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Automated cell nuclei segmentation is the most crucial step toward the implementation of a computer-aided diagnosis system for
cancer cells. Studies on the automated analysis of cytology pleural effusion images are few because of the lack of reliable cell nuclei
segmentation methods. )erefore, this paper presents a comparative study of twelve nuclei segmentation methods for cytology
pleural effusion images. Each method involves three main steps: preprocessing, segmentation, and postprocessing. )e pre-
processing and segmentation stages help enhancing the image quality and extracting the nuclei regions from the rest of the image,
respectively. )e postprocessing stage helps in refining the segmented nuclei and removing false findings. )e segmentation
methods are quantitatively evaluated for 35 cytology images of pleural effusion by computing five performance metrics. )e
evaluation results show that the segmentation performances of the Otsu, k-means, mean shift, Chan–Vese, and graph cut methods
are 94, 94, 95, 94, and 93%, respectively, with high abnormal nuclei detection rates.)e average computational times per image are
1.08, 36.62, 50.18, 330, and 44.03 seconds, respectively. )e findings of this study will be useful for current and potential future
studies on cytology images of pleural effusion.

1. Introduction

Globally, cancer is one of the deadliest diseases with high
morbidity and mortality. In 2015, approximately 14 million
new cases were diagnosed, and over 8 million deaths were
estimated worldwide [1]. Ferlay et al. [2] estimated that the
death toll due to cancer is set to rise dramatically by ap-
proximately 70% in the coming decades. Fortunately, the
mortality and morbidity associated with cancer can be re-
duced, with a high potential for cure if cancer is diagnosed
and treated at an early stage.

When cancer grows or flows in the pleura cavity between
the lungs and the chest wall, it causes a malignant pleural
effusion, which is the excessive collection of pleural fluid, as
shown in Figure 1 [3].

Fifty percent of cancer patients have a high possibility of
developing malignant pleural effusion. Both primary and
metastasis cancers can be diagnosed from pleural effusion

[4]. )e most frequently occurring primary cancer in pleural
effusion is mesothelioma. )e most common types of me-
tastasis cancers are the cancers of the breasts, lungs, ovaries,
and blood, including other unknown primary sites.

Pleural effusion can be detected using several imaging
approaches such as X-ray, ultrasound, computed tomog-
raphy (CT), and magnetic resonance imaging (MRI), in-
cluding other tests such as urine and blood tests. For the
assessment of malignancy, a cytological examination is
performed by pathologists because it is simple, cheap, less
invasive, and highly effective.

)e cytological exam is a manual procedure wherein
cytologists or experts visually investigate every single cell on
the cytology glass slides using a microscopic camera, identify
any abnormality in a cell, and finally make a decision.
However, the procedure is time-consuming and requires
good skill; moreover, it is tedious and prone to inter- and
intraobserver variations. In addition, the diagnosis accuracy

Hindawi
Journal of Healthcare Engineering
Volume 2018, Article ID 9240389, 14 pages
https://doi.org/10.1155/2018/9240389

mailto:kyadanarw@gmail.com
http://orcid.org/0000-0001-7155-9475
http://orcid.org/0000-0001-8776-1010
https://doi.org/10.1155/2018/9240389


strongly depends on the attention and expertise of cytolo-
gists. )ese factors have inspired us to implement a com-
puter-aided diagnosis (CAD) system. )e CAD system can
help relieve the workload on cytologists, accelerate the di-
agnosis procedure, eliminate the inter- and intraobserver
variations in the diagnosis, and describe the quantitative
results, thus complementing and enhancing the opinions of
the cytologists. To implement a CAD system for cancer cells,
cell nuclei segmentation is a prerequisite because cancer cells
are largely observed on the basis of the morphological
changes in the cell nuclei. )erefore, it is crucial to select an
accurate and effective cell nuclei segmentation method that
can help precisely delineate the nuclei contours.

2. Literature Review

Several promising nuclei segmentation approaches have
been proposed for different types of microscopic images, for
example, cervical and breast cells. Cell nuclei segmentation
methods for breast cell images [5–10] and cervical cell
images [11–15] have been reported. Moreover, methods
have been proposed to segment cell nuclei on prostate cancer
cell images [16, 17] and microscopic blood cell images
[18, 19]. Significant efforts have been made to segment the
cell nuclei from other types of images such as bone marrow
images, lung sputum cells images, brain cell images, liver and
thyroid images, bladder and skin tissue images, and brain
glioma images in various studies [20–24], respectively.

Although many robust and effective methods for nuclei
segmentation have been reported [5–24], they are designed
to address specific types of cell images such as those of the
breast, cervical, blood, and prostate. In different types of cell
images, the structure of the cells and their corresponding
gray-level distributions vary significantly. )erefore, the
aforementioned methods cannot be directly employed to
segment all types of images on the basis of the diversity of the
images.

Only a few studies have detected malignant cells from
cytology pleural effusion images. Zhang et al. [25] reported
a method to detect malignant cells from pleural effusion
images using integrated fuzzy edge detection and Otsu’s
method. Chen et al. [26] presented a method on the basis of
the wavelet and morphology transform to detect malignant
cells from pleural effusion images.

However, a preprocessing stage for removing noise and
enhancing contrast is not considered in these methods, thus
reducing the accuracy of the detection system. In addition,
the methods are not focused on the segmentation process
and there is a lack of quantitative evaluation of the proposed
methods. To address the shortcomings, we recently reported
two cell nuclei segmentation methods [27, 28]. However,
nuclei segmentation in cytology pleural effusion images is
still a challenging task because of the high cell population,
their varieties, overlapping cells, and poor cell contrast.
)ere is scope to further improve the cell segmentation
method for cytology pleural effusion images. )us, more
observations are required to implement and determine the
most feasible segmentation method.

In the cytology and histology image analysis, nuclei
segmentation often revolves around thresholding tech-
niques, clustering techniques, and active contour techniques.
)resholding techniques are quite simple ones in nuclei
segmentation. Every pixel in the image is determined into
nuclei or background depending on the image intensity. In
spite of providing the effective segmentation performance for
the images with uniform background, they are sensitive to
noises, uneven background, and intensity heterogeneity in-
side the images [17, 25, 29, 30, 31]. Clustering techniques are
unsupervisedmethods that attempt to group the pixels having
similar features into different objects without prelabeling the
samples [10, 14, 19, 20]. Active contour techniques are based
on moving the deformable splines inside the images to find
nuclei contours using the gradient information [6, 16, 32, 33].
Graph cut methods recently have a great interest in nuclei
segmentation and yield the good segmentation performance
[9, 11]. Other popular techniques are variants of watershed
method and concavity analysis method which are frequently
used for isolating the overlapping nuclei that is critical issue of
cytology and histology image segmentation. )e above stated
techniques are widely utilized in either individual or in-
tegrating together in many microscopy image analyses, es-
pecially in cervical cytology and breast histology image
segmentation. According to their simplicity, reproducibility
and affordable cost of processing methods are (still) con-
sidered in our new designs of cytology pleural effusion
analysis. We emphasize on simple and classical image seg-
mentation methods, that is, thresholding, clustering, active
contour, and graph cut methods, to extract the nuclei region
from the background in cytological pleural effusion images.

In this paper, we experimentally employed twelve cell
nuclei segmentation methods individually from four tech-
niques: (i) thresholding techniques, (ii) clustering tech-
niques, (iii) graph cut techniques, and (iv) active contours.
Each method involves three main stages: preprocessing,
segmentation, and postprocessing. In the preprocessing stage,
contrast-limited adaptive histogram equalization (CLAHE)
and median filtering are used to enhance the image quality
and remove the small noises. In the segmentation stage, we
proposed twelve segmentation methods, including (1) Otsu’s
method, (2) Isodata thresholding method, (3) maximum
entropy thresholding method, (4) cross entropy thresholding,
(5) minimum error thresholding, (6) fuzzy entropy thresh-
olding method, (7) adaptive thresholding method, (8) k-means

Pleural effusion 

Figure 1: Excessive amount of pleural effusion.
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clustering, (9) fuzzy c-means clustering, (10) mean shift
clustering, (11) Chan–Vese level set, and (12) graph cut
methods. Finally, the boundaries of the segmented cell nuclei
are refined, and false findings are eliminated using morpho-
logical methods. )e methods are quantitatively evaluated in
terms of five performancemetrics, and their accuracies are later
compared. Finally, a discussion along with the advantages and
disadvantages of the methods is presented.

)e examinedmethods aim to extract the nuclei regions
from the surrounding objects and background in the im-
ages. )ese methods attempt to segment out all possible
nuclei regions regardless of single laying or overlapping.
)ey are not capable of separating the overlapping cells. It
should also be noted that the performance metrics mea-
sured here are aimed to compute the correctness of the
segmented pixels by matching with the pixels in the hand-
drawn ground truth image. When computing the nuclei
detection rate, each connected region from the segmen-
tation results is considered as one nucleus regardless of the
number of nucleus inside the region. )e overlapping issue
is not taken into account in the evaluation processes of
segmentation accuracy and nuclei detection rate. Never-
theless, the undersegmentation errors of the overlapping
cells can affect the final decision of CAD system. )us, the
isolation of overlapping nuclei and extraction of in-
terregional walls will be remained as future study. On the
bright side, the examined methods have potential to in-
tegrate with overlapped splitting methods to split the
overlapped nuclei.

)e rest of this paper is structured as follows. Section 3
presents the datasets and segmentation methods. Section 4
presents a benchmark of the experimental results, including
parameters tuning and discussion. Finally, the conclusions
of this study are presented in Section 5.

3. Materials and Methods

3.1. Dataset Description and Ground Truth Segmentation.
We are not aware of any publicly available dataset for
cytology pleural effusion images. )us, we prepared a local
dataset with the help of a hospital. )e studied dataset is
based on cytology glass slides of pleural effusion specimens
obtained with the cooperation of experts from the De-
partment of Pathology, Faculty of Medicine, Srinakhar-
inwirot University, )ailand. )e samples were taken from
the pleural space using thoracentesis procedure, spread on
the glass slides, and stained using classical Papanicolaou
(Pap) staining method. )e images were captured using an
Olympic microscope mounted on the digital camera. )e
dataset comprises 35 images of cytology pleural effusion
containing healthy cells, benign cells, and cancerous cells.
)e resolutions of the images were 4050 × 2050 pixels,
stored in 8-bit RGB space. Figure 2 shows the sample and
component of the cytology pleural effusion image. To set
the gold standard, the ground truth images were prepared
with the help of experts from the hospital. First, computer
vision researchers manually delineated the cell nuclei. )e
experts then verified and annotated the cell nuclei and
pathology cells.

3.2. Cell Nuclei Segmentation Framework. )ree main stages
are considered to automatically segment the cell nuclei.
Figure 3 shows the segmentation framework. In the next
section, we introduce the details of each stage.

3.3. Preprocessing Stage. )e preprocessing stage is an es-
sential step in improving the quality of the image. First, to
reduce the computational load, the original input image is
resized to resolutions of 1052×1052 pixels. )e resized
image is then converted into different color spaces using the
segmentation methods. )e cytology images might contain
debris, noises, or stained artefacts because of the uneven
illumination or dirt on the camera surface resulting from the
image acquisition process. Moreover, many images are poor
in terms of contrast. )erefore, it is required to suppress the
noises and artefacts and enhance the cell contrast. First, to
denoise the image, we employed five filtering methods,
namely, Gaussian filter, Laplacian filter, Wiener filter, me-
dian filter, and mean filter. )e peak signal-to-noise ratio
(PSNR) for each method is computed. )e PSNR is used to
assess the quality of the filtered image. )e higher the PSNR,
the better is the image quality. Figure 4(a) compares the
results of the PSNR. We selected the median filter because it
exhibits the highest PSNR. )e median filter is nonlinear
method to suppress the noises by windowing the noisy
image. Default window size 3× 3 is used to remove the small
noises. To enhance the cell contrast, three enhancement
methods, namely, histogram equalization, intensity adjust-
ment, and CLAHE, are applied. )e contrast improvement
index (CII) is computed for each method. )e CII is utilized
for assessing the performance of the image enhancement
techniques in terms of the luminance, contrast, and struc-
ture. )e higher the CII value, the better is the contrast.
Figure 4(b) compares the results of the CII. )e CLAHE is
selected because it results in the highest CII. CLAHE with 8-
bit histogram bins is utilized to enhance the contrast of the
cell. Figure 5 shows the resulting image after the CLAHE and
median filter are applied.

3.4. Segmentation Stage. )e segmentation step is an im-
portant step toward automatic image analysis. )is step aims
to discriminate between the foreground (the desired object)
and the background of the image.)e objective of this stage is
to extract the cell nuclei from the entire image. In this section,
we briefly summarize the twelve segmentation methods. We
categorized them into four groups: thresholding, clustering,
active contour, and graph-based techniques.

Blood cell

Nucleus

Cytoplasm

Figure 2: Pap smear images of pleural effusion and its components.
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3.4.1.  resholding Techniques. )e thresholding technique
is the simplest segmentation method in terms of the gray-
level image histogram. It aims to discriminate the fore-
ground and the background by selecting an adequate
threshold value.)e threshold value can be global or local. A
single optimal threshold is utilized for the whole image in the
global thresholding, whereas the threshold for each pixel is
computed depending on its local properties in the local

approach. Many of thresholding methods take the nor-
malized histogram of the image as the input parameter.

(1) Otsu’s  resholding Method. Otsu’s method, which is
invented by Nobuyuki Otsu, is one of the global thresholding
methods. )e aim of Otsu’s method is to determine the
optimal threshold that minimizes the intraclass variance
[34]. )e algorithm steps are given in Algorithm 1.

Preprocessing

Segmentation 

Postprocessing 

Evaluation 

Resize the images(i)
Remove the noises(ii)
Enhance the contrast
of the cell

(iii)

Filter the noises(iv)

Eliminate the
false findings
Refine nuclei
boundaries

(i)

(ii)

Precision, recall
F-measure 
Dice coefficient 
Jaccard index

(i)
(ii)

(iii)
(iv)

Extract the cell
nuclei from an
entire image

(i)

Figure 3: Generalized framework of cell nuclei segmentation for cytology pleural effusion images.
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Intenstiy adjustment
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1.299

1.276
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Figure 4: Image quality assessment metrics: (a) comparison of filtering methods in terms of peak signal-to-noise ratio (PSNR) and (b)
comparison of different contrast enhancement methods in terms of the contrast improvement index (CII).

(a) (b)

Figure 5: Preprocessing stage: (a) grayscale image and (b) preprocessed image after median filter and CLAHE (note that the image was
cropped for better visibility).
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(2) Isodata  resholding Method. )e Isodata thresholding
method is one of the global image thresholding methods
wherein the following iterative procedure is employed [35].
It requires the initial threshold value as the input. )e mean
intensity of the image histogram is set as the initial value.)e
processing steps of Isodata thresholding are given in Al-
gorithm 2.

(3) Maximum Entropy  resholding. )e maximum entropy
thresholding method is one of the global thresholding
methods. Similar to Otsu’s method, an optimal threshold is
selected in the maximum entropy thresholding method by
maximizing the information measured between the object
and the background [36]. It takes the normalized histogram
of the image as the input parameter.)e processing steps are
summarized in Algorithm 3.

(4) Cross Entropy  resholding. )e cross entropy thresh-
olding is one of the entropy methods. Numerous algorithms
have been developed for the cross entropy thresholding.
Here, we focus on the one proposed by Li and Lee, which is
summarized as follows [37]. Similar to maximum entropy
thresholding, cross entropy thresholding takes the histo-
gram of the image as the input parameter. Algorithm 4
describes the processing steps of cross entropy thresholding.

(5) Fuzzy Entropy  resholding. Fuzzy entropy is defined as
the measure of uncertainty of a fuzzy set, the procedure of
which is given below. It requires two input parameters: (i)
histogram of the image to compute the probability distri-
bution and (ii) fuzzy membership function as given in [38].
)e algorithm steps are summarized in Algorithm 5.

(6) Minimum Error  resholding. In this method, the image
segmentation is based on the average pixel optimization
[39]. It requires the normalized histogram of the gray-level
image as the input parameter. )e idea behind this
thresholding technique is presented in Algorithm 6.

(7) Adaptive resholding. Adaptive thresholding is the most
famous local thresholding method for images with uneven
illumination. It aims to select threshold values for each
region based on its local properties. )e local window size is
empirically set as 12. We summarized the adaptive
thresholding procedures as in Algorithm 7 [40]:

3.4.2. Clustering Techniques. Clustering-based segmentation
methods aim to group the collection of pixels into clusters.

(1) Find the histogram and the probabilities for all
intensity levels

(2) Initiate the class probability (wi) and mean (μi)

(3) Move to all possible maximum intensity of thresholds
(4) Modify wi and μi

(5) Select the maximum value among class variances.

ALGORITHM 1: Otsu’s thresholding method.

(1) Set the initial value of threshold (T)
(2) Segment the images into two regions (R1 and R2) using

T with this formation (R1<T and R2≥T)
(3) Find the mean intensity level (u1) for R1 and (u2) for R2
(4) Find new threshold value (T� (u1 + u2)/2)
(5) Iterate steps 2 to 4 to find the difference in T. Select T

when it is smaller than the predefined parameter.

ALGORITHM 2: Isodata thresholding method.

(1) Compute the normalized histogram
(2) Compute the entropy of white and black pixels
(3) Select the optimal threshold by maximizing the

entropy of white and black pixels.

ALGORITHM 3: Maximum entropy thresholding method.

(1) Find histogram of the image
(2) Construct the resulting image by setting the threshold

value T
(3) Compute cross entropy between the original image

and the resulting image
(4) Minimize the cross entropy to optimize the threshold

value.

ALGORITHM 4: Cross entropy thresholding method.

(1) Compute the two probability distributions for
foreground and background

(2) Transform the image into fuzzy set using membership
function

(3) Compute the membership functions for background
and foreground using threshold T

(4) Rewrite the fuzzy form of entropic for step 1
(5) Obtain the optimal threshold by maximizing the fuzzy

entropy.

ALGORITHM 5: Fuzzy entropy thresholding method.

(1) Compute the histogram that considers the mixture of
two normal distributions having respective mean and
variance, and respective proportions

(2) Set the trial threshold value T for modeling the two
resulting pixel populations

(3) Model the two populations using the normal distribution
(4) Set different levels as the threshold value
(5) Compute the fitting criterion for each threshold value
(6) Select the threshold value which minimizes the fitting

criterion as the optimal threshold.

ALGORITHM 6: Minimum error thresholding method.

Journal of Healthcare Engineering 5



)e pixels in the same cluster are closely related to one
another.

(1) K-Means Clustering. )e k-means clustering is one of the
clustering methods wherein the data are divided into
a specific number of groups by minimizing the within-class
variance [41]. )e processing steps of k-means clustering
based segmentation is presented in Algorithm 8.

(2) Fuzzy C-Means Clustering. )e fuzzy c-means clustering
is one the most popular fuzzy clustering methods, wherein
the data are partitioned into two or more fuzzy clusters by
maximizing the objective function [42]. Algorithm 9 sum-
marizes the steps involved in this technique.

(3) Mean Shift Clustering. Among the clustering-based seg-
mentation methods, the mean shift segmentation is known as
an advanced and highly useful technique. In the mean shift,
a window is defined for each data point and the mean is
subsequently computed.)e center of the window is shifted to
themean and the iteration is performed until it converges [43].
Algorithm 10 describes the processing steps of mean shift
clustering-based segmentation technique.

3.4.3. Graph-Based Segmentation Technique. Graph-based
models consider the image as a weighted graph. Every pixel
in the image is considered as the node in the graph. )e
similarities between two nodes are stated as edge weights.

(1) Min Cut. A graph cut is a partition of the graph directly or
indirectly into two disjoint subsets. )e graph is partitioned
into clusters using the min cut method. Each cluster is
considered as an image segment. )e min cut method uses
the highly connected subgraph (HCS) algorithm to find the
clusters [44]. It can be formulated as follows:

cut(X, Y) �  w(i, j), (1)

where i ∈ X, j ∈ Y, and X and Y are two partitioned disjoint
sets.

3.4.4. Active Contour Segmentation Technique. Active
contour models (or snakes) aim to delineate the objects
using the energy minimization function. It is performed by
assigning the object boundary as the initial contour and
subsequently evolving the contour to detect the desired
object boundary by driving image forces [45].

(1) Active Contour without Edges (Chan–Vese). Amongmany
active contour methods, the active contour without edges,
known as the Chan–Vese method, is widely used in cell
segmentation. It helps detect the objects without a gradient. It
has the ability to segment smoothed contour objects by
shrinking the contours and works well on convex objects.

3.5. Postprocessing Stage. Postprocessing is an important
step to optimize the segmentation results. While most of the
segmented regions obtained through the segmentation step will
likely correspond to the nuclei regions, there may also be the
existence of false findings such as blood cells and artefacts,
which must be filtered out. )erefore, it is essential to remove
those spurious regions and retain the valid nuclei. A series of the
morphological operations is utilized to remedy above problems
[46]. Firstly, the morphological filtering method is applied to
remove the small objects since the artefacts and blood cells are
usually smaller than the actual nuclei. )e processing of
eliminating the spurious objects is given as Pseudocode 1.

As described in the above pseudocode, it is required to
specify the size of P which is the threshold between the
actual nuclei and the spurious regions. )e optimal value of
P is empirically set as 1500 pixels. After removing false
findings, we further applied the morphological closing and
opening operations for nuclei shape’s refinement and
simplification. )e structuring element (SE) with disk shape
and radius (R)is used. R is set as 5 and 12 for opening and

(1) Select k cluster centers
(2) For each pixel of an image, find its closest center and

assign to the closest class
(3) Update every center as the mean of its points
(4) Repeat until it convergence or when there are

no changes during the assignment step, or when
the average distortion per point decreases slightly

(5) Reshape the cluster pixels into the image.

ALGORITHM 8: K-means clustering method.

(1) Choose random centroids, at least two
(2) Compute the fuzzy membership matrix
(3) Calculate the cluster center
(4) Repeat steps 2 and 3 until the minimum objective

function value is achieved.

ALGORITHM 9: Fuzzy c-means clustering method.

(1) Find features (color, gradients, texture, etc.)
(2) Initialize windows at individual pixel locations
(3) Perform mean shift for each window until convergence
(4) Merge windows that end up near the same “peak” or

mode.

ALGORITHM 10: Mean shift clustering method.

(1) Binarize the image with T
(2) )in the binary image
(3) Remove all branch points
(4) Place the remaining endpoints in line to use as starting

point for tracking
(5) Track the object with T
(6) Set the criteria T�T− 1 if the object passed testing;

otherwise, return to step 5.

ALGORITHM 7: Adaptive thresholding method.
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closing, respectively. Equations (2) and (3) formulate
opening and closing operations, respectively:

actualnuclei · SE � actualnuclei ⊖ SE( ⊕ SE, (2)

openednuclei · SE � openednuclei ⊕ SE( ⊖ SE, (3)

where ⊕ and⊖ represent the dilation and erosion, re-
spectively. )e sampled visual results of before and after
postprocessing are depicted in Figure 6.

4. Benchmark Setting

4.1. Experimental Results. )is study was carried out using
MATLAB (2013 version) on a computer with an Intel Core
i7 processor clocked at 2.50GHz and with 8GB of RAM. A
local dataset of 35 cytology images of pleural effusion and its
ground truth images are used. In this study, we considered
three main stages to extract the cell nuclei. )e first stage is
used to deal with the image quality. We employed different
enhancement and filtering methods. )e image quality as-
sessment metrics, namely, CII and PSNR, are computed to
select the best ones. Based on the CII and PSNR results, we

selected CLAHE and median filtering methods to enhance
the image quality. )e segmentation stage is the most im-
portant stage in extracting the cell nuclei regions. We ex-
perimentally employed twelve segmentation methods, as
explained in Section 3. Finally, the preprocessing stage is
performed to refine the boundaries of the segmented cell
nuclei and remove the undesired regions using morpho-
logical operations. As the segmentation stage is paramount,
the segmentation results vary depending on the segmen-
tation methods. Figure 7 shows the visual results of the cell
nuclei segmented using different segmentation methods.

To quantitatively evaluate the segmentation methods,
five pixel-based performance metrics, namely, precision,
recall, measure, Jaccard Index (JI), and Dice similarity co-
efficient (DSC), were computed for each algorithm. )e
examined methods are evaluated by comparing with hand-
drawn ground truth images. Each connected region in the
segmented results is considered as one nucleus while ig-
noring the number of nucleus inside the region. Ground
truth images are also prepared the same way. Figure 7(b)
depicts the sample of ground truth image. )e performance
measures can be formulated as follows:

precision(Pre) �
true positive

true positive + false positive
,

recall(Re) �
true positive

true positive + false negative
,

Fmeasure(Fm) �
2∗ precision∗ recall
precision + recall

,

JI �
true positive

true positive + false positive + false negative
,

DSC �
2∗true positive

2∗ true positive + false positive + false negative
.

(4)

)e performance metrics were used to quantitatively
evaluate the cell nuclei in the segmented image individually.
Table 1 lists the evaluation results. )e compared quantitative

results show that the segmentation performances of Otsu’s
method, k-means, mean shift, Chan–Vese level set method,
and graph-based min cut are excellent. )e accuracies meet

Input: Candidate nuclei regions (Candidatenuclei)
Output: Actual nuclei regions (Actualnuclei)

(1) Determine the connected components using 8-connectivity
(2) Count the number of components (N)

(3) Compute the area of each component An, n ∈ N

(4) Remove small objects using the predetermined value (P) as follows:

For i � 1 : N
IfAi ≥P

NucleiMask � Ai;

End
End

PSEUDOCODE 1: Pseudocode for removing the false findings.
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clinical requirements. For the highlighted methods, we fur-
ther evaluated the nuclei detection rate (NDR) of the images
depending on the recall value. )e NDR is considered as true
positive when the recall is greater than 60%.)e overall NDR
of each algorithm is computed and compared, as shown in
Figure 8(a). Similar to the NDR, we estimated the abnormal
NDR. Figure 8(b) shows the comparison results. )e com-
parison results show that the mean shift clustering method
exhibits the best performance in terms of the overall NDR and
abnormal NDR. To evaluate the time complexity of each
method, the computational time of each method is computed
and compared, as shown in Figure 9. Otsu’s method is found
to be relatively simple and fast. In contrast, the Chan–Vese
method is computationally expensive.

4.2. Parameters Tuning and Discussion. )e highlighted
segmentation methods are discussed along with their ad-
justable parameters, advantages, and limitations. )e ex-
periment results show that the performances of the
segmentation methods strongly depend on the tuning pa-
rameters.)erefore, it is required to properly select the most
relevant parameters for our applications. We experimentally
set and adjusted different parameters in each segmentation
method and selected the most effective one for all images.

As Otsu’s method is a nonparametric method, it is not
required to specially assign prior parameters. However, Otsu’s
method is sensitive to outliers. To deal with this issue, the
CLAHE and median filter methods are employed to enhance

the image quality before applying Otsu’s method. )e cy-
tology pleural effusion images comprise three main parts: cell
nuclei, cytoplasm and blood cells, and background. As the
color of the nuclei region appears to be dark purple, with
other parts appearing lighter in color, the image histogram is
assumed to be a bimodal distribution. )us, Otsu’s method
provides relatively good performance in our application.
Otsu’s method is relatively simple and the result is promising.
)erefore, it can be applied to real applications. However, the
performance is degraded when the image contains significant
noises because the method is sensitive to noise.

)e segmentation result of the k-means clustering
method strongly depends on initializing the k clusters. A
poor initialization can significantly affect the clustering
performance and result in a poor convergence speed.
)erefore, we set multiple k clusters for the test and chose
the most effective one. )e numbers of k clusters were set as
2, 3, 4, and 5. When k is 3, the nuclei are mixed with other
image components. )us, it was difficult to separate only the
nuclei regions from the mixed clustered regions. When k is
4, 5, or more, the nuclei are broken into multisegmented
images because of the high variation in the pixel intensity
within the nuclei. Hence, the nuclei regions should be ob-
tained from multiple images. When k is 2, the nuclei are
segmented in a straightforward manner. In addition, the
nuclei appear dark in color with some regions remaining
bright. )is fact also supports in setting up the value of k as 2
to cluster two groups (dark and bright colors). Figure 10
shows the visual segmented cell nuclei with different k

(a) (b)

(c)

Figure 6: )e sample visual results of before and after postprocessing stage: (a) candidate nuclei extracted using OTSU thresholding,
(b) after removing spurious objects using morphological filtering, and (c) after refining the contours of the nuclei using morphological
opening and closing.
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clusters. Moreover, it is worth noticing that the k-means
clustering method performs well for round-shaped objects.
Hence, the method is effective in segmenting cell nuclei

because the cell nuclei are largely round shaped. In addition,
it is simple, fast, and easy to implement. However, the
disadvantage is that the k-means clustering is extremely
sensitive to the k clusters and performs badly when the
clusters are convex shaped.

In contrast to the k-means clustering method, the mean
shift is a nonparametric clustering method. It is not nec-
essary to define the clusters and restrict the cluster shape.
Nevertheless, the clustering result of the mean shift strongly
depends on the bandwidth size. It is required to carefully
select the most relevant size for particular applications.
In our experiments, we experimentally set multiple band-
width sizes and chose the best one. Figure 11 shows the
significant differences in the segmentations in terms of the
bandwidth sizes. )e experiment results show that a band-
width size of 0.2 exhibits the best clustering performance,
appropriate for cell nuclei segmentation. )e advantage
of the mean shift is that it is not necessary to initialize

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 7: Visual cell nuclei segmented using twelve segmentation methods: (a) original image, (b) ground truth image, (c) Otsu’s method,
(d) Isodata, (e) maximum entropy, (f ) cross entropy, (g) minimum error, (h) fuzzy entropy, (i) adaptive thresholding, (j) k-means clustering,
(k) fuzzy c-means clustering, (l) mean shift clustering, (m) Chan–Vese method, and (n) graph-based min cut (note that the images were
cropped for better visibility here).

Table 1: Quantitative experimental results.

Methods/evaluation Pre Re Fm JI DSC (%)
Otsu’s method 0.91 0.89 0.90 0.89 94
Isodata 0.86 0.84 0.85 0.84 91
Maximum entropy 0.84 0.94 0.88 0.94 91
Cross entropy 0.94 0.82 0.87 0.82 90
Minimum error 0.85 0.82 0.83 0.82 89
Fuzzy entropy 0.68 0.67 0.68 0.67 80
Adaptive thresholding 0.96 0.50 0.66 0.50 67
k-means 0.90 0.89 0.89 0.89 94
Fuzzy c-means 0.94 0.77 0.85 0.77 77
Mean shift 0.93 0.91 0.92 0.91 95
Chan–Vese method 0.89 0.87 0.88 0.87 94
Graph-based min cut 0.87 0.95 0.91 0.87 93
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the cluster numbers; moreover, the method need not be
robust to outliers. Only the size of the bandwidth is required
to be set. )e limitation of the mean shift is that it is
computationally expensive compared to other clustering
methods, as many windows need to be shifted, thus making
many computations redundant.

In the Chan–Vese level set method, the boundaries of the
regions are used as a mask, which is initial contour evolution
of the segmentation start. To achieve a fast and accurate
output, we initially specified the mask that is close to the
nuclei regions. )e mask either shrinks or expands based on
the image features. In addition, it is crucial to specify an
appropriate maximum iteration for the contour evolution.
)e iteration is stopped if the maximum iteration is reached,
when the energy remains constant, or when the contour is
not moving. )e maximum number of iterations affects the
largest variation in the segmentation results. )erefore, we
experimentally tested with different iterations and chose the
most effective one for all images. However, it is the main

limitation, as the images contain various types of cells. It is
difficult to fix the number of iterations if more images are
added into the datasets. If a large number of maximum
iterations are set, the computation becomes expensive. In
contrast, a small number of iterations lead to underseg-
mentation, because the iteration is stopped before finishing
the contour evolution. Figure 12 depicts the segmentation
results obtained though different iteration numbers.

In the graph-based min cut segmentation, two param-
eters need to be defined. )e first one is alpha, which is the
penalty parameter with respect to the total variation term.
For the case wherein the image-edge weights are in-
corporated, alpha is given by the constant in all cases. For the
case with image-edge weights, alpha is given using the two
pixel-wise weighted functions. )e second parameter is the
step size of the augmented Lagrangian method, the optimal
range of which is (0.3, 3). We set it as 0.3, as it is not sig-
nificantly different for segmentation. A significant variation
in the segmentation result is found when setting up different
values of alpha. We experimentally tested with different
alpha values and chose the best one. Figure 13 depicts the
visual result of the segmentation in terms of the alpha values.
We chose 0.3 as the alpha value in our application. )e
graph-based min cut method is simple, easy to control, and
fast in processing. It returns the clusters as image segments.
However, the drawback is that multiple small segments may
be separated by cutting small sets of isolated nodes in the
graph.

Apart from the highlighted methods, the accuracies of
the maximum entropy, Isodata, cross entropy, and mini-
mum error thresholding methods are very close to real
requirements. )ere is a high possibility that the accuracy
can be further improved by adding more effective pre- and
postprocessing steps. However, the fuzzy entropy, adap-
tive thresholding, and fuzzy c-means clustering methods
exhibit very low accuracy. )e accuracies of these methods
can be improved by combining them with appropriate
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Figure 8: Comparison of nuclei detection rates in terms of the recall value: (a) overall nuclei detection rate and (b) abnormal cell nuclei
detection rate.
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Figure 9: Processing time of five highlighted methods.
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(a) (b)

(c) (d)

Figure 10: Image index labeled with different k clusters: (a) k� 2, (b) k� 3, (c) k� 4, and (d) k� 5.

(a) (b)

(c) (d)

Figure 11: Different clustering results in terms of different bandwidth (bw) sizes: (a) bw� 0.1, (b) bw� 0.2, (c) bw� 0.3, and (d) bw� 0.4.
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(a) (b)

(c)

Figure 12: Segmentation results obtained using different iterations: (a) iterations� 500, (b) iterations� 300, and (c) iterations� 100 (note
that iterations were tested on cropped region of image for better comparison, not on the real input images).

(a) (b)

(c) (d)

Figure 13: Variation in segmentation results in terms of different alpha values (av): (a) av� 0.3, (b) av� 0.5, (c) av� 10, and (d) av� 15.
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segmentation methods. In the future, integrated or hybrid
segmentation methods will be studied. )is study covers
only the extraction of the nuclei regions from surrounding
objects in the entire image. )e examined methods are not
capable of splitting the overlapping cells. It should be noted
that the touching or overlapping or clustering cells can be
isolated into individual ones in further stages. In order to do
so, these methods may integrate with the overlapped object
splitting techniques such as the watershed methods, contour
concavity methods, rule-based splitting methods, bottleneck
method, and so on.

5. Conclusions

In this paper, we presented twelve individual image seg-
mentation algorithms to extract the cell nuclei from cytology
pleural effusion images. Each method includes three stages:
preprocessing, segmentation, and postprocessing. )e accu-
racies (DSC) of the five segmentationmethods, namely, Otsu’s
method, k-means clustering, mean shift, Chan–Vese method,
and graph cut method, were 94, 94, 95, 94, and 93%, re-
spectively; the average computational times for an image were
1.08, 36.62, 50.18, 330, and 44.03 seconds, respectively. )e
results meet clinical requirements. )erefore, they can be
practically used as a prerequisite step in developing CAD
systems.)eChan–Vesemethod is computationally expensive
compared to others. In contrast, Otsu’s method is relatively
simple and fast. It is our hope that the results and observations
will be useful for current and potential future studies on
cytology images of pleural effusion. Unfortunately, the ex-
amined methods are not capable of separating the overlapping
nuclei. In further study, they need to integrate with additional
splitting methods to isolate the overlapping nuclei into in-
dividual ones. As part of the future work, more state-of-the-art
segmentation methods will be explored. In addition, it would
be interesting to combine different segmentation methods for
improving the segmentation accuracy; however, this requires
research efforts beyond the scope of this paper. It would be
worthwhile to study the implementation and combination of
different algorithms. Our ultimate goal is to implement an
effective CAD system for malignant pleural effusion.
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