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Abstract: To provide precision medicine for better cancer care, researchers must work on clinical
patient data, such as electronic medical records, physiological measurements, biochemistry, comput-
erized tomography scans, digital pathology, and the genetic landscape of cancer tissue. To interpret
big biodata in cancer genomics, an operational flow based on artificial intelligence (AI) models and
medical management platforms with high-performance computing must be set up for precision
cancer genomics in clinical practice. To work in the fast-evolving fields of patient care, clinical
diagnostics, and therapeutic services, clinicians must understand the fundamentals of the AI tool
approach. Therefore, the present article covers the following four themes: (i) computational pre-
diction of pathogenic variants of cancer susceptibility genes; (ii) AI model for mutational analysis;
(iii) single-cell genomics and computational biology; (iv) text mining for identifying gene targets in
cancer; and (v) the NVIDIA graphics processing units, DRAGEN field programmable gate arrays
systems and AI medical cloud platforms in clinical next-generation sequencing laboratories. Based on
AI medical platforms and visualization, large amounts of clinical biodata can be rapidly copied and
understood using an AI pipeline. The use of innovative AI technologies can deliver more accurate
and rapid cancer therapy targets.

Keywords: artificial intelligence; bioinformatics; next-generation sequencing; high-performance
computing; precision medicine; cancer genomics

1. Introduction

Artificial intelligence (AI) techniques, platforms, and high-performance computation
have been extensively used in cancer genomics precision medicine. Many sources of clinical
data of cancer patients exist, such as electronic medical records, physiological measure-
ments, biochemistry, computerized tomography scans, digital pathology, and the genetic
landscape of cancer tissue for clinical diagnosis, treatment, and monitoring (Figure 1).
Many AI medical platforms, such as NVIDIA, QOCA (Quanta computer incorporated),
Advantech, and system analysis program (SAP)/high-performance analytic appliance
(HANA), can serve as big biodata sources. Physicians can quickly copy and understand
large amounts of clinical biodata by using high-performance computing (HPC) and AI
pipelines. Multidisciplinary teams of professionals, such as physicians, biostatisticians, and
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information (IT) technicians, are needed to establish operational flows. This article discusses
the use of AI techniques in cancer genomics based on high-performance computing.
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Figure 1. Clinical practice for precision cancer genomics and artificial intelligence-powered bioin-
formatic technologies. Artificial intelligence techniques, software platforms, and high-performance
computation have been used extensively to provide improved cancer care via clinical patient data,
such as electronic medical records, physiological measurements, biochemistry, computerized tomog-
raphy scans, digital pathology, and the genetic landscape of cancer tissue.

In cancer patients, many bioinformatic analysis workflows are used to investigate
cancer targets and monitor strategies using DNA whole-genome/whole-exome sequencing
(WGS/WES) and circulating tumor DNA, RNA, and tumor deep-targeted sequencing (1).
In addition to the use of genetic changes, the clinical use of a tumor mutation burden (TMB),
microsatellite instability (MSI), and mutational signature patterns in cancers was reported
by Bødker et al. [1]. We previously created an in-house bioinformatic pipeline for data
processing and analysis [2]. The Cancer Next-Generation Sequencing (NGS) Laboratory
at the National Cheng Kung University Hospital (NCKUH is a hospital in North District,
Tainan, Taiwan) provided the genome analysis workflow. DNA was extracted from the
blood and tumor tissues of cancer patients and sequenced using next-generation sequencers,
such as the Illumina sequencing and Oxford Nanopore systems. We used HPC systems,
such as NVIDIA graphics processing units (GPUs) and DRAGEN field programmable gate
arrays (FPGAs) systems, to accelerate genomic analysis.

This article reviews new AI technologies for genome analysis, focusing on four pri-
mary issues. First, we examine the computational prediction of pathogenic variants and
create a pipeline for the interpretation of genetic mutations regarding clinical cancer sus-
ceptibility [3]. Second, new cancer therapy options, such as the analysis of somatic genetic
mutations, mutational signatures, and cancer evolution, have been developed using AI
models. Third, we review the single-cell genomics sequencing technologies and computa-
tional techniques in cancer biology. Fourth, we discuss text-mining, which offers a practical
approach for identifying cancer gene targets. Finally, to improve performance, we examine
how clinical NGS laboratories deploy HPC via NVIDIA, DRAGEN systems, and AI medical
cloud platforms. After visualizing and integrating a data-management system, AI has
introduced new concepts and clinical practices focusing on genomics precision medicine.
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The use of advanced AI technologies can facilitate the more precise and rapid identification
of potential cancer-treatment targets.

2. Computational Prediction of Pathogenic Variants of Cancer Susceptibility Genes

Owing to the genome sequencing of germline mutations, the clinical diagnosis of hered-
itary genetic cancer patients has been translated into treatment options. Immunotherapy
and poly (ADP-ribose) polymerase inhibitors are used as first-line treatments in colorectal
and ovarian cancers [4,5]. Germline genetic variations may contribute to carcinogenesis,
therapeutic efficacy, toxicity, and cancer phenotype. It remains difficult for clinicians to
interpret the influence of these mutations on distinct phenotypes.

A diverse range of AI-based diagnostic tools has been developed using various com-
putational genomic models. The American College of Medical Genetics and Genomics
and the Association for Molecular Pathology (ACMG/AMP) have published guidelines
for interpreting sequence variations [6]. Multiple prediction scores can be identified and
segregated for missense variants. The ACMG refers to three different prediction algo-
rithms, namely, the Rare Exome Variant Ensemble Learner (REVEL) ensemble method,
based on combinations of scores; genetic conservation site predictors [7]; and splicing site
predictions. The application of existing silicon models to evaluate pathogenic variants in
a particular gene, including alternative splicing with protein disruption, is greatly lim-
ited. As a result, we have divided our algorithm into three categories: sequencing-based,
amino-acid/protein-based, or ACMG-criteria-provided-based. Table 1 lists AI-based ge-
netic variations for which machine learning methods can be used to estimate pathogenicity.
The scoring features and sources of the in silico prediction tools are also categorized.

Table 1. AI-based prediction models for the pathogenicity of genetic variants.

Methods Categorical Prediction Algorithms Author

Sequencing-based prediction

VEST4 Higher scores are more deleterious RF Carter et al., 2013 [8]
MetaSVM Higher scores are more deleterious Radial kernel SVM Dong et al., 2015 [9]

REVEL Higher scores are more deleterious Ensemble methods/RF Ioannidis et al., 2016 [10]
Primate AI Higher scores are more deleterious Convolutional neural network Sundaram et al., 2018 [11]

CADD Higher scores are more deleterious Linear kernel SVM Rentzsch et al., 2019 [12]
Splice AI Higher scores are more deleterious Deep neural network Jaganathanet al., 2019 [13]

3Cnet Higher scores are more deleterious Recurrent neural network Won et al., 2021 [14]

CoLaSp Higher scores are more deleterious Latent space matrix
factorization Abdollahi et al., 2021 [15]

MVP Higher scores are more deleterious ResNets Qi et al., 2021 [16]
VARITY P: Pathogenicity; B: Benign XGBoost Wu et al., 2021 [17]

EvoDiagnostics P: Pathogenicity; B: Benign RF Labes et al., 2022 [18]

Amino acid or protein-based prediction

PROVEAN D: Deleterious; N: Neutral Delta alignment score Choi et al., 2015 [19]
ProtVec P: Pathogenicity; B: Benign NLP/SVM Asgari et al., 2015 [20]

BioSeq-Analysis 2.0 P: Pathogenicity; B: Benign RF/SVM Liu et al., 2019 [21]
Rhapsody Pathogenicity probability RF Ponzoni et al., 2020 [22]

LYRUS P: Pathogenicity; B: Benign XGBoost Lai et al., 2021 [23]
LightGBM P: Pathogenicity; B: Benign LightGBM Wu et al., 2021 [24]

ACMG/AMP-based model

Modelling ACMG P: Pathogenicity; B: Benign Bayesian classification
framework Tavtigian et al., 2018 [25]

CharGer Higher scores are more deleterious Databases and criteria-based Scott et al., 2019 [26]
VarSome P: Pathogenicity; B: Benign Databases and criteria-based Kopanos et al., 2019 [27]
Clinvitae P: Pathogenicity; B: Benign Penalized logistic regression Nicora et al., 2022 [28]

Notes: RF: random forest; SVM: support vector machine; and NLP: natural language processing.
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2.1. Sequencing-Based Prediction

Sequence-based techniques [8–18] are used to construct the most common tools for pre-
dicting the pathogenicity of genetic variations. For instance, REVEL [10] employs a random
forest method based on ensemble methods with 13 pathogenicity predictors. REVEL scores
can identify human pathogenic missense mutations and rare variants. CADD [12] is another
ensemble method that integrates several scoring algorithms using a linear kernel support
vector machine. VEST4 [8], EvoDiagnostics [18], and MetaSVM [9] are well-known random
forest (RF) and support vector machine (SVM) prediction tools. Random forests and SVM
may handle linear and non-linear data. The random forests classifier is an ensemble of
various distinct decision trees (uncorrelated models). It will outperform each of its individ-
ual models. ACMG uses REVEL, random forests, for ensemble computational prediction
models. SVM is a supervised learning model for regression analysis and non-probabilistic
binary linear classifiers. The algorithms can evaluate genomic data for pathogenic classifi-
cation. Another ensemble technique is CADD. To increase the forecast accuracy for various
numerical pathogenetic scoring tools, CADD uses the ensemble regression technique to
aggregate many models.

Artificial neural networks, such as convolutional neural networks (CNN) and ResNets,
have been employed by Primate AI [11] and missense variant pathogenicity prediction
(MVP) [16] to predict the pathogenicity of missense variations. Splice AI [13] can accu-
rately predict splice junctions from an arbitrary pre-mRNA transcript sequence based on a
deep neural network (DNN). Other novel prediction tools based on the utilized recurrent
neural network, XGBoost (a variant of the gradient boosted tree), include 3Cnet [14] and
VARITY [17]. The neural network can manage large training datasets and many correlated
predictors. The parameters of the aforementioned distribution are modeled by a neural
network when trained for a classification or regression task. For example, MVP, based on
ResNets, could better prioritize pathogenic missense variants, especially in de novo genetic
mutations and tolerance loss of function genetic variants. Splice AI estimates more than
10% of the pathogenic mutations, previously unrecognized mutations, in patients with rare
genetic illnesses.

Constructing an AI algorithm to predict phenotype-specific genetic variations remains
challenging. We previously developed a matrix factorization-based algorithm to predict
the phenotype of chemotherapy-induced neuropathy. The matrix factorization method
was evaluated using The Cancer Genome Atlas (TCGA) patient WES data and showed an
improved performance (accuracy > 98%) [15].

2.2. Amino-Acid- or Protein-Based Prediction

Amino-acid- or protein-based [19–24] pathogenicity prediction approaches are promis-
ing because they consider the context of amino acid sequences and minimize overfitting to
prior sequencing-based knowledge. Therefore, it is critical to create single amino-acid- or
protein-based prediction models. AI technologies have also been used to predict protein
function. For example, PROVEAN [19] predicts pathogenicity using a delta alignment
score. Another ensemble method is ProtVec [20], which incorporates natural language
processing (NLP) with support vector machines. The authors distribute the represen-
tation of biological sequences using the NLP techniques. BioSeq-Analysis 2.0 [21] and
Rhapsody [22] are well-known random forest tools. BioSeq-Analysis 2.0 includes a clas-
sification algorithm modified from LIBSVM and a sequence-labeling algorithm based on
conditional random fields. LYRUS [23] is a new prediction tool, developed by XGBoost
(a highly efficient gradient-boosting decision tree, GBDT). We also previously developed a
single amino acid variant of the Light Gradient Boosting Machine (LightGBM) [24] based
on protein structural energies. Compared with the sequencing-based AI model, amino
acid/protein-based techniques use a different database, such as Protein Data Banks (PDBs)
or the Database of Protein Disorder (DisProt). Data preprocessing is another critical issue
for the prediction model. For example, we use the PDBs and Rosetta energy function for
pathogenic prediction [24].
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2.3. AI Tools Based on ACMG/AMP and Functional Somatic Mutation

Traditional AI in bioinformatics uses sequence alignment matching, protein–protein
interactions, and structure–function analysis to assist in cancer genome research. Such
research will aid in the development of molecularly targeted medications. Several cancer
drugs that directly target genetic alterations have been evaluated in clinical trials. For exam-
ple, osimertinib can be used to treat individuals with non-small cell lung cancer (NSCLC)
harboring the T790M EGFR mutation [29]. However, cancer is a genetically heterogeneous
illness. Therapeutic targets could include somatic genetic mutations, mutational signatures,
and cancer evolution. Table 1 shows ACMG-based genetic pathogenic mutation prediction
and AI models for mutational signatures and cancer evolution. This section covers AI
methods for ACMG prediction tools and the implications of mutational signatures and
tumor evolution for drug development, including strategies to lower the likelihood of
drug resistance. The classical AI classifier quantitates potentially damaging genes; they
did not consider the pathogenicity evaluation in a disease. ACMG guidelines include
disease information, such as population allele frequency, functional data of mutation, and
segregation analysis in families, to evaluate the pathogenicity of genetic mutations.

For the pathogenicity interpretation of germline variants, the ACMG and the United
Kingdom (UK) Association for Clinical Genomic Science (UK-ACGS) both provide updated
consensus criteria for the evaluation and classification of pathogenic variations [6,30]. The
policy includes 28 attributes with codes addressing different types of evidence to navigate
the clinical interpretation of rare diseases. Each variant is assigned a pathogenicity assertion
depending on the criteria used. In ClinVar [31], a public dataset, variants are classified as
pathogenic, likely pathogenic, having unclear significance, likely benign, or benign, based
on review status. The developed machine-learning algorithms were assessed in terms of
classification and prioritization. Standard tools for interpreting pathogenicity based on
ACMG criteria include modelling ACMG/AMP [25], CharGer [26], VarSome [27], and
Clinvitae [28] (Table 1). CharGer [25] and VarSome [27] assign scores to each genetic variant
depending on the amount and strength of the evidence provided by the ACMG/AMP crite-
ria. Tavtigian et al. [25] developed a model of ACMG scores using a Bayesian classification
system. Clinvitae et al. [28] used penalized logistic regression to prioritize and classify the
pathogenicity of genetic variants. We also created an ACMG/AMP-based score computa-
tion and designed unique algorithms to assign a score or degree of pathogenicity [14].

A four-tiered framework has been presented for cancer somatic mutations to char-
acterize somatic sequence variants depending on their clinical importance [32]. In so-
matic mutations, variants in genes associated with pathogenicity have been characterized.
Many cancer-variant databases are available, including the Cancer Genome Interpreter
(CGI) [33], Clinical Interpretation of Variants in Cancer (CIViC) [34], the Jackson Labora-
tory Clinical Knowledgebase (JAX-CKB) [35], OncoKB [36], and the Precision Medicine
Knowledgebase (PMKB) [37], which have been used to interpret somatic variants of cancer.
Many tools have been developed for modeling somatic mutations, such as MuSE, MuTect,
SomaticSniper, Strelka, and VarScan2 [38]. Ng et al. developed a functional genomics
platform (FASMIC) [39] to identify the driver mutations for potential clinically actionable
genes. FunSeq2 is a tool used for prioritizing and annotating non-coding somatic vari-
ants [40]. However, many laboratories have reported functional somatic mutations based
on ACMG/AMP criteria.

3. AI model for Mutational Analysis
3.1. Mutational Signatures and AI Tools

To investigate somatic genetic mutagenesis, mutational signatures have revealed the
probable mechanisms of cancer etiology and biological processes. The mutational signature
landscape can potentially indicate drug-responsive and resistance biomarkers and prognos-
tic factors for cancer. For example, the sensitivity of ovarian cancer to poly (ADP)-ribose
polymerase (PARP) inhibitors is linked to mutational signatures related to homologous
recombination deficiency. In contrast, APOBEC-related mutational signatures are associ-
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ated with responses to ataxia telangiectasia and Rad3-related kinase (ATR) inhibitors. Our
previous studies found distinct characteristics of mutational signatures in patients with
cancer-associated genetic variations. These mutational signatures provide additional infor-
mation on the etiology and progression of individual cancers, as well as new biomarkers for
cancer treatment [41]. New technologies and machine learning algorithms have increased
the feasibility of identifying mutational signatures [42–46] and facilitated the integration
of signature analysis into clinical decision-making. The Catalogue of Somatic Mutations
in Cancer (COSMIC) Signatures [42], DeaminationSigs [44], and SparseSignatures [45]
are standard tools for cancer etiology and quality control based on non-negative matrix
factorization (NMF) algorithms (Table 2). For DeconstructSigs, a multiple linear regression
model was used [43]. Chevalier et al. established an analysis and visualization tool to
characterize and enhance the discovery of mutational signatures [46].

Table 2. AI tools in bioinformatics for mutational analysis.

Methods DATA Algorithms Author

Mutational signatures

COSMIC Signatures SNV/indels Non-negative matrix factorization Alexandrov et al., 2020 [42]
DeconstructSigs SNV/indels Multiple linear regression model Rosenthal et al., 2016 [43]
DeaminationSigs SNV/indels Non-negative matrix factorization Bhagwate et al., 2019 [44]
SparseSignatures SNV Non-negative matrix factorization Lal et al., 2021 [45]

Musicatk SNV Non-negative matrix factorization/LDA Chevalier et al., 2021 [46]

Tumor evolution model

LICHeE SNV/CNV Directed acyclic graph Popic et al., 2015 [47]
SCHISM SNV/CNV Directed acyclic graph Niknafs et al., 2015 [48]
Canopy SNV/CNV Bayesian mixture models Jiang et al., 2016 [49]

ClonEvol SNV/CNV Bootstrap resampling Dang et al., 2017 [50]
PACTION SNV/CNV Mixed integer linear programming Sashittal et al., 2022 [51]

DeCiFering SNV Descendant cell fraction Satas et al., 2022 [52]

Notes: ACMG, American College of Medical Genetics and Genomics; SNV, single-nucleotide variant; CNV, copy
number variations; and LDA, latent Dirichlet allocation.

3.2. Cancer Evolution and AI Tools

Genetic mutations are characterized by a somatic evolutionary process that contributes
to cancer development, progression, and drug resistance. At present, many algorithms are
available for the analysis of clonal evolution [47–52]. To solve the problem of intra-tumor
heterogeneity (ITH) from bulk DNA sequencing, numerous computational methodologies
and instruments have been developed which analyze genome data to reconstruct and
describe the clonal evolutionary landscape. There are three prominent roles for the clonal
evolutionary development of cancer: clustering genetic variants by cell fraction, reconstruct-
ing the cancer clonal evolution tree, and visualizing clonal extension. DeCiFering [52] and
ClonEvol [50] were designed for genetic variant clustering based on the descendant cell frac-
tion and bootstrap resampling. LICHeE [47], SCHISM [48], and Canopy [49] used directed
acyclic graphs (DAGs).and Bayesian methods to reconstruct phylogeny. PACTION [51] is a
straightforward and rapid strategy that reconstructs the clonal architecture of cancer tumors
based on mixed-integer linear programming (MILP). Fish plots and timescapes have been
used to visualize the evolution of cancer. For the development of cancer therapeutic targets,
our study identified genetic subclones, and clusters were identified using SciClone [53]
based on a Bayesian clustering method. ClonEvol has been used to visualize the evolution
of somatic mutations in cancers. We highlight the significance of cancer evolution models
in the development of new methodologies for drug targets.

3.3. Clinical Practice in Mutational Signature and Cancer Evolution

Mutational signatures reveal information about mutagenic processes in cancer patients
and the quality of genetic mutation detection in cancer tissues. In addition to homologous
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recombination deficiency (mutational signature SBS3) and APOBEC-mutagenesis (muta-
tional signature SBS2), we could detect mutational signatures SBS6, SBS14, SBS15, SBS20,
SBS2, SBS26, and SBS44 in cancer patients with mismatch repair deficiencies [41,42]. These
could potentially be used as immunotherapy biomarkers. In cancer tissues fixed in forma-
lin, the mutation signature SBS1 was increased (spontaneous deamination of methylated
cytosine). To reduce the impact of deamination, a mutational signature analysis should be
considered in routine quality reports.

Cancer evolution can reveal the clonal nature of the driver mutations in the evolution
process. It can also guide therapy by focusing on clonal and subclonal genetic mutations.
Patients with cancer recurrence or drug resistance may benefit from an analysis of the
cancer’s evolution over time. For example, the BRAF clonal mutation remains resistant to
BRAF inhibitors in some melanomas with co-existing alterations to other clonal genetic
mutations. Using the cancer evolution model, we found that concurrent sequential BRAF
mutations also affected hypermutation status. Compared to AKT-BRAF sequential muta-
tions, PETN-BRAF sequential mutations were significantly more frequent in hypermutated
cancers. The cancer evolution model may guide clinical practice. We also built a cancer
evolution model based on the NGS data and applied machine learning analysis to identify
potential evaluation therapeutic targets, such as DNA repair, MYO18A, and FBXW7 genetic
mutations in CRCs [54]. Using an AI model for mutational analysis could provide us with
more detailed clinical cancer information.

4. Single-Cell Genomics and Computational Biology

Among the single-cell genomics technologies, epigenome sequencing, genome se-
quencing for lineage tracking, spatially resolved transcriptomics, and omics sequencing are
the newest developments. Data from single-cell genomics are sparse and high-dimensional,
which makes machine-learning analysis challenging. The high-dimensional data were typi-
cally reduced using principal component analysis (PCA), t-distributed stochastic neighbor
embedding (t-SNE), and uniform manifold approximation and projection (UMAP). Table 3
shows the AI methods for computational biology in signal-cell genomics, including omics
data integration, cell type classification, and trajectory inferences [55–67].

Table 3. Single-cell genomics and computational biology.

Methods Goal Algorithms Author

Single-Cell Omics Data Integration

MOFA+ Sparse data Stochastic version of the algorithm Argelaguet et al., 2020 [55]
sCCA Sparse data Sparse canonical correlation analysis (CCA) Rodosthenous et al., 2020 [56]

Unicom Distance matrix Unsupervised topological alignment Cao et al., 2020 [57]
sGCN High-dimensional data Graph convolutional networks Song et al., 2020 [58]

PIntMF Sparse data Penalized integrative matrix factorization Pierre-Jean et al., 2021 [59]

Cell type classification

ACTINN Immune cell Neural Networks Ma et al., 2020 [60]
Ikarus Tumor cell Logistic regression/network propagation Dohmen et al., 2022 [61]

Trajectory inference

CellRouter Tree methods Context likelihood of relatedness Lummertz et al., 2018 [62]
STREAM Graph methods Gaussian process latent variable model Chen et al., 2019 [63]

TinGA Graph methods Growing neural graph algorithm Todorov et al., 2020 [64]
ELPIgraphy Cyclic methods Elastic energy functional and topological graph Albergante et al., 2020 [65]

CStreet Graph methods k-nearest neighbors graph Zhao et al., 2021 [66]
Tree methods Euclidean minimum spanning tree Tenha et al., 2022 [67]

MOFA+ is a statistical framework for data integration. It reconstructs a low-dimensional
data representation using stochastic variational inference that is amenable to GPU com-
putations [55]. Sparse canonical correlation analysis (sCCA) also computed sparse latent
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variables to predict complex traits [56]. These AI models support flexible sparsity data
management in the same way as Penalized Integrating Matrix Factorization (PIntMF) [59].
Cao et al. use unsupervised topological alignment for single-cell multi-omics integra-
tion [57]. A graph convolutional networks algorithm was used to integrate disparate
and interaction datasets [58]. Two examples were shown for cell type classification. The
ACTINN [60] and Ikarus [61] used a neural network or logistic regression model to distin-
guish the immune cell or tumor cell.

The developmental trajectories could be computationally inferred using trajectory
inference algorithms in single-cell genomics. CellRouter [62] uses tree methods to model the
trajectory based on the context likelihood of relatedness. The STREAM [63] and TinGA [64]
used graph methods for trajectories based on the gaussian process latent variable model or
growing neural graph algorithm, respectively. The ELPIgraphy [65] used cyclic methods
for trajectories based on elastic energy functional and topological graphs. CStreet also used
the k-nearest neighbor graph for trajectories [66]. Tenha et al. [67] use Euclidean minimum
spanning tree methods to model the trajectory based on single-cell biology. Based on the
computational biology of signal cell techniques, we accelerated the identification of new
cancer cell types and understood the disease trajectories. This may help us to define new
cancer subtypes and monitor therapeutic responses.

5. Text Mining for Identifying Genes Targets in Cancers

The biomedical literature has presented far-reaching findings for drug-target identi-
fication and cancer treatment, including their biological significance (molecular and cell
activities and signal pathways). Data mining is a machine-learning technique that works
with AI technologies or statistical methods to identify optimal cancer targets in biomed-
ical science. The link between disease and genetic alterations is critical to obtaining a
better understanding of cancer biological mechanisms. Gene2Vec, a study that explored
the idea of gene embedding in the spirit of word embedding, is one of the new forms of
text-mining [68]. However, we could not explain the biological significance of the vector in
the neural-embedding model. Table 4 [69–74] shows that various data-mining techniques
have been used to classify gene-mutation diseases.

Table 4. Text-mining model for cancer-associated genes.

Relationships Name Algorithms Author

Mutation–Gene MuGeX Naïve Bayes/Rocchio algorithm-TF-IDF Erdogmus et al., 2007 [69]
Disease–Mutation C4.5 decision tree Singhal et al., 2016 [70]
Protein–Mutation EnzyMiner Probabilistic indexing Yeniterzi et al., 2009 [71]

Variants–Literature tmVar 2.0 Conditional random fields Wei et al., 2018 [72]
Variant–Disease–Gene MAGPEL Sentence co-occurrence scoring Saberian et al., 2020 [73]

Cancer–Genes Hypergeometric test Chen et al., 2021 [74]

Notes: TF: term frequency; and IDF: inverse document frequency.

Several text-mining methods have been developed for mutation–disease relationships.
For example, MuGeX [69] employs the Nave Bayes/Rocchio algorithm-IDF to retrieve
mutation–gene combinations from Medline abstracts in response to a disease query. tmVar
2.0 [72] is an approach that integrates genetic variant information from the literature with
the Single Nucleotide Polymorphism Database (dbSNP) and ClinVar using conditional
random fields (CRF). Several ML classifiers were tested, such as the C4.5, decision tree,
multilayer perceptron, and Bayesian logistic regression. Singhal et al. [70] employed
the C4.5 decision tree to create an automated pipeline that uses the full-text biomedical
literature and is validated using evidence-based gene panels. This approach is focused on
disease–mutation relationships. To infer variant-driven gene panels, Saberian et al. [73]
integrated GNormPlus [75], tmVar 2.0 [72], and DNorm [76] into MAGPEL for variant–
genotype–phenotype prediction. EnzyMiner [71] used probabilistic indexing for protein
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mutation prediction, automatically identifying information on protein stability or enzyme
activity from PubMed abstracts.

Our own work contextualized the genes for clinical precision medicine, presenting
druggable targets, hereditary cancer syndrome mutations, and illness subgroups [74]. The
hypergeometric test was used to construct the mutational landscape of the actionable cancer
genome from the biomedical literature, which was then confirmed using the NGS database.
Our platform may enable the development of a cancer gene panel recommendation system
for precise cancer therapy.

6. The NVIDIA GPUs, DRAGEN FPGAs Systems, and AI Medical Cloud Platforms in
the Clinical NGS Lab
6.1. Using NVIDIA GPUs, DRAGEN FPGAs Systems in Bioinformatic Analysis

Recent developments in HPC and biological data analysis technologies have resulted
in the rapid growth in biological analyses. The use of HPC in bioinformatic analysis enables
the efficient processing of large amounts of data in everyday clinical practice. We previ-
ously used hardware accelerators, such as GPUs and FPGAs, to speed up and maximize
throughput of cancer genomics. In clinical services, we utilized the NVIDIA Parabricks
and Illumina dynamic read analysis for genomics (DRAGEN) platforms (Table 5) [77–80].

Table 5. High-performance computing systems for cancer genome research.

Name Computing System Clinical Practice Author

NVIDIA GPUs Mutational signature Haradhvala et al., 2018 [77]
Critical care Gorzynski et al., 2022 [78]

DRAGEN FPGAs TSO500 FFPE pipeline Wei et al., 2022 [79]
TSO500 ctDNA pipeline Pommergaard et al., 2022 [80]

Notes: GPUs: graphics processing units; FPGAs: field-programmable gate arrays; and TSO 500: TruSight Oncology
500 assay.

The NVIDIA Parabricks (GPUs) software suite analyzes whole-genome and exome
sequencing data. It significantly improves throughput times for common genomic inves-
tigations, such as germline and somatic research. The NVIDIA Clara Parabricks toolkit
includes germline Deepvariants, somatic, RNA, and human population pipelines. Precise
and clear results were obtained for RNA analysis. A Signature Analyzer-GPUs has been
used for mutational signature analysis [77]. Haradhvala et al. discovered mutational
signatures linked to loss of POLE proofreading and mismatch repair [77]. Such information
may help to inform clinical decisions concerning immunotherapy targets for cancer treat-
ment. Gorzynski et al. [78] connected long-read sequencing (nanopore technology) and
GPUs in an acute scenario to enable the real-time analysis of ultrarapids. GPUs-accelerated
tools on NVIDIA Clara Parabricks pipelines for cancer and germline analyses are helpful
in clinical situations.

The Illumina DRAGEN Bio-IT Platform (FPGAs) enables precise, comprehensive, and
rapid analyzes of NGS data. Updated algorithms for genetic data analysis can be provided
using FPGAs-based bioinformatic acceleration devices. TruSight Oncology 500 Assay
tumor profiling [79] and liquid biopsy NGS [80], analyzed using FPGAs, were recently
developed for cancer treatment-monitoring techniques. These utilize tumor mutation
burden, microsatellite instability, and genetic alteration information for cancer diagnosis,
prognosis, and treatment. They will also provide for practical use of the homologous
recombination deficiency (HRD) score in future treatment of ovarian cancer. We built a
workflow in NCKUH to speed up the study of the complete exosome genome and tumor
deep-target sequencing for clinical cancer management. These tools can be used for reliable
and timely genetic diagnostics (Figure 1).

O’Connell et al. benchmarked two germline variant callers and four somatic vari-
ant callers. They compared traditional x86 CPU algorithms with GPU-accelerated al-
gorithms implemented with NVIDIA Parabricks on Amazon Web Services (AWS) and
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Google Cloud Platform (GCP). For germline callers, the author observed speedups of up to
65× (GATK haplotype caller). Alternatively, somatic variant callers achieved speedups of
up to 56.8× (Mutect2 algorithm) [81]. For emergency use for hospitalized patients, Clark
et al. built a pipeline based on the DRAGEN platform to analyze genome sequencing data.
A median delivery time of less than 24 h was observed from blood samples to provisional
findings. High accuracy and sensitivity were also observed [82].

6.2. AI Medical Cloud Platforms for Cancer Care

Many AI medical cloud platforms have been developed, including QOCA, Advantech,
and SAP/HANA, that could integrate AI technologies for genome visualization and preci-
sion medicine for cancer care. In cancer clinics, medical imaging data must be integrated to
visualize genomic data, select cancer-target drugs, and predict cancer survival. Integration
of the system analysis program (SAP) cloud platform for genomic and clinical data enables
practitioners to quickly evaluate and make sense of the data. The Variant Browser visualizes
genetic variations and integrates patient clinical data stored in a clinical data warehouse as
variant information, as well as genomic interactions relating to specific patients.

The Advantech edge visualization solution efficiently iterates using data-intensive vi-
sualizations. We previously collaborated with Advantech to create a cancer clinic dashboard
that visualizes multiomics data and clinical information. Real-time recommendations could
be provided to patients using advanced platform and visualization technology. QOCA
is an AI-assisted platform for medical imaging and autonomous inference; it now plays
an essential role in intelligent medical solutions. For example, by using QOCA electrocar-
diography (ECG) monitoring devices, clinicians might effectively monitor cancer patients
receiving portable cancer treatment at home.

For the integration of multi-omics and medical images, we recently demonstrated
that utilization of the covariate-adjusted tensor classification in the high-dimensional
(CATCH) model could accurately classify recurrent colorectal cancer by combining adjusted
radiomics-based CT images with RNA immune genome expression data. We integrated
medical images and genome data into an operational flow for recurrent stage III colorectal
cancer and provided individualized treatment strategies [83].

7. Conclusions

Five main viewpoints should be considered when providing precision medicine and
cancer care. Before treatment, it is essential to identify inherited cancers with (i) cancer
susceptibility genes and (ii) AI models for mutation analysis. For example, we identified
MLH1 germline genetic mutations based on whole-genome sequencing in colorectal cancer
patients [3]. For therapeutic strategies, immunotherapy, instead of traditional chemother-
apy, may be the first choice for first-line treatment in metastatic colorectal cancer patients [4].
Another example is a cancer patient with cardiovascular KCNH2 genetic variants; EKG
showed the QTc prolonged during the chemotherapy. For better cancer care, we should
carefully monitor the EKG during chemotherapy if the patient carries KCNH2 genetic vari-
ants. (iii) Single-cell genomics may provide data for disease surveillance. We can suggest
cancer gene panels to patients based on (iv) text-mining findings for cancer patients with re-
fractory treatment. Mutation analysis, such as somatic mutation, mutational signature, and
cancer evolution, could provide therapeutic strategies or targets for cancer patients. The
intelligent hospital must set up (iv) telemedicine devices and high-performance computing
for real-time, in-person patient care.

For high-risk stage II and stage III colorectal cancer patients, NCKUH developed an
AI precision medicine platform to manage Big Biodata. We developed an AI tracking and
alarm system for the electronic medical record, biochemistry data, genetics, and CT scan
image analysis to improve survival and quality of life. We demonstrated that germline
susceptibility and deletion structural variants can have an impact on the survival and
therapeutic strategies for stage III colorectal cancer. For example, patients with germline
DNA repair genetic variants and CEP72 deletion structural variants have better survival in
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CRCs [84]. Using AI model analysis, we could stratify the risk of cancer recurrence. For the
application of the cancer evolutional model, we identify potential evaluation therapeutic
targets, such as MYO18A, and FBXW7 genetic mutations in CRCs [54]. To determine
the oncology image biomarker, we integrated adjusted CT images into genome data to
accurately classify recurrent CRC. We could use this AI model to provide individualized
cancer therapeutic strategies based on adjusted radiomic features in recurrent stage III
CRC [83]. To improve the long-term quality of life, we will establish the AI model to predict
chemotherapy side-effects, such as neuropathy and sarcopenia, for CRCs in the future.

Cancer care can be provided via telemedicine using AI-based technology. For example,
the QOCA provides the AI medical cloud platform (QOCA aim), AI health care platform
(QOCA apc), and AI telemedicine platform (QOCA atm). AI medical cloud platform
(QOCA aim) can provide the best clinical decision assistance and accurate AI prediction
with medical images and structured data analysis. For example, we established the AI
model to predict cancer recurrence in stage II and III CRCs via standardized pathology re-
ports. This can be a powerful tool for sharing the decision-making between physicians and
patients. The QOCA apc, a case manager, provides a platform including the daily activities
and physiological monitors, such as the heart rate, O2 saturation, body temperature, and
glucose levels of cancer patients. Cancer patients who received home-based chemotherapy
can be closely monitored via QOCA apc. QOCA atm, a hospital-to-home platform, could
help us manage patient needs, such as nutrition supplements and the adverse effects of
chemotherapy, via real-time face-to-face interaction.

Choosing the proper service model at the end of life (EOL) for physicians and patients,
such as hospice share care (HSC), hospice inpatient care (HIC), and hospice home care
(HHC), is a typical challenge. For hospice home care, we set up an artificial intelligence
services platform and built an AI model to suggest a services model based on the patient’s
characteristics, symptoms, and hospice care needs [85]. Our artificial intelligence hospice
services deliver goal-directed care to alleviate symptoms and provide holistic care to
terminal patients. We installed a computerized detection system for hospice home care
with the QOCA apc. We identify the health conditions of patients in the end-of-life period
using the EKG and O2 sensing system. We applied QOCA atm to home-based hospice
and palliative care. We could watch the patients and easily inform their family about their
terminal status early in the process. We could deliver personalized end-of-life care and
reduce the burden of care for family members through telemedicine and AI technology.
With intelligent remote medicine technology, we can improve quality of life for terminal
patients and respond to the core value of the need for dignity while dying at home.

The extensive use of WGS/WES has completely changed the diagnostic procedures
in medical genetics, particularly for cancer, non-invasive prenatal screening, childhood
development, and rare disorders. The incidence of cancer has dramatically increased
over the last decade. WGS/WES in germline and somatic mutations can provide cancer
diagnosis and the etiology of cancer. For example, the mutational signature of urothelial
carcinoma showed that aristolochic acid exposure plays a vital role in Taiwan [86]. This
could be a screening tool for cancer etiology to determine the public health policy. Con-
cerning public health issues, we can screen for cancer, create a preventive procedure for
cancer, and promote lifestyle changes in inherited or high-risk cancer populations [87].
Contrary to the single or multiple gene panels, we performed WGS/WES-based genomic
analyses using AI-based high-performance computing methods. More quick and accurate
diagnoses could be reached. Pharmacological side-effects (pharmacogenomics) and the
ACMG non-oncogenic phenotype are other significant public health issues, particularly
for cancer patients. Implementing AI-based algorithms in high-performance computing is
most urgent due to the public health concerns.

AI-powered analytical techniques with HPC platforms are widely used in clinical
practice for precision cancer genomics. Clinicians must grasp the concept of big data within
the healthcare field and translate it into usable knowledge for real-time patient care. Future
research should, therefore, focus on the fast-evolving fields of bioinformatics, AI medical
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clouds, and visualization platforms. AI-powered bioinformatics technologies are expected
to routinely provide clinical diagnostic and treatment services in the future.
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