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Background: Lung cancer is the leading cause of cancer-associated mortality. Lung adenocarcinoma 
(LUAD) amounts to more than 40% of all lung malignancies. Therefore, developing clinically useful 
biomarkers for this disease is critical. DNA damage repair (DDR) is a complicated signal transduction 
process that ensures genomic stability. DDR should be comprehensively analyzed to elucidate their clinical 
significance and tumor immune microenvironment interactions. 
Methods: In this study, DDR-related genes (DRGs) were selected to investigate their prognostic impact 
on LUAD. A regression-based prognostic model was established based on The Cancer Genome Atlas 
(TCGA)-LUAD cohort and three external Gene Expression Omnibus (GEO) validation cohorts (GSE31210, 
GSE68465, and GSE72094). The robust, established model could independently predict the clinical 
outcomes in patients. Then, the prognostic performance of risk profiles was assessed using a time-dependent 
receiver operating characteristic (ROC) curve, Cox regression, nomogram, and Kaplan-Meier analyses. 
Furthermore, the potential biological functions and infiltration status of DRGs in LUAD were investigated 
with ESTIMATE and CIBERSORT. Finally, the effects of HCLS1 on the clinical features, prognosis, 
biological function, immune infiltration, and treatment response in LUAD were systematically analyzed. 
Results: Eleven DRGs were constructed to categorize patients into high- and low-risk groups. The risk 
score was an independent predictor of overall survival (OS). HCLS1 expression was downregulated in 
LUAD samples and linked with clinicopathological features. Multivariate Cox regression analysis using the 
Kaplan-Meier plotter revealed that low HCLS1 expression was independently associated with poor OS. 
Moreover, the HCLS1 high-expression group had higher immune-related gene expression and ESTIMATE 
scores. It was positively correlated with the infiltration of M1 macrophages, activated memory CD4 T cells, 
CD8 T cells, memory B cells, resting dendritic cells, and memory CD4 T cells, Tregs, and neutrophils. 
Conclusions: A new classification system was developed for LUAD according to DDR characteristics. 
This stratification has important clinical values, reliable prognosis, and immunotherapy in patients with 
LUAD. Moreover, HCLS1 is a potential prognostic biomarker of LUAD that correlates with the extent of 
immune cell infiltration in the tumor microenvironment (TME).
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Introduction

Lung cancer is  a very common malignant disease 
worldwide (1). Lung adenocarcinoma (LUAD), the primary 
pathological type of lung cancer, remains the leading cause 
of cancer-related death in several countries (2). Despite 
advances in medical imaging and treatment options, the 
5-year survival rate of LUAD remains low (3). Recent 
studies have shown that autophagy- (4), inflammation- (5),  
ferroptosis- (6), and hypoxia-related signatures (7) could 
work as prognostic markers to predict the prognosis of 
LUAD patients. However, tumor heterogeneity may 
benefit individual patients, and these markers are not 
used in routine clinical practice due to small sample sizes, 
inconsistent data, and insufficient evidence.

DNA damage is unavoidable in many biological activities, 
and protective cellular responses to DNA-damaging agents 
are required to maintain genome stability. DNA damage 
repair (DDR) is an essential process in organisms that 
maintains the integrity and stability of DNA structure, 
ensuring the continuation of life and species stability (8). 

The disruption of the DDR process is closely associated 
with the inability to accurately repair damaged DNA 
within cells, transforming normal cells into cancer cells and 
accumulating genetic changes (9). Therefore, incorporating 
DDR-associated genes into cancer progression and 
prognosis studies could provide new insights into the clinical 
management of cancer patients. Studies have demonstrated 
that DDR is related to chemotherapy resistance (10), 
metastasis (11), and prognosis (12) in LUAD. In the present 
study, DNA damage repair-related genes (DRGs) were 
extensively analyzed to investigate their effect on the tumor 
microenvironment (TME) and survival of LUAD patients. 
Furthermore, a DDR-based risk score model was established 
to determine the prognostic value of DRGs in LUAD. 
This study provides new clues for exploring the molecular 
mechanism of LUAD, yields novel ideas for targeted therapy 
strategies in LUAD, and promotes personalized patient care.

HCLS1 is a cortactin homolog expressed specifically 
in hematopoietic cells. Cavnar et al. found that in chronic 
lymphocytic leukemia, the level of HS1 phosphorylation 
in leukemic cells was associated with clinical prognosis, 
whereas HS1 hyperphosphorylation was associated with 
poor prognosis (13). Furthermore, HCLS1 knockdown 
reduced the rolling, adhesion, and migration of neutrophils 
on the endothelial cell layer in a mouse model (14). 
However, HCLS1’s correlation with prognosis and immune 
microenvironment has not been elucidated. This study 
used bioinformatics to determine HCLS1 expression, its 
prognostic value in LUAD tissues, and its correlation with 
immune cell infiltration in tumors. Studying the biological 
role of HCLS1 in LUAD could help the diagnosis, 
treatment, and prognosis prediction of LUAD. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-23-921/rc).

Methods

Data retrieval

The normalized RNA-sequencing datasets (N=502) and 
clinically relevant information of LUAD samples (N=522) 
were retrieved from The Cancer Genome Atlas (TCGA) 
database (https://portal.gdc.cancer.gov/). Moreover, 
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the mRNA expression data of GSE68465 (n=462) (15), 
GSE31210 (n=246) (16), and GSE72094 (n=442) (17) 
were obtained from the Gene Expression Omnibus (GEO) 
database as validation groups (https://www.ncbi.nlm.nih.
gov/geo/). The detailed dataset information is represented 
in Table 1. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Consensus clustering

Consensus clustering (unsupervised clustering) enables 
common cancer-type samples to be differentiated into 
different subtypes according to different omics datasets to 
discover novel disease subtypes or compare different subtypes 
through the subtype classification method (18). This process 
was repeated 1,000 times to estimate the optimal number of 
clusters in the range k =2–10 and ensure result stability. The 
principal component analysis (PCA) package in R was utilized 
to evaluate gene expression arrays in the LUAD groups. 
Differences in clinical outcomes among the three clusters 
were assessed using Kaplan-Meier survival analysis.

Identification of differentially expressed genes (DEGs) and 
functional enrichment analyses

The Limma package helped compare differences between 
the healthy lung tissue and LUAD samples, and adjusted 
P<0.05 and |log FC| >1 were used as the cutoff criteria for 
statistically significant differences. To investigate the biological 
significance of DEGs, the pathway and functional enrichment 
were analyzed using the R packages “clusterProfiler” and “org.
Hs.eg.db,” including analysis and visualization capabilities, in 
addition, to Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analysis. Gene set variation 
analysis (GSVA) was performed using the “GSVA” R package 
to visualize changes in the signaling pathways between HCLS1 
high- and low-expression groups.

Establishment and validation of the DRG prognostic model

Univariate Cox regression analysis helped analyze the 
association of age, sex, disease severity, risk score, and 
prognosis in patients with LUAD and HCLS1 high- and 
low-expression groups. Multivariate survival analysis using 
Cox regression was performed to assess which clinical 
factors alone predicted clinical outcomes in LUAD patients; 
hazard ratio (HR), 95% confidence interval (CI), and P 
values were also calculated. The least absolute shrinkage 
and selection operator (LASSO) regression model was used 
to avoid overfitting, and the glmnet R package was utilized 
to select the best candidate genes to enter the predictive 
model (19). Kaplan-Meier survival curves were generated 
using the “survminer” and “survival” R packages. Finally, 
time-dependent receiver operating characteristic (ROC) 
curves helped assess the predictive power of the predictive 
model using the “survival ROC” R package (20).

Exploration of the TME landscape

The immune score, stromal score, ESTIMATE score, 
and tumor purity of each sample belonging to different 
groups were evaluated using the “estimate” package in 
R. The composition of 22 tumor-infiltrating immune 
cells between the different groups was determined using 
the CIBERSORT algorithm. Furthermore, Spearman’s 
correlation analysis was performed among 30 types of 
immune checkpoint expression, 19 human leukocyte 
antigen (HLA)-related molecules, and the different groups 
using the R package “ggstatsplot”.

Construction and evaluation of nomogram

Seven independent prognostic factors, such as significant 
clinical characteristics and calibration plots, were added to a 
nomogram model to predict 1-, 3-, and 5-year survival. The 
calibration plots were developed using the rms R package 

Table 1 The detailed information of included datasets

ID Series Platform Tumor Control Publication

1 TCGA-LUAD TCGA 453 49 TCGA

2 GSE68465 GPL96 443 19 Shedden et al. (15)

3 GSE31210 GPL570 226 20 Okayama et al. (16)

4 GSE72094 GPL15048 442 0 Schabath et al. (17)

TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma.

https://www.ncbi.nlm.nih.gov/geo/
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(version 5.1–3; https://cran.r-project.org/web/packages/
rms/index.html) to assess the relationship between actual 
survival and nomogram-predicted survival.

Statistical analyses

Statistical analyses were performed using R (version 
4.1.3) and GraphPad Prism 8. Logistic regression analysis 
was performed in SPSS (version 26.0). Two groups were 
analyzed with Student’s t-test, and more than two groups 
were analyzed using the one-way analysis of variance. 
P<0.05 indicated statistical significance, and all analyses 
were performed with two-sided tests.

Results

Consensus clustering identified three DDR-associated 
subtypes

Around 150 DNA repair genes were retrieved from the 
Molecular Signatures Database (MSigDB) for use with 
the Gene Set Enrichment Analysis database. First, the 
expression patterns of DDR genes in LUAD and healthy 
samples were examined, revealing the overexpression 
of most DRGs, including NME1, ZWINT, POLR2H, 
TYMS, DGUOK, POLR1C, NME4, FEN1, CSTE3, 
RPA3, PCNA, and UPE3B, in LUAD (Figure 1A). Next, 
the patients were classified depending on the consistent 
clustering of 150 DRG expression profiles. The cumulative 
distribution function (CDF) curve and consensus heatmap 
revealed the optimal number of clusters as 3 (k value =3). 
The results included 128 samples in DDR cluster 1, 170 
in cluster 2, and 155 in cluster 3 (Figure 1B-1D). The 
heatmap displayed the difference in the DRG expression in 
the three clusters (Figure 1E). The Kaplan-Meier survival 
analysis showed that the overall survival (OS) of cluster 2 
was significantly better than clusters 1 and 3 (Figure 1F). 
To understand the molecular mechanisms underlying 
prognosis regulation in the three subtypes, 310 DEGs were 
evaluated, indicating 47 overlapping DEGs in the three 
clusters (Figure 1G). Then, GO and KEGG analyses were 
performed to obtain a novel understanding of the biological 
effects of the DEGs. As shown in Figure 1H,1I, the 
subclass-specific genes were primarily enriched in the DNA 
metabolic process, DNA replication, DNA-dependent 
DNA replication, DNA biosynthetic process, nuclear DNA 
replication, cell cycle DNA replication, nucleotide-excision 
repair, telomere maintenance through semiconservative 

replication, transcription-coupled nucleotide-excision 
repair, nucleotide-excision repair, and DNA gap-filling.

Patients in the three molecular subtypes exhibited different 
TME and immune status

TME is crucial in malignant tumor progression and 
can effectively block the immune system from attacking 
the tumors. Thus, the microenvironment composition 
of tumors among the three genomic subtypes was next 
evaluated. To calculate the immune scores of the molecular 
subtypes, ESTIMATE was used to assess the stromal 
score, immune score, and ESTIMATE score. The analysis 
showed that cluster 3 had the highest immune, stromal, and 
ESTIMATE scores, followed by clusters 2 and 1 (Figure 2A).  
With the significant difference in immune score identified 
among the subclasses, the CIBERSORT method was 
combined with the LM22 signature matrix to evaluate 
the difference in the immune infiltration of 22 immune 
cells. It was found that patients in cluster 2 exhibited 
considerably elevated percentages of naïve B cells, memory 
B cells, plasma cells, resting memory CD4 T cells, Tregs, 
activated NK cells, monocytes, resting dendritic cells, and 
resting mast cells compared to those in clusters 3 and 1. 
In contrast, the best prognosis for patients in cluster 3 was 
related to enriching many activated memory CD4 T cells, 
M0 macrophages, and activated dendritic cells (Figure 2B). 
Considering the predictive role of immune checkpoint 
inhibitors (ICIs) on the effect of immunotherapy, the 
difference in ICI expression among different subclasses 
was assessed, revealing a clear improvement in cluster 3 
expression (Figure 2C). Furthermore, targeting programmed 
death ligand 1 (PD-L1) has demonstrated promise in 
advanced NSCLC patients. Therefore, we evaluated the 
expression of PD-L1 in LUAD, which was the lowest in 
cluster 2 (Figure 2D). Besides, significant differences were 
found in HLA genes among the three groups (Figure 2E).

Construction of a DRG prognostic signature in the TCGA 
cohort

A predictive model was established using Cox univariate 
analysis according to the expression levels of 150 DDR-
related genes; 25 DDR-related genes were considerably 
associated with the OS of patients (Figure 3A). Using 
the LASSO algorithm with an optimal lambda value of 
0.030, 11 DDR-related genes were identified as potential 
prognosis-related genes (Figure 3B). From the LASSO-

https://cran.r-project.org/web/packages/rms/index.html
https://cran.r-project.org/web/packages/rms/index.html
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Figure 1 Identifying DDR-associated subtypes using consensus clustering. (A) Heatmap describing the expression profiles of DRGs in 
normal and LUAD samples from the TCGA database. (B) Heatmap indicates the consensus clustering solutions for 150 genes in 522 LUAD 
samples (k=3). (C) Coherent clustering area delta curves depicting the relative changes in the area under the CDF curve for k=2–10. (D) 
The PCA of the 150-DRG signature. (E) The expression heatmap of 150 DRGs in different subtypes. Red indicates high expression, and 
blue indicates low expression. (F) Kaplan-Meier OS curves for different subtypes. (G) Venn plot identifying 47 overlapping DEGs among 
the three groups. (H) Dot plots depict 47 DEGs enriched via GO. The point size represents the number of genes, and the point color 
represents −log10(Padjust value). (I) Circular plot of KEGG enriched for 47 DEGs. CDF, cumulative distribution function; HR, hazard ratio; 
CI, confidence interval; DDR, DNA damage repair; DRGs, DNA damage repair-related genes; LUAD, lung adenocarcinoma; TCGA, The 
Cancer Genome Atlas; PCA, principal component analysis; OS, overall survival; DEG, differentially expressed gene; GO, Gene Ontology.

C3
C2
C1

Cluster

Group
C3
C2
C1

0.0    0.2     0.4    0.6     0.8     1.0 2        4         6         8       10 −0.10−0.05 0.00 0.05 0.10 0.15 0.20

0           1,812         3,624        5,436         7,248

0.2        0.3        0.4       0.5

C3
C2
C1

1.0

0.8

0.6

0.4

0.2

0.0

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.15

0.10

0.05

0.00

−0.05

−0.10

−0.15

−0.20

Expression

−2  −1   0    1    2
Type

Cancer
Normal

Cluster
Distance

0.0      0.5     1.0

−2   −1    0     1     2

1.0

0.8

0.5

0.3

0.0

8
10
12
14
16
18
20
22

16

18

20

5        10       15

K
2
3
4
5
6
7
8
9
10

C1
C2
C3

C1
C2
C3

124
166
150

13
20
12

3
6
1

2
1
1

1
1
1

Expression

Cluster

Cluster
Cluster

P=0.03

Count

−log 10 (P value)

−log10(P value) 

Gene ratio

Number at risk
HR=1.26, 95 CI% (1.02, 1.55)

KEGG pathways
DNA replication
Nucleotide excision repair
Mismatch repair
Base excision repair
Pyrimidine metabolism
Homologous recombination
Drug metabolism-other enzymes
Purine metabolism
RNA polymerase
mRNA surveillance pathway

DNA metabolic process

DNA replication

DNA-dependent DNA replication

DNA biosynthetic process

Nuclear DNA replication

Cell cycle DNA replication

Nucleotide-excision repair

Telomere maintenance via semi-conservative 
replication

Transcription-coupled nucleotide-excision 
repair

Nucleotide-excision repair, DNA gap 
filling

C1 vs. C2 C1 vs. C3

2 418

5

37

47

24

C2 vs. C3

Consensus index

C
D

F

R
el

at
iv

e 
ch

an
ge

 in
 a

re
a 

un
de

r 
C

D
F 

cu
rv

e

P
C

A
2 

(1
1.

68
%

)

S
ur

vi
va

l p
ro

ba
bi

lit
y

K PCA1 (17.29%)

Time, days

A B

C D

E F

G H I



Liu et al. Prognostic value of DDR-related gene HCLS1 in LUAD2618

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(10):2613-2628 | https://dx.doi.org/10.21037/tcr-23-921

Figure 2 Landscape of immune infiltration in the three subtypes. (A) Violin plots reveal the stromal, immune, and ESTIMATE scores. 
(B) The relative proportion of immune infiltration in different subtypes. (C-E) Box plots present the differential expression of multiple 
immune checkpoints (C), PD-L1 (D) and HLA genes (E) among the three subtypes. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001; -, no 
significance. PD-L1, programmed death ligand 1; HLA, human leukocyte antigen.
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Figure 3 A prognostic model construction in TCGA using LASSO Cox regression analysis. (A) Univariate Cox analysis helped assess the 
prognostic value of OS-related DRGs. (B) Cross-validation for optimal parameter selection in the LASSO regression. (C) Heat map of the 
risk score distribution, survival status, and prognostic 11-gene signature for each patient in the TCGA database. (D) Kaplan-Meier survival 
of the IPM. (E) The ROC of the 11-gene signature. TCGA, The Cancer Genome Atlas; LASSO, least absolute shrinkage and selection 
operator; OS, overall survival; DRGs, DNA damage repair-related genes; IPM, immune prognostic mode; ROC, receiver operating 
characteristic.
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based Cox regression analysis, the risk score for each patient 
was calculated. The patients were classified into two groups 
based on the median value of the risk score (Figure 3C). 
Kaplan-Meier curves indicated that patients in the low-risk 
group had significantly higher OS than those in the high-
risk group (Figure 3D). For the 1-, 3-, and 5-year OS rates, 
the predicted areas under the curve (AUC) were 0.69, 0.68, 
and 0.72, respectively (Figure 3E). In addition, the model 
established using the GEO cohorts GSE31210, GSE68465, 
and GSE72094 was validated (Figure 4), which revealed 
that the prognosis of high-risk patients was significantly 
worse than that of low-risk patients (Figure 4A,4C,4E). 
Simultaneously, ROC curves for 1-, 3-, and 5-year OS 
prediction depicted a predictive accuracy of AUC >0.700 
(Figure 4B,4D,4F).

Relationship between risk score and immune cell infiltration

Due to the essential biological role of DRGs in antitumor 
immune responses, the relationship between DRG risk 

scores and TME was extensively evaluated. Among the three 
clustering subgroups, cluster 3 patients had the highest risk 
scores, and the risk score could differentiate patients into 
different subtypes (Figure 5A). The ESTIMATE algorithm 
results showed that the stromal, immune, and ESTIMATE 
scores of the high-risk group were lower than those of the 
low-risk group (Figure 5B).

Among the immune cell infiltration signatures, the low-
risk group was related to a higher infiltration of plasma 
cells, resting memory CD4 T cells, monocytes, resting 
dendritic cells, and resting mast cells and lower infiltration 
of activated memory CD4 T cells, resting NK cells, M0 
macrophages, M1 macrophages, and activated mast cells 
(Figure 5C). In addition, according to the CIBERSORT 
analysis, the risk score was positively correlated with CD8 
T cells, resting NK cells, follicular helper T cells, M1 
macrophages, M0 macrophages, activated memory CD4 
T cells, and activated mast cells. By contrast, the risk score 
was negatively correlated with resting dendritic cells, 
monocytes, resting mast cells, resting memory CD4 T cells, 

Figure 4 Validation of the DRG signature prognostic model in the GEO cohorts. (A,C,E) Kaplan-Meier analyses demonstrate the 
prognostic significance of the IPM in the GSE31210, GSE68465, and GSE72094 cohorts. (B,D,F) Time-dependent ROC curve analysis of 
IPM in GSE31210, GSE68465, and GSE72094 cohorts. HR, hazard ratio; CI, confidence interval; AUC, area under the curve; DRG, DNA 
damage repair-related gene; GEO, Gene Expression Omnibus; IPM, immune prognostic mode.
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Figure 5 Correlation of the risk score with TME. (A) Violin plots show significantly different risk scores among the three DRG subtypes. 
(B) Comparison of the stromal, immune, and ESTIMATE scores between the high- and low-risk groups. (C) A correlation between the 
risk score and relative abundance of 22 immune cell types. The point size corresponds to the absolute value of Spearman’s correlation 
coefficient. (D) Boxplots show the scores of 22 immune cell types in the high- and low-risk groups. (E) Comparisons of TMB distributions 
in the two subgroups using Student’s t-test. (F) The correlation of TMB levels with risk scores. The density curve on the right (green) 
represents the distribution trend of risk score; the upper density curve (red) represents the distribution trend of TMB score. TME, tumor 
microenvironment; DRG, DNA damage repair-related gene; TMB, tumor mutational burden.
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M2 macrophages, and plasma cells (Figure 5D). Clinical 
studies have revealed that somatic tumor mutational burden 
(TMB) is highly sensitive to immunotherapy and strongly 
correlates with treatment intensity and survival. TMB levels 
in low-risk patients were low (Figure 5E), and Spearman’s 
correlation analysis confirmed that the risk signature was 
positively associated with TMB (Figure 5F).

Relationships between different clinicopathological factors 
and risk scores

Univariate and multivariate Cox regression analyses helped 
assess whether the risk score was an independent clinical 
prognostic factor. The univariate analysis demonstrated that 
a high-risk score was significantly correlated with shorter 
OS (HR =4.56, 95% CI: 2.77–7.50, P=2.4e−9) (Figure 6A). 
Furthermore, multivariate analysis showed that the risk score 
was an independent prognostic factor in LUAD patients (HR 
=4.23, 95% CI: 2.55–7.02, P=2.2e−8) (Figure 6B).

A nomogram with a model containing the factors of 
age, sex, tumor grade, TNM stage, and prognostic risk 
score was established for OS prediction in LUAD patients 
(Figure 6C). The AUCs of the 1-, 3-, and 5-year survival 
of the constructed nomogram were 0.78, 0.90, and 0.90, 
respectively (Figure 6D), indicating a good prediction 
performance of the model. The C-index of the nomogram 
was 0.6969 with 1,000 bootstrap replicates (95% CI: 
0.7823–0.8607). The bias-corrected line on the calibration 
plot was close to the ideal curve (45° line), indicating good 
agreement between predictions and observations (Figure 6E).  
Therefore, the nomogram is stable and robust for predicting 
the probability of survival in LUAD patients.

Expression of HCLS1 in LUAD and its prognostic value

According to the LASSO-based Cox regression analysis, 11 
DDR-related genes were selected as potential prognosis-
related genes, validated to play an essential role in LUAD. 
However, the role of HCLS1 in tumor immunity remains 
unclear. The Gene Expression Profiling Interactive Analysis 
2 (GEPIA2; http://gepia2.cancer-pku.cn/) web server helped 
compare the boxplots of mRNA expression differences 
between LUAD and normal tissues (Figure 7A). HCLS1 
was expressed at low levels in LUAD patients. To evaluate 
the expression of HCLS1 at the protein level, IHC results 
provided by the human protein atlas (HPA) database (version 
20.1; https://www.proteinatlas.org/) were assessed. As shown 
in Figure 7B, HCLS1 protein levels were not detected in 

LUAD tissues, whereas it was moderately expressed in 
healthy lung tissues. Further, immunofluorescence analysis 
indicated that HCLS1 was mainly distributed in the 
plasma membrane and cytosol in U2OS cells (Figure 7C).  
The association between HCLS1 expression levels and 
different tumor pathological stages was evaluated with the 
“pathological stage plot” module of the GEPIA2 web server 
(http://gepia2.cancer-pku.cn/#analysis). The low expression 
of HCLS1 was correlated with advanced clinical stages and 
poor OS (Figure 7D,7E). The diagnostic value of HCLS1 in 
LUAD evaluated using ROC curves revealed that HCLS1 
had a moderate diagnostic accuracy (AUCs >0.7; Figure 7F).

Correlation of HCLS1 expression with immune infiltration 
and TME in LUAD

The expression of HCLS1 in high- and low-risk patients 
was analyzed, indicating higher expression in the low-
risk group (Figure 8A). To further clarify differences in the 
TME of patients in the HCLS1 low- and high-expression 
groups, a correlation analysis was performed between 
HCLS1 and different immune cells. The results indicated 
that HCLS1 expression levels were positively associated 
with the infiltration level of resting memory CD4 T 
cells, memory B cells, M1 macrophages, CD8 T cells, 
activated memory CD4 T cells, and Tregs. Moreover, the 
expression was negatively related to the infiltration levels 
of naïve B cells, follicular helper T cells, activated dendritic 
cells, activated mast cells, eosinophils, and activated NK 
cells (Figure 8B). Subsequently, the ESTIMATE results 
suggested that the stromal, immune, and ESTIMATE 
scores were higher in the high-expression group (Figure 8C).  
The analysis of different immune checkpoint-related genes 
and HLA genes in HCLS1 high- and low-expression 
groups revealed that the expression of these genes in the 
high-expression group was higher than that in the low-
expression group (Figure 8D,8E). Cancer-associated 
fibroblasts (CAFs), major cellular components in TME, 
play a crucial role in tumor progression. The present 
study detected a positive correlation between HCLS1 
expression and CAF infiltration score in LUAD with the 
TIMER 2.0 database (Figure S1). To further explore the 
relationship between the abundant signaling pathways and 
the prognosis of LUAD patients, the relative differences 
in the expression of signaling pathways between the two 
groups were evaluated using GSVA. GSVA identified many 
differentially expressed signaling pathways, visualized using 
a heatmap (Figure 8F). Compared with the low-expression 

http://gepia2.cancer-pku.cn/
https://www.proteinatlas.org/
https://cdn.amegroups.cn/static/public/TCR-23-921-Supplementary.pdf
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group, immune pathways were significantly higher in the 
high-expression group. These results suggest that HCLS1 
may regulate immune cell infiltration into LUAD, exerting 
specific effects on TME. Univariate analysis results revealed 
that HCLS1 expression [P=8.7e−3 and HR =0.78 (95% 

CI: 0.65–0.94)], grade [P=0.02 and HR =1.33 (95% CI: 
1.05–1.69)], and N-stage [P=0.03 and HR =1.32 (95% CI: 
1.03–1.71)] were significantly associated with OS in LUAD 
patients (Figure 8G). Multivariate analyses confirmed 
that HCLS1 expression [P=0.02 and HR =0.80 (95% CI: 

Figure 6 Relationship between IPM and other clinical data. (A) Univariate and (B) multivariate regression analyses of the relationship 
between immunological prognostic models and prognostic value of clinicopathological features. (C) Nomograms predict 1-, 3-, and 5-year 
OS probabilities in LUAD patients. (D) Time-dependent ROC curve analyses of IPM. (E) Calibration curves of nomogram predictions for 
1-, 3-, and 5-year OS in patients with LUAD. *, P<0.05; ***, P<0.001; -, no significance. AUC, area under the curve; CI, confidence interval; 
IPM, immune prognostic mode; LUAD, lung adenocarcinoma; OS, overall survival; ROC, receiver operating characteristic.
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Figure 7 HCLS1 expression profile and its prognostic value. (A) Differential HCLS1 expression levels in tumor and normal LUAD 
tissues depend on the TCGA database. (B) The representative IHC images of HCLS1 expression between normal and tumor tissues. 
Source: https://www.proteinatlas.org/ENSG00000180353-HCLS1/pathology. (C) The distribution of HCLS1 in U2OS cells through 
immunofluorescence. (D) Violin plots showing differences (log2 TPM + 1) in HCLS1 expression levels among different pathological stages 
(I, II, III, and IV) using GEPIA. (E) The prognosis of HCLS1 expression for OS in LUAD patients. (F) ROC curves between HCLS1 
and tumor prognosis are analyzed following the TCGA and GTEx databases. *, P<0.05. TPM, transcripts per million; LUAD, lung 
adenocarcinoma; TCGA, The Cancer Genome Atlas; HR, hazard ratio; TPR, true positive rate; AUC, area under the curve; CI, confidence 
interval; FPR, false positive rate; GEPIA, Gene Expression Profiling Interactive Analysis; OS, overall survival; ROC, receiver operating 
characteristic; GTEx, Genotype-Tissue Expression.

0.67–0.96)] and grade [P=7.2e−3 and HR =1.37 (95% CI: 

1.09–1.71)] were independent prognosis factors in LUAD 

patients (Figure 8H).

Discussion

LUAD is the most common subtype of lung cancer, 
accounting for 35–40% of all cases. The high mortality rate 
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Figure 8 Immune profiling between HCLS1 high and low subtypes. (A) Violin plots depict the expression of HCLS1 in high- and low-
risk patients. (B) The correlation between the risk score and relative abundance of 22 immune cell types. (C) Comparison of the stromal, 
immune, and ESTIMATE scores between HCLS1 high and low subtypes. (D) HLA-related genes and (E) immune checkpoint genes 
differ between the HCLS1 high- and low-expression groups. (F) Heatmap describes the GSVA analysis results. (G) Univariate and (H) 
multivariate Cox regression analyses of HCLS1. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001; -, no significance. TPM, transcripts per 
million; DAPI, 4',6-diamidino-2-phenylindole; LUAD, lung adenocarcinoma; HR, hazard ratio; TPR, true positive rate; AUC, area under 
the curve; CI, confidence interval; FPR, false positive rate; TCGA, The Cancer Genome Atlas; IHC, immunochemistry; GEPIA, Gene 
Expression Profiling Interactive Analysis; OS, overall survival; ROC, receiver operating characteristic; GTEx, Genotype-Tissue Expression.
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of patients with LUAD suggests a need to identify useful 
prognostic markers to help predict disease outcomes and 
develop targeted therapies (21). Recently, ICIs have achieved 
remarkable clinical efficacy in various malignancies and 
fundamentally changed the cancer treatment paradigm (22).  
Although ICIs may confer significant clinical benefit in a 
small subset of patients with LUAD, it is difficult to identify 
which group of patients are likely to respond to ICIs owing 
to the lack of clinically available predictive biomarkers. 
Therefore, it is essential to find biomarkers that can predict 
the prognosis of LUAD and improve the clinical outcomes 
of patients with LUAD. DRGs play a crucial role in the 
development and progression of spontaneous cancers 
and the control of cell growth and proliferation (23). A 
comprehensive understanding of DRG expression profiles 
in LUAD samples may provide new insights into improving 
clinical patient outcomes. The present study results 
indicated that the expression of DRGs is closely associated 
with the prognosis and TME of LUAD and elucidated the 
vital role of the key DDR-related gene HCLS1 in LUAD.

Three subgroups were identified using consensus 
clustering according to DRG expression. These three 
subtypes exhibited significantly different prognoses 
and distinct immunophenotypes. In addition, the TME 
characteristics of the three subtypes were significantly 
different. The infiltration abundance of activated memory 
CD4 T cells, M0 macrophages, and activated dendritic cells 
in cluster 3 were higher than the same cells in clusters 2 
and 3. Most immune checkpoint and HLA genes exhibited 
higher expression in cluster 3. Moreover, cluster 3 had the 
highest immune, stromal, and ESTIMATE scores, followed 
by clusters 2 and 1. These results explain why cluster 3 had 
a significant survival advantage. However, cluster 2, which 
exhibited some immune cell infiltration, did not have the 
same survival advantage.

The prognostic risk signature of 11 selected genes 
was established and validated to classify LUAD patients 
into high- and low-risk cohorts. This signature classified 
patients into the different high and low-risk OS groups, 
and its predictive ability was validated with data from the 
GSE31210, GSE68465, and GSE72094 databases. In 
addition, the risk scores were identified as independent 
prognostic factors. Then, differences in immune infiltrate 
fractions between the two risk groups were assessed. The 
low-risk group showed greater immune cell infiltration, 
particularly plasma cells, resting memory CD4 T cells, 
monocytes, resting dendritic cells, and resting mast cells. 
In addition, the immune, stromal, and ESTIMATE scores 

were higher in the low-risk group than those in the high-
risk group.

TMB is a hallmark of immunotherapy through biological 
mechanisms and somatic mutations in the immune response 
(24,25). In this study, the TMB value of the high-risk group 
was higher and had a significant positive correlation with 
the risk score.

HCLS1, a 75 kDa intracellular protein, is primarily 
expressed in hematopoietic cells. It is involved in many 
cellular processes, and its role in cell motility is well known, 
particularly in actin reorganization (13,14). Studies have 
revealed that HCLS1 actin filaments are involved in the 
motility of NK cells, DCs, and neutrophils (26). It also plays 
a vital role in regulating immune T-cell synapses. However, 
the prognostic correlation between HCLS1 expression 
and immune infiltration in LUAD has not been reported. 
TCGA datasets were analyzed in the current study, 
validating the distinct reduction of HCLS1 expressions in 
LUAD specimens. In addition, survival assays indicated 
that patients with low HCLS1 expression had a shorter OS 
than those with high HCLS1 expression. Thus, HCLS1 
expression was positively correlated with tumor stage in 
advanced LUAD patients.

The correlation analysis between HCLS1 expression 
and immune system infiltration in LUAD revealed that 
stromal, immune, and ESTIMATE scores, along with the 
expression of immune checkpoint genes, were higher in the 
high-expression groups. In addition, there was a positive 
correlation between HCLS1 expression and infiltration 
abundance of M1 macrophages, activated memory CD4 
T cells, CD8 T cells, memory B cells, resting dendritic 
cells, resting memory CD4 T cells, and Tregs. Therefore, 
the poor LUAD patient prognosis showed low HCLS1 
expression. CAFs are the essential components of cancer 
cells and have been reported to be associated with poor 
prognosis, chemotherapy resistance, and recurrence in 
several cancers (27). The TIMER 2.0 database revealed a 
significantly positive correlation between the expression of 
HCLS1 and the infiltration value of CAFs in LUAD. GSVA 
demonstrated that immune pathways were significantly 
enriched in the HCLS1 high-expression phenotype. The 
above results suggest that HCLS1 plays a vital role in tumor 
immunity, opening a new research direction in LUAD.

Poly (ADP-ribose) polymerase (PARP) is a nuclear 
enzyme activated during DNA damage in eukaryotic  
cells (28). PARP inhibitors (PARPi) are combined with 
radiation therapy to inhibit DNA repair functions. This 
enhances enhancing radiation effects, thereby interacting 
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with the antitumor immune response (29). Next, a PARPi-
related prognostic model is urgently needed to improve 
treatment strategies.

Our study has some limitations. First, the small sample 
size and self-queuing retrospective design could lead to bias 
in patient selection. Therefore, these findings need to be 
validated with larger samples. Second, since the association 
between HCLS1 and LUAD-infiltrating immune cells has 
been established using a cancer database and bioinformatics, 
the immunomodulatory function of HCLS1 needs to be 
validated through in vivo and in vitro experiments. Finally, 
the downstream factors of HCLS1 regulation were not 
assessed. Thus, the action mechanism of HCLS1 in LUAD 
requires further exploration.

Conclusions

A signature of 150 DNA repair genes was constructed to 
predict LUAD. This feature was validated to accurately 
and independently predict patient outcomes. Nomograms 
combining the characteristics and stages of LUAD were also 
developed as individual clinical predictors. Furthermore, 
the study results indicated that HCLS1 may be involved 
in the immunoenhancement of TME and related to high 
response to immunotherapy. Thus, HCLS1 could be a 
novel diagnostic and prognostic biomarker and therapeutic 
target in LUAD.
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