct contact with
PRV infected cattle

Pruritus of the palms that
spread onto the arms and
shoulders and lasted for

several days

/ / Survived [69]

/ Data not provided in the reference.

Since 2017, 25 more human cases of PRV infection have been reported. These cases
were diagnosed by detecting PRV-specific antibodies with enzyme-linked immunosorbent
assay (ELISA) and PRV nucleotides with PCR or metagenomic next-generation sequencing
(Table 4). Notably, the PRV strain hSD-1/2019 was isolated from the cerebrospinal fluid sam-



Viruses 2022, 14, 1463 8 of 15

ple of one patient, providing direct etiological evidence for PRV infection in humans [70].
Among the 25 cases, 100% of patients showed high fever and neurological symptoms; 56%
showed severe visual impairment, including acute retinal necrosis, vitreous opacity, and
blindness; and 16% of the patients died. In addition, 95% of the survivors suffered from
severe sequelae, including visual impairment, vegetativeness, cognitive impairment, and
memory loss. The CNS dysfunction related to PRV infection in these human cases has been
defined as pseudorabies encephalitis (PRE) [71].

All 25 of these patients had a contact history with pigs or pork, indicating the impor-
tance of the infected pigs in human infection with PRV. However, more evidence is needed
to support viral transmission from pigs to humans. Currently, it is believed that there are
no reported cases of human–human transmission since the contacts of the patients have
remained healthy. According to our investigation, the gB antibody-positive rates were
40.91% and 45.95% in the contacts of the two patients, while the gE antibodies were all
negative [72]. Moreover, a retrospective investigation of 1335 serum samples from patients
with encephalitis in 2012, 2013, and 2017 showed gB antibody positivity rates of 12.16%,
14.25%, and 6.52%, respectively [73]. Therefore, the positivity rates of the gB antibody in
the associated populations were unable to be ignored, and gE antibody seroconversion
could be an essential basis for diagnosis.

Table 4. Case reports of human infection with PRV between 2017 and 2021.

Case Year Occupation Contact History Clinical Symptoms Antibody
Detection Nucleotide Outcome Reference

1 2017 Swineherder Sewage spilled into
eyes

Fever, headache, visually impaired,
endophthalmitis gB antibody + Survived [74]

2 2017 Pork dealer Cut hand by a meat
cleaver

Fever, headache, consciousness
disorders, seizures, retinitis,
encephalitis PRV antibody-

positive in
three patients

+ Survived

[71]3 2017 Cook / Fever, headache, seizures,
consciousness disorders + Died

4 2017 Pig butcher / Fever, headache, seizures,
consciousness disorders + Survived

5 2018 Pig butcher / Fever, seizures, consciousness
disorders, retinitis + Survived

6 2018 Veterinary

Hands were
punctured by a
knife used for the
autopsy of dead
swine

Fever, headache, seizures,
respiratory failure, disturbance of
consciousness, encephalitis

gB antibody
gE antibody + Survived [75]

7 2018 Swineherder Needlestick injury Fever, seizures, consciousness
disorders, encephalitis

neutralizing
antibody + Survived [76]

8 2018 Pig butcher Finger hurt by a
pig

Fever, headache, visual
disturbances, convulsions

/

+ Survived

[77]
9 2018 Pig butcher Hand injury before

hospitalization

Fever, memory loss, consciousness
disorders, convulsions, respiratory
failure

+ Survived

10 2018 Swineherder Hand injury before
hospitalization

Fever, extremity tremors,
respiratory failure, vision loss + Survived

11 2018 Porker cutter Hand injury at
work

Fever, convulsions, respiratory
failure + Survived

12 2018 Porker cutter No injury Fever, extremity tremors,
respiratory failure, vision loss + Survived

13 2011 Pork dealer / Fever, psychotic behavior, seizures Died

[78]
14 2018 Pig butcher / Fever, seizures, consciousness loss,

retinal necrosis + Died

15 2018 Swineherder / Fever, seizures, cognitive decline,
respiratory failure, blindness + Survived

16 2018 Driver / Fever, seizures, consciousness loss + Survived

17 2019 Pork dealer Contact with pork
with injured fingers

Fever, seizures, consciousness
disorder, encephalitis

PRV antibody
positive + Survived [79]
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Table 4. Cont.

Case Year Occupation Contact History Clinical Symptoms Antibody
Detection Nucleotide Outcome Reference

18 2018 Veterinary / Fever, headache, memory loss,
seizures, consciousness disorders

gB antibody
gE antibody
Neutralizing
antibody

+ Survived

[70]19 2019 Pig butcher Hand injury
Fever, headache, respiratory failure,
memory loss, seizures,
consciousness disorders

+ Survived

20 2019 Pig butcher Finger injury
Fever, headache, respiratory failure,
memory loss, seizures,
consciousness disorders

+ Survived

21 2019 Pig butcher /
Fever, headache, consciousness loss,
seizures, bilateral retinal
detachment, encephalitis

/ + Survived [80]

22 2020 Swineherder / Fever, coma, endophthalmitis / + Survived [81]

23 2021 Housewife / Fever, headache, seizures, coma,
respiratory failure

/ + Survived [82]24 2021 Swineherder / / + Died

25 2021 Pig butcher Hand injury at
work

Fever, consciousness loss, seizures,
respiratory failure / +

discharged
with
ventilator
support

[83]

/ Data not provided in the reference. + Nucleotide sequences were detected positive in the cases.

Comparing the cases listed in Tables 3 and 4, it seemed that the infectivity and infection
characteristics of PRV in humans have significantly changed. The cases reported between
1914 and 1992 were diagnosed by clinical symptoms and contact history. The patients had
contact with infected cats, dogs, or cattle and showed cold-like symptoms such as fever,
sore throat, limb weakness, and itching in most cases (Table 3). With the development of
detection technology, the diagnostic basis has become more detailed. The cases reported
after 2017 were diagnosed by PRV-specific antibodies and nucleic acid. Infected pigs and
contaminated pork were the common contact history. The patients generally started with
influenza-like symptoms that quickly developed into neurological symptoms within five
days, with some even dying or experiencing disability at the end of the disease (Table 4).
Thence, the possible virus source in these cases and the virulence of the PRV strains might
have changed. The PRV strains resulting in infection in patients have been reported to
be phylogenetically closer to the PRV variant strains currently circulating in Chinese pig
populations [70,74,76]. The variant strains isolated in China after 2012 have been sequenced
and found to be quite different from foreign strains and Chinese classical strains such as
Ea, Fa, LA, and SC. Based on genome sequencing of the variant stains TJ, HNX, and ZJ01
and a comparative analysis with the classical strains, VP1/2 (UL36), ICP22 (US1), and
ICP4 (IE180) are the most variable proteins, and gE (US8), gB (UL27), gC (UL44), and gD
(US6) are the main variable glycoproteins [84–86]. PRV gE is a crucial virulence factor
related to the anterograde transport of viral particles in neurons [87] and is one of the genes
commonly deleted in live attenuated vaccine strains. The experimentally constructed rLA-
ZJ01/gEI developed by replacing the gE and gI of LA with the gE and gI of ZJ01 was more
pathogenic to piglets than LA, implying that the changes in the gE and gI proteins partially
contribute to the enhanced virulence of ZJ01 [86]. gB and gC are the core proteins required
for the invasion of all herpesviruses and also the major immunogenic proteins [88]. PRV
BJB that was reconstructed by replacing the gB of Bartha-K61 with the gB of JS-2012 showed
increased protective efficacy against JS-2012 than Bartha-K61 [89]. Therefore, changes in
these proteins are associated with the different biological characteristics of the PRV variant
strains. It would be interesting to investigate the transmission and infection of PRV variant
strains to humans based on these variations.

Additionally, to assess the risk of PRV infection in humans, it is vital to analyze whether
all of the PRV variant strains or only specific PRV strains can infect humans. However, it
is difficult to identify the general characteristics of PRV strains that infectious to humans
since only one human-originated PRV strain has been isolated. In the phylogenetic analyses
based on the gE and gC sequences of 54 PRV strains isolated from domestic pigs (44), dogs
(9), and bovine (1) in Italy, most of the PRV strains from pigs, three of the strains from dogs
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working on pig farms, and PRV from bovine were closely related in the same clade, while
five strains isolated from hunting dogs were highly close to the PRV strains from wild
boars [90]. Therefore, it is presumed that the contact degree between different susceptible
hosts was one of the critical points accounting for PRV cross-species transmission.

In fact, Nectin-1, Nectin-2, and HveD have been confirmed to mediate PRV infection
in human and mouse cells [91]. Nectin-1 is highly conserved in mammals. Swine nectin-1
and human nectin-1 share 96% identity in amino acids, and they can both mediate the entry
of HSV-1, herpes simplex virus-2 (HSV-2), PRV, and bovine herpesvirus 1 (BHV-1) [92,93].
PRV gD has been shown to bind swine nectin-1 and human nectin-1 with similar affinity,
and the key residues of the interaction interface are conservative, providing structural
evidence for PRV infection in humans [94]. However, there may be more ligands and
receptors since it has been found that PRV can still infect Chinese hamster ovary cells, even
without gD receptors [95]. PRV mutants without gD can be cultured and passaged to reach
a high virus titer through cell-to-cell transmission [96]. Through porcine genome-wide
CRISPR/Cas9 library screening, sphingomyelin synthase 1 (SMS1) was identified to be
critical for PRV mutants without the gD gene to infect porcine kidney cells. When SMS1
was knocked out in the cells, the infection efficiency of PRV mutants without the gD gene
decreased by 90%. This indicates that SMS1 plays a crucial role in PRV infection when the
gD-mediated invasion pathway is blocked [97].

Moreover, HVEM mRNA and membrane-bound proteins have been shown to be
expressed in the human adult retinal pigment epithelial cell line-19 (ARPE-19) [98], corneal
fibroblasts cells [99], trabecular meshwork cells [100], conjunctival epithelial cells [101], and
corneal epithelial cells [102]. Neutralizing antibodies or interfering RNA against HVEM
could significantly reduce the entry of HSV-1 to these cells. Furthermore, previous studies
have shown that HVEM can promote HSV-1 replication in mouse eyes [103,104]. Obviously,
HVEM is associated with HSV-1 infection and pathogenicity in the eyes, so the common
visual impairment in patients infected with PRV might be correlated to HVEM.

5. Vaccines and Diagnosis Methods for Pseudorabies

PRV infection in domestic pigs has been well controlled and even eliminated in
many countries using vaccines and diagnostic tests, supporting the effectiveness of the
DIVA concept. DIVA means the differentiation infected from vaccinated animals through
the use of marker vaccines and respective serological diagnostic tests. After classically
attenuated live vaccines developed by passaging, such as Bartha-K61, live virus vaccines
lacking the major virulence-determining genes were developed by genetic engineering.
The deletion of one or more genes targeting the gE, gI, TK, and gG genes are the typical
choices [105–108]. Currently, based on homologous recombination, CRISPR/Cas9, bacterial
artificial chromosome (BAC), and other genetic engineering technologies, gene-deletion
strains can be rapidly constructed and assessed [108].

It should be noted that vaccine strains ought to be constructed based on the epizootic
strains in the field to ensure the highest protection efficacy and reduce virus variation
caused by recombination. Before 2011, pseudorabies in China had been well controlled
by vaccination with Bartha-K61 and other vaccines constructed based on local classical
strains. However, since late 2011, PRV variant strains have caused pseudorabies outbreaks
in China. It has been reported that the variant strains are more virulent than the classical
strains and that the classical vaccines can no longer provide sufficient protection against the
variant strains [4,84]. The live attenuated vaccines based on variant strains such as SMX,
TJ, ZJ01, and HN1201 were developed and showed adequate protection against the variant
strains [107,109–111]. Therefore, it is necessary to monitor the changes of field strains
continuously and to periodically construct new vaccine candidates. Field strains should be
isolated from the wild boars in the countries in which pseudorabies has been eliminated in
domestic pigs. Additionally, more detailed PRV typing methods are required to distinguish
the differences among PRV strains and to select strains for vaccine development.
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Meanwhile, diagnostic tests together with PRV gene-deletion vaccines are essential
for applying DIVA. The indirect ELISA targeting of the gB and gE antibodies is one of
the most widely applied serological approaches for differential diagnosis [5]. In addition,
diverse molecular biological approaches targeting PRV genes have been established, such
as PCR, real-time PCR, nano PCR, loop-mediated isothermal amplification (LAMP), and
droplet digital PCR [108]. The sensitivity and specificity of these diagnostic approaches
will undoubtedly be further improved. For areas with a low prevalence of pseudorabies,
sensitivity is the primary concern of the diagnosis so that sporadically infected pigs can be
diagnosed and eliminated. Timely diagnosis is vital for reducing the losses caused by the
virus spreading among the pig population. Therefore, easy-to-operate, accurate, and on-site
testing are required to develop new diagnostic methods. One of the difficulties among
the current pseudorabies diagnostic technologies is that they cannot detect PRV during
latency. In the final stage of pseudorabies eradication programs, infected pigs should be
culled, while latently infected pigs cannot be detected using existing methods. They will
be excluded through herd updating on the farms if there is no viral activation. However,
many risk factors are associated with viral reactivation on pig farms. Therefore, developing
specific methods to detect latently infected pigs is particularly important for the future
prevention, elimination, and eradication of pseudorabies.

6. Conclusions

PRV is an important pathogen for pigs and other animals. As an alphaherpesvirus
showing a relatively high rate of protein-coding variation, it is necessary to monitor the
epidemiology and variations of this virus. In this review, we summarized PRV prevalence
in China and worldwide, how PRV evolution was contributed to by natural selection
and recombination, and PRV infections in animals and humans. All of this information
facilitates future research and the control of pseudorabies. PRV elimination in the swine
population should be further accelerated with better vaccines and diagnostic approaches.
PRV can potentially infect humans, and further investigation is warranted.
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