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Contrast-induced acute kidney injury (CI-AKI) is the third most common hospital-acquired AKI after AKI induced by renal
perfusion insufficiency and nephrotoxic drugs, taking great adverse effects on the prognosis and increasing hospital stay and
medical cost. Diabetes nephropathy (DN) is a common chronic complication of DM (diabetes mellitus), and DN is an inde-
pendent risk factor for chronic kidney disease (CKD) and CI-AKI.-e incidence of CI-AKI significantly increases in patients with
renal injury, especially in DM-related nephropathy. -e etiology of CI-AKI is not fully clear, and research studies on how DM
becomes a facilitated factor of CI-AKI are limited.-is review describes the mechanism from three aspects.① Pathophysiological
changes of CI-AKI in kidney under high-glucose status (HGS). HGS can enhance the oxidative stress and increase ROS which next
causes stronger vessel constriction and insufficient oxygen supply in kidney via vasoactive substances. HGS also aggravates some
ion pump load and the latter increases oxygen consumption. CI-AKI and HGS are mutually causal, making the kidney function
continue to decline. ② Immunological changes of DM promoting CI-AKI. Some innate immune cells and pattern recognition
receptors (PRRs) in DM and/or DN may respond to some damage-associated molecular patterns (DAMPs) formed by CI-AKI.
-ese effects overlap with some pathophysiological changes in hyperglycemia.③ Signaling pathways related to both CI-AKI and
DM. -ese pathways involved in CI-AKI are closely associated with apoptosis, inflammation, and ROS production, and some
studies suggest that these pathways may be potential targets for alleviating CI-AKI. In conclusion, the pathogenesis of CI-AKI and
the mechanism of DM as a predisposing factor for CI-AKI, especially signaling pathways, need further investigation to provide
new clinical approaches to prevent and treat CI-AKI.

1. Introduction

Radiology and its extensive techniques play increasingly
significant role in the diagnosis and treatment of many
diseases, which makes the administration of iodine contrast
media become very common. -e terminology of acute
kidney injury (AKI) caused by iodine contrast media had
changed several times in these years. At first, it was called
contrast-induced nephropathy (CIN). Recently, post-
contrast acute kidney injury (PC-AKI) is recommended for
the condition and contrast-induced kidney injury (CI-AKI)
is reserved for cases in which a casual relation can be
identified between contrast media administration and the
kidney damage [1]. We prefer CI-AKI in this paper for much
literatures use this term when published. -e Contrast

Media Safety Committee (CMSC) of the European Society of
Urogenital Radiology (ESUR) made a most common renal
function definition for CI-AKI: serum creatinine increases
(sCr) ≥0.5mg/dl (44.2 μmol/L) or ≥25% from baseline
within 3 days after intravascular injection of iodine contrast
media, while other causes of AKI are excluded [1, 2]. After
that, serum creatinine peaks at 3–5 days and drops to
baseline at 10–14 days [3]. -e Kidney Disease: Improving
Global Outcome (KDIGO) criteria are as follows: an increase
in sCr of ≥0.3mg/dl or a sCr increase of ≥1.5–1.9 times
baseline in the 48–72 h following contrast media adminis-
tration [1, 4–6]. CI-AKI is the third most common hospital-
acquired AKI after renal perfusion insufficiency and
nephrotoxic drugs [7, 8]. It brings about adverse effect on the
prognosis, increasing hospital stay and medical cost.
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Various types of diabetes mellitus (DM) and their acute
or chronic complications have become the common diseases
threatening our lives and health, and these can be regarded
as the diseases that cause secondary diseases. Although some
recent reviews and studies do not emphasize DM as a direct
risk factor of CI-AKI, it is still a potential predisposing factor
of AKI [9, 10]. Taking a step back, diabetes nephropathy
(DN) is a common chronic complication of DM, and DN is
an independent risk factor for chronic kidney disease (CKD)
and CI-AKI [10]. -e incidence of CI-AKI significantly
increases in patients with renal injury, especially in DM-
related nephropathy [11]. Data showed that the incidence of
CI-AKI is about 13% in nondiabetic patients and 5.7%–
29.4% in diabetic patients [12].

-e etiology of CI-AKI is not fully clear, and research
studies on how DM becomes a predisposing factor of CI-
AKI are limited. Further studies are required to answer
which signaling pathways are involved in CI-AKI and their
regulations on renal function. What is the potential link
between high-glucose status (HGS) and CI-AKI? What are
the similarities of immune response in DM and CI-AKI and
so on? In this paper, the contrast media only involve iodine-
based contrast media.

2. Pathophysiologic Changes of CI-AKI in
Kidney under HGS

Current studies suggest that CI-AKI mainly occurs through
two mechanisms: hypoxia damage to renal parenchyma
(especially medullary hypoxia) and the toxic effects of
contrast media on renal capillaries and tubules [13]. HGS
may increase reactive oxygen species (ROS) [14], and then
ROS bridge these two mechanisms.

Contrast media change renal hemodynamics quickly,
leading to hypoxia and ischemia (or some conditions like
ischemia because of temporary contrast media perfusion
occurring in renal vessel). -e experimental evidence related
to renal hypoxia damage includes several points. ① Blood
oxygen level dependent (BOLD) imaging detected an in-
crease in deoxygenated hemoglobin in the renal medulla of
animal models. ② Generation of pimonidazole adducts in
the kidney was detected [15]. ③ Hypoxia-inducible factors
(HIFs) accumulated [16]. Next, hypoxia and subsequent
ischemia-reperfusion injury result in a large number of ROS
dominated oxidation products and the formation of oxi-
dative stress. ROS play a pivotal role in the occurrence of CI-
AKI, which leads to abnormal activity of protein and en-
zyme, DNA structure alteration and function damage, and
lipid damage [17]. -e toxicity of the contrast media mainly
targets at the renal vascular endothelial cells and renal tu-
bular epithelial cells, leading to increased apoptosis and
necrosis [18]. In addition, nitric oxide (NO) synthesis de-
creases when endothelial gets injured [19], and then arte-
rioles and venules get more constriction than dilation,
together with the weakening of antioxidation ability.
Moreover, abnormal exchange of intracellular and extra-
cellular Na+/Ca2+ and accumulation of intracellular Ca2+
during CI-AKI can also lead to cell damage [20]. -e
contrast toxicity affects activity of different cell types with a

concentration-dependent change. In the meanwhile, it is
found that the toxicity of ionic contrast media is higher than
that of nonionic contrast media and that of hypertonic
contrast media is higher than that of hypotonic contrast
media [21]. -e specific molecular mechanism may include
the contrast media’s damage to organelles through cell
membrane, mitochondria impairment, efficiency of respi-
ratory chain reduction, release of cytochrome, and induction
of apoptosis via mitochondrial pathway [22]. Another round
of oxidative stress ensues from ROS production after mi-
tochondrial damage. Taken together, contrast media influ-
ence the renal microcirculation, resulting in hypoxia and
ischemia-reperfusion injury and then renal tissue damage
and excessive ROS production. At the same time, contrast
media have toxic effect on the mitochondria of renal tubular
epithelium and vascular endothelia, mediating the mito-
chondrial apoptosis pathway. ROS are the core part here.

DM or DN is very sensitive to the two main mechanisms
above: low oxygen and toxicity [23]. In either clinical ob-
servations or animal experiments, DN is not a necessary
outcome of DM but it is an important preventive target.
Once DN occurs, it always means that one becomes highly
prone to chronic renal failure (CRF) and end-stage renal
disease (ESRD). DMmakes CI-AKI happen more frequently
[24] and HGS traps antioxidative system in the body ac-
companied by upregulation of oxidative stress [25], resulting
in much more inflammation and worsened endothelial
function [26]. Vice versa, it can also be considered that some
pathophysiological changes in DM or DN become potential
factors for the occurrence of CI-AKI, such as more oxygen
consumption, the increased ROS, upregulation of endo-
thelin and adenosine, downregulation of NO and prosta-
glandin (PG), and other metabolic disorders [27]. ROS
generation (O−

2 , H2O2, and OH−) [28] is extraordinarily
attentive because they are harmful to almost every organs
and exacerbate both aging and disease processes. -e pro-
duction of ROS in DM and DN is mainly due to the en-
hanced activity of reduced nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase and increased
mitochondrial superoxide [29]. ROS have no specific target
for action. -ey attack lipids, proteins, and amino acids and
produce unstable molecules, and the end products may
bring about various metabolic effects [30]. After injection of
contrast media, endothelin significantly increased in healthy
subjects and those with DN and chronic kidney disease
(CKD) [31]; another study found endothelin converting
enzyme-1 (ECE-1) also increased [32]. Endothelin causes
renal vasoconstriction, aggravating hypoxia and tubular
impairment. Adenosine is an ATP metabolite that causes
vasodilation in most cases but constricts vessels in kidney
[33] so that it aggravates hypoxia. NO is a vasodilation
substance and it gets low in renal medulla of DN [34] partly
because ROS neutralize NO; as a result, vasodilation is
limited. Moreover, the decrease of PG (PGE2/PGI2) syn-
thesis makes a compound effect of renal vasoconstriction.
All the vasoconstricting factors mentioned above increase,
while vasodilating factors decrease, which draws down
oxygen supply in kidney. It was reported that compared with
normal rats, renal vasoconstriction in DM rats was more
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obvious [35]. Besides the effects on vasoactive substances,
HGS enhances the load of certain ion pumps, increasing
oxygen consumption. Some related experiments discuss this
as follows. HGS increases the load of Na+-glucose trans-
porter in renal tubular epithelial cells and induces more
oxygen consumption [36]. Experiments were carried out in
isolated medullary thick ascending limb (mTAL), which
showed that the increase of ROS could enhance the syn-
ergistic transport activity of Na+-K+-2Cl− [37]. Renal dys-
function can enhance Na+-K+-ATPase activity in medulla,
aggravating hypoxia [38].

In summary, HGS is a facilitating factor of CI-AKI. On
the one hand, it can enhance the oxidative stress and in-
crease ROS; on the other hand, it causes dysfunction of
vasoactive substances, stronger vessel constriction in the
kidney, and insufficient oxygen supply. It also aggravates
some ion pump load, increasing oxygen consumption. CI-
AKI can also aggravate the pathological process of DM and
DN, and they are mutually causal, making the kidney
function continue to decline (Figure 1).

3. Immunological Changes of DM
Promote CI-AKI

Clinically, contrast media can trigger a series of adverse
reactions, such as nausea, vomiting, urticaria, broncho-
spasm, and hypotension, but the mechanisms of these re-
actions have not been fully understood nor have been clear
whether these side effects have associations with CI-AKI.
-e specific immune changes in HGS which tend to trigger
CI-AKI is ambiguous.

3.1. Cytokines. Various cytokines upregulate in diabetics
and are detectable in plasma [39]. Cytokines’ upregulation
positively correlates with the progress of DM [40] and urine
protein [41]. -e involved cytokines are TNF-α (tumor
necrosis factor-alpha), IL-1 (interleukin-1), IL-18, TGF-β
(tumor growth factor-beta), IFN-c (interferon-gamma), IL-
6, and IL-33. -e facilitation of their effects on CI-AKI is
direct or indirect.

3.1.1. TNF-Alpha and IL-1. Decades ago, Hasegawa re-
ported that, compared with normal rats, cocultured renal
basement membrane of DM rats with macrophages pro-
duced much more TNF-alpha and IL-1 [42], stimulating
inflammation. TNF-alpha is produced mainly by mono-
cytes-macrophages, Tcells, and also by renal cells [43]. TNF-
alpha takes direct toxic effects on renal cells inducing
damage, apoptosis, and necrosis [44, 45]. In addition, TNF-
alpha induces ROS generation in renal cells, intensifying
oxidative stress [46], and then oxidative stress disrupts
antioxidant system and worsens immune function [47]. -e
toxicity of these two kinds of cytokines and ROS promotes
CI-AKI.

3.1.2. IL-18, TGF-Beta, and IFN-Gamma. Various cells can
release IL-18, such as monocytes-macrophages and T cells.

-e tubular epithelia of patients with DN excrete more IL-18
and stimulate the release of IFN-gamma [48] and then
activate mitogen-activated protein kinase (MAPK) pathway.
Lee et al. found that certain extracted flavonoid from Ar-
temisia argyiwas able to inhibit MAPK phosphorylation and
perform antiapoptosis action in CI-AKI [49]. -is provided
a new indirect evidence that IL-18 may promote CI-AKI.
Another earlier study reported that TGF-beta1 is an up-
stream member of IL-18 [50] and plays a key role in kidney
fibrosis and antifibrosis, which has strong association with
CKD and ESRD. In the murine model with CKD, contrast
media activated TGF-beta/pSMAD3 signaling pathway and
upregulated connective tissue growth factor (CTGF), matrix
metalloproteinase 9 (Mmp-9), and type IV collagen, thereby
inducing cellular death [51]. A deduction that TGF-beta
works the same way in DM/DN was made. Yaribeygi et al.
made a summary about the effects of IL-18 in DN [52],
considering that IL-18 has connections with different cy-
tokines and pathways that promote DN and the underlying
mechanisms including mesangial proliferation and glo-
merular fibrosis, intensifying oxidative stress and induction
of apoptosis or necrosis. It is not hard to notice that these
effects are closely related to the pathophysiological changes
of CI-AKI.

3.1.3. IL-6. DN is characteristic of glomerular interstitial
fibrosis. In DM patients, IL-6 in patients with DN is higher
than that in DM without DN [53]. IL-6 promotes mesangial
proliferation, makes endothelia more penetrable, and in-
creases fibronectin [54]. -ese are pathological features of
renal fibrosis. As a special AKI, CI-AKI also probably de-
velops to CKD if treatment was not enough, which means an
increasing possibility of fibrosis.

3.1.4. IL-33. Onk et al. had found that IL-33 levels were
much higher in the kidney and serum of rats with DM, and
they increased further in DM rats which were given contrast
media [55]. -ereafter, they found melatonin could reverse
this process and attenuate renal damage [55], which perhaps
relates to the immune regulation, antiapoptosis, and anti-
oxidative stress of melatonin. In a clinical study, Oweis et al.
analyzed serum from 202 patients undergoing coronary
angiography and found that serum IL-33 can be regarded as
a predictor of CI-AKI [56].

3.1.5. IL-22. Different from the above cytokines, IL-22 may
inhibit inflammation and alleviate renal impairment in DM
and CI-AKI. Wang et al. [57] reported that IL-22 decreased
in DM patients and the DM model. -e upregulation of IL-
22 attenuated renal damage in the DM model and relieved
the overexpression of fibronectin and type IV collagen and
then alleviated renal fibrosis and albuminuria [57]. -e
suppression of NOD-like receptor pyrin 3 (NLRP3)/caspase-
1/IL-1beta is likely to be involved in these series of reactions.

Together, multiple cytokines implicate changes in both
DM and CI-AKI, and most of them are against normal renal
function. IL-22 is an exception that relieves renal
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inflammation, and IL-33 in serum is a potential predictor for
CI-AKI (Figure 2).

3.2. Pattern Recognition Receptors and Immune Cells. In
studies of DN patients and animal models, about five kinds
of cells take part in renal pathogenic effect [58]:
neutrophils, lymphocytes, macrophages, dendrites, andmast
cells. -ese cells infiltrate into kidney and release proin-
flammatory factors, causing degradation and phagocytosis of
necrotic cell fragments, and promote fibroblast proliferation
and renal fibrosis. Except lymphocytes, the other four types
of cells are important members of the innate immune
system. Innate immune cells express pattern recognition
receptors (PRRs), such as toll-like receptors (TLRs) and
NOD-like receptors (NLRs), to combine with specific li-
gands, such as damage-associated molecular patterns
(DAMPs) or pathogen-associated molecular patterns
(PAMPs), to trigger immune responses. -e previous
concentrations of immune cells in DM were mostly on islet
cells and fatty tissue and subsequent results are injuries of
islet cells (Type 1 Diabetes Mellitus, T1DM), insulin resis-
tance (Type 2 Diabetes Mellitus, T2DM), or obesity [59].-e
studies on molecular patterns and receptors in CI-AKI are
limited.

At first, HGS induces TLR overexpression, such as TLR2
and TLR4 in fatty tissue [60], retina [61], endothelia of
coronary arteries [62], and renal vessels [63]. A recent study
showed that oxidative stress (ROS and H2O2) promoted

expression of TLR2 and TLR4 in human periphery
monocytes and upregulated sorts of cytokines, such as IFN-
gamma, IL-1beta, IL-6, and so on, consisting of some cy-
tokines in DM. -is finding provided new evidence of why
DM increases CI-AKI incidence [64]. Some other studies
indicated that in non-contrast-induced AKIs, TLRs interplay
with DAMPs or PAMPs, resulting in immune reactions or
mediating immune responses [65]. PAMPs originate from
certain pathogens and usually exist but not morbific in
healthy human body, so discussions on DAMPs have more
connection with CI-AKI. In DM and DN, DAMPs stem
from damaged or dead cells and they could be metabolites of
ATP, DNA, or harmful particles such as uric acid crystals or
can be generated by radiation [66]. DAMPs get exposed to
the immune system via cytolysis, cellular excretion, or en-
zyme matrix releasing [67]. Heat shock protein (HSP) and
high mobility group box-1 protein (HMGB-1) are the most
common DAMPs in AKI [68]. Moreover, on the one hand,
innate immune cells express TLRs to recognize DAMPs,
activating some signaling pathways, such as necrosis factor-
kappa B (NF-κB) and MAPK, and promoting cytokine re-
lease. Some of these factors may be involved in CI-AKI. On
the other hand, NLRs participate in formation of some
signaling complex and cause damage. For example, NLRP3
inflammasome is a complex which can activate caspase-1
and then promotes IL-1beta, IL-18, and IL-33 mature and
releasing [69] (Figure 2). A recent research from Lau et al.
showed that several steps accompanied in immune sur-
veillance of CI-AKI, and one of themwas NLRP3-dependent
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Figure 1: Pathophysiologic changes of CI-AKI in the kidney under HGS. Reactive oxygen species (ROS) are the core factors in both
contrast-induced acute kidney injury (CI-AKI) and high-glucose status (HGS).-e blue boxes comprise the main procedures of CI-AKI and
the yellow ones indicate possible procedures of HGS that strengthen CI-AKI. Hypoxia and ROS production are the common alterations.-e
arrows link two boxes that show the pathophysiologic direction, which results in final inflammation or cell death. Some additional issues
need explanation. Firstly, the vasoactive substances including but not limited to endothelin, adenosine, nitric oxide (NO), and prostaglandin
(PG) because all those who are associated with vessel expanding or contractingmay affect potential oxygen supply. Secondly, either damaged
protein or lipid causes inflammation, apoptosis, or necrosis which are more like damage-associated molecular patterns (DAMPs) discussed
later. -irdly, the CI-AKI mainly results from tubules and endothelia injury.
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inflammatory response [70]. Contrary to the above results,
IL-22 can alleviate renal injury and fibrosis in DN by
inhibiting the NLRP3/caspase-1/IL-1beta inflammatory re-
sponse pathway [57]. Yaribeygi et al. concluded that
resolvins inhibited the formation of NLRP3 inflammasome
and NF-κB pathway and recruited inflammatory cells,
thereby relieving oxidative stress and alleviating DN [71].
-ese consequences gave indirect evidence to the partici-
pation of NLRP3 in CI-AKI.

Now, we can see that some innate immune cells and
PRRs in DM and/or DN may respond to some DAMPs
formed by CI-AKI, secrete cytokines, and aggravate or in-
hibit inflammation. -ese effects overlap with some path-
ophysiological changes in hyperglycemia, providing new
research ideas in DM that promotes CI-AKI and the related
mechanisms (Figure 3).

4. Signaling Pathways Related to CI-AKI
and DM

-e pathological changes of renal cells in CI-AKI are under
control of different signaling pathways. -e toxicity of
contrast media, hypoxia, and elevated ROS, together with
immune reactions or inflammatory responses, can increase
cellular apoptosis and inactivate transcription and transla-
tion of renal cells. By far, the involved signaling pathways
have been found as ① Bax/Bcl2-caspase-3/9, ② PKB/

mTOR/p70S6,③ PKB/FoxO,④ p38MAPK,⑤JNK, and⑥
NF-kappa B. -e protection pathways may include ①, ②,
④, and ⑥. And the above pathways related to DM/DN are
③, ④, ⑤, and ⑥.

4.1. Signaling Pathways Induce CI-AKI. Ioversol can induce
apoptosis of LLC-PKI renal epithelia. -e upregulation of
Bax and downregulation of Bcl-2 with more expression of
caspase-3 and caspase-9 can be detected. -is process can be
reversed by cAMP through PKA-dependent cAMP-respon-
sive element binding protein (CREB) phosphorylation
[72–74]. Andreucci et al. found that in HK-2 renal epithelia,
diatrizoate and iomeprol induced p38 mitogen-activated
protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and
NF-κB phosphorylation, resulting in inflammation and ap-
optosis, and diatrizoate had a stronger effect [75]. After that,
this group found iomeprol and iodixanol made protein kinase
B (PKB or Akt) dephosphorylation in HK-2 and inactivated
the targets at downstream. -e activity of p70S6 kinase gets
weaker and the protein synthesis is blocked, thereby causing
cell death. Meanwhile, iomeprol causes dephosphorylation of
forkhead box O3a (FoxO3a) and cell death [76].

-ese in vitro experiments demonstrate to some extent
the harmful effects of contrast media on kidney cells and
indicate possible signaling pathways, but further experi-
ments validation in vivo is necessary andmake them targeted
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Figure 2: Cytokines in HGS and CI-AKI. -is concentrates mainly on how cytokines are affected by diabetes mellitus (DM)/diabetes
nephropathy (DN) or high-glucose status (HGS) and contrast media, which further delineates underlying mechanisms of why DM/DN is a
risky factor for contrast-induced kidney injury (CI-AKI).-e solid arrows mean increasing, promoting, or activating, and the dotted arrows
denote decreasing, weakening, or inactivating. -e yellow boxes give the associated cytokines, and most of them increased by DM/DN and
then caused apoptosis or necrosis directly or pathologic alteration such as fibrosis and inflammation. TGF-beta and IL-18 cause oxidative
stress or apoptosis via some special molecules involved in certain signaling pathways. NOD-like receptor pyrin 3 (NLRP3) is involved in CI-
AKI, which is discussed in detail later. Cytokines that relieve renal injury are limited. IL-22 counteracts fibrosis and suppresses NLRP3/
caspase-1/IL-1beta. Melatonin alleviates renal damage by reversing IL-33 increase. CTGF, connective tissue growth factor; IFN-c, in-
terferon-gamma; IL-1/6/18/22/33, interleukin-1/6/18/22/33; MAPK, mitogen-activated protein kinase; Mmp-9, matrix metalloproteinase 9;
NLRP3, NOD-like receptor pyrin 3; ROS, reactive oxygen species; TGF-β, tumor growth factor-beta; TNF-α, tumor necrosis factor-alpha.
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pathways for the prevention and treatment of CI-AKI in
clinic.

4.2. 7e Possible Targeting Pathways in Relieving CI-AKI.
Antioxidant N-acetylcysteine (NAC) is getting more at-
tention because of its ability to alleviate CI-AKI. N-ace-
tylcysteine amide (NACA) is an amide of NAC, and it can
mitigate oxidative stress and reduce apoptosis more ef-
fective than NAC through p38 MAPK [77]. In ischemia
tissue, phosphatidylinositol-3 kinase/serine-threonine ki-
nase B (P13K/Akt) and its downstream molecules play a
role in cell protection and survival [78]. Salvianolic B can
relieve oxidative stress and inflammation via PI3K/Akt/
nuclear factor-E2-related factor 2 (Nrf2) and improve renal
function in CI-AKI [79]. In another in vivo study, the
author found that sulforaphane (SFN) increased the ex-
pression of heme oxygenase-1(HO-1) and then activated
cells to decrease ROS, thereby relieved CI-AKI [80].

All the above pathways are involved in reducing oxi-
dative stress and ROS production. It has been further
confirmed that oxidative stress and ROS are the core factors
of CI-AKI, making various pathways that can reduce oxi-
dative stress become targets for the treatment of CI-AKI.

4.3. Various Pathways in DM May Intensify CI-AKI. HGS
affects various signaling pathways in different cells and is
complicated. For example, FoxO1 overexpress in car-
diomyocyte with DM, resulting in cardiac metabolic

disorders, activation of caspases, and increased mitochon-
drial apoptosis [81]. In addition, high glucose activates JNK
and p38 MAPK and promotes the apoptosis of annulus
fibrosus cell in intervertebral disc [82]. -e activation of
these pathways in diabetic kidneys remains to be investi-
gated, and the results are likely to be positive due to the
widespread presence of these signaling pathways.

At present, some scholars have associated ROS with a
series of signaling pathway activation in renal studies related
to DM and hyperglycemia, such as PKC and NF-kappa B
[83]. -ese pathways can lead to renal fibrosis and renal
function decline [84]. High glucose activates intracellular
protein kinase C (PKC), which regulates vasoconstriction,
cell growth, angiogenesis, cytokine activity, and leukocyte
adhesion [85]. PKC can also increase the expression of TGF-
β, leading to extracellular matrix aggregation, and promote
renal interstitial fibrosis [86].

-e NF-kappa B plays a critical role in regulating in-
flammation, as well as the expression of angiotensin, cy-
tokines, and adhesion molecules [87, 88], and Nrf2 can
suppress NF-kappa B with negative feedback [89]. Khaleel
et al. demonstrated that Nrf2/HO-1 pathway protected CI-
AKI in diabetic rats and further demonstrated the protective
effect of sulforaphane on CI-AKI [90].

-e pathogenesis of CI-AKI based on DM is very
complex, and various signaling pathways may be involved.
-e interaction of various pathways overlaps and promotes
each other. And the transcription factors, Nrf2 and NF-κB,
work as redox switches responding to ROS [17]. -e overall

DM/DN

ROS

Contrast

Inflammatory
dactors (IFN-γ/IL-

1β/IL-6)

Renal tissue
injury/fibroblast

proliferation/fibrosis

Another round of ROS
and inflammatory

factors

DAMPsRenal tissue
inflammation/

necrosis

Neutrophils
Mono-macrophages

Dendrites
Mast cells

NF-κB and
MAPK

TLRs/NLRs

Epithelia/endothelia
injury

Figure 3: PRRs in CI-AKI and DM/DN. Various kinds of cells, especially immune cells, respond to diabetes mellitus (DM)/diabetes
nephropathy (DN), and contrast media. -e light-green dotted boxes implicate the possible cells in the process. Solid arrows head for the
response direction. Toll-like receptors (TLRs)/NOD-like receptors (NLRs) and damage-associated molecular patterns (DAMPs) play an
important role in innate immunity and answer for contrast media or high-glucose status (HGS). Immune cells affect renal tissue mainly
through inflammation and cytokines. NF-kappa B and MAPK are the possible pathways between pattern recognition receptors (PRRs) and
another round of hit on the kidney. Reactive oxygen species (ROS) and cytokines (inflammatory factors) are the key actors. -e aftermath is
renal fibrosis and injury and then cell death. IFN-c, interferon-gamma; IL-1β/6, interleukin-1β/6; MAPK, mitogen-activated protein kinase;
NF-κB, necrosis factor-kappa B.
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consequence is aggravation of renal inflammation and
cellular apoptosis and kidney fibrosis (Figure 4).

5. Summary

-e mechanism of how DM works on CI-AKI is not fully
clear, nor does CI-AKI itself. Current opinions mainly focus
on hypoxia of renal parenchyma and renal toxicity. ROS are
the key factors in CI-AKI, and, HGS, especially the changes
of vascular active substances intensifying renal injury, can
promote the occurrence of CI-AKI. In addition, the alter-
ations of immune response in CI-AKI process are worth
discussing. Quite a few studies have found regular changes of
some cytokines in CI-AKI, and the effects of these cytokines
seem to be similar to those on renal function in DM. It is
worth noting that we can hardly make clear differentiation
onHGS, DM, or DNwhen discussing specific points because
it is hard to define a completely same condition with various
laboratory controls. Nevertheless, it is essential to differ-
entiate them when back to clinical statement. In the
meanwhile, the contrast media can also induce immune
responses in the body. -e signaling pathways involved in
CI-AKI are closely associated with apoptosis, inflammation,
and ROS production, and some studies suggest that these
pathways may be potential targets for alleviating CI-AKI.
-e barrier is that, whatever bench or bed, it is hard to
manage different kinds of cells from a certain kidney. Much

more studies about cellular responses to contrast media need
to be done. In conclusion, the pathogenesis of CI-AKI and
the mechanism of DM as a predisposing factor for CI-AKI
need further investigation in order to provide new clinical
approaches to prevent and treat CI-AKI [19].
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