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Abstract: Application of deep learning (DL) to the field of healthcare is aiding clinicians to make
an accurate diagnosis. DL provides reliable results for image processing and sensor interpretation
problems most of the time. However, model uncertainty should also be thoroughly quantified.
This paper therefore addresses the employment of Monte Carlo dropout within the DL structure
to automatically discriminate presymptomatic signs of spinocerebellar ataxia type 2 in saccadic
samples obtained from electrooculograms. The current work goes beyond the common incorporation
of this special type of dropout into deep neural networks and uses the uncertainty derived
from the validation samples to construct a decision tree at the register level of the patients.
The decision tree built from the uncertainty estimates obtained a classification accuracy of 81.18% in
automatically discriminating control, presymptomatic and sick classes. This paper proposes a novel
method to address both uncertainty quantification and explainability to develop reliable healthcare
support systems.

Keywords: deep learning; medicine; sensor data; electrooculogram; uncertainty quantification;
Monte Carlo dropout; decision trees

1. Introduction

Medical data modeling using deep learning (DL) has already been acknowledged as the next
major advancement in computational support in complex and sometimes critical decision making
tasks. Nevertheless, since this data is often ambiguous, model uncertainty also has to be taken
into consideration.
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The current paper addresses such ambiguities surrounding the assessment of electrooculogram
(EOG) sensor data for an early recognition of presymptomatic behavior for spinocerebellar ataxia type
2 (SCA2) patients. In this particular task, the signals (saccades) that form the register of a labeled case
may have characteristics pertaining to the neighboring classes. Moreover, the number of records in
each register varies from person to person, depending on the physician’s consideration to continue
testing until some confirmation of a certain diagnosis class is seen. Contrarily, there is no possibility
of computational discrimination into presymptomatic-healthy or presymptomatic-sick classes solely
based on signal shapes.

Machine learning has been employed to tackle this problem and obtain a proper discrimination
into the three classes [1]. However, the performance has improved only when a supporting
unsupervised technique (viz. self-organizing maps (SOM)) was used in parallel with DL [2] or
to clean the data before the application of a deep neural network (DNN) [3]. In this context, uncertainty
quantification (UQ) may be a promising mechanism to include in the DNN, thus allowing to better
differentiate the presymptomatic condition by addressing both data ambiguity and model behavior.

The proposed methodology targets UQ by employing Monte Carlo dropout (MCD) within the
DNN. Dropout has been used as an effective method to avoid overfitting in deep networks, and its
Monte Carlo variant has been recently employed to capture the uncertainty in such learning models.
It has been demonstrated to perform as a Bayesian approximation of a Gaussian process [4]. Therefore,
many DL applications for medical image analysis and signal data have currently embraced MCD to
measure model uncertainty. The MCD process assumes a number N of forward passes within the
DL model. A different dropout 0-1 mask for neuron deactivation is used every time. Unlike regular
dropout, MCD is applied both at training and validation/test stages, thus providing not one but N
outputs in predicting the decision for each sample, which gives the possibility to compute statistical
uncertainty estimates.

In addition to the standard integration of MCD with a DNN for atomic saccade labeling (as in
the state of the art), the paper further analyzes the influence of uncertainty in the classification
results at the higher register level. This means that, by referring to each validation register, several
statistical measures (means, standard deviations) are collected for the label groups from the prior
DL-MCD training at the saccadic signal level. Decision trees [5] (DT) are then used to learn the labeling
mechanism for these statistical features pertaining to each register and output decision rules that go
beyond similar saccadic shape.

The application of the DL-MCD-DT tandem for EOG data to diagnose SCA2 patients has yielded
the accuracy of 81.18%. The findings suggest the importance of UQ within DL applications for medical
data, as a means to handle both data and model uncertainty. In addition, the proposed system helps to
provide a visual explainability of the computational model.

The paper is structured as follows. The description of the data set used for this work is given
in Section 3. Recent works on the related use of MCD for addressing uncertainty in DL models for
medicine (image and sensor data) are outlined in Section 2. A detailed outline of the inner mechanisms
of using MCD for DL training, validation, and test phases are given in the first part of Section 4,
however, with an emphasis on the particular conceptual issues surrounding the current medical
application. The computation of the statistical quantifiers of uncertainty at the register level and the
subsequent DT classification procedure based on the new features are described in the second part of
Section 4. The experiments, results and discussion are depicted in Section 5.

2. Uncertainty Quantification in Deep Learning

Medical tasks have been modeled over the years by nature-inspired algorithms, especially artificial
neural networks and the more recent and popular DL, that brought the much needed support in terms
of time efficient diagnosis and clinical feature identification [6–16]. At the other end, data coming from
different types of sensors have been also effectively analyzed by neural techniques [17–22]. At the
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intersection, medical data provided by sensors, such as ECG and EOG, have also been successfully
tackled by DNN architectures that are able to handle temporal data [3,23,24].

However, blindly trusting the result (output) of such a model risks different undetected failures
(e.g., removal of structures and most important features) [25]. As expressed by Tanno et al. [26] these
predictive failures have two main reasons:

1. The given task is naturally vague or
2. The models are not appropriate to describe the data.

These failures can be named uncertainty, and Malinin [27] has categorized them into two
major groups:

1. Aleatoric uncertainty or data uncertainty.
2. Epistemic uncertainty or knowledge uncertainty.

To deal with uncertainty, different methods such as Bayesian methodology (e.g., MCD [28],
variational inference [29]) and ensemble learning techniques [30] have been proposed in the literature.
In this study we have used the MCD approach to capture the model uncertainty within DL. Gal and
Ghahramani [4] proposed this Bayesian-based theoretical understanding of dropout as a sampling
method which is equal to the variational approximation of a deep Gaussian process.

In the following, we have summarized some recent studies that employ MCD for UQ from
DL in medicine. Generally, the emphasis is on medical image analysis as the most frequent DL
application scenario, nevertheless there are a couple of entries also on MCD for DNN applied to
medical sensor data.

Jungo et al. [31] found that uncertainty estimates are very important for different safety-critical
computer-aided applications. Hence, they applied MCD in brain tumor cavity segmentation.
The obtained results highlighted the significant potential of employing the extra information achieved
from the model parameter uncertainty in validating the segmentation performance of various DL
methods. In another study, Jungo et al. [32] investigated uncertainty measures of brain tumor image
segmentation. According to the obtained outcomes, there is comparable segmentation performance
between normal weight scaling dropout methods and MCD. Lubrano di Scandalea et al. [33] applied
Deep and Active Learning (DAL) with U-Net architecture on histology data for the Axon-Myelin
segmentation. They employed the MCD to appraise model uncertainty and choose samples to be used
for the next iteration, which resulted in very efficient and straightforward results. Guo et al. [34] applied
MCD in CNN (ConvNet/CNN) to engender a mean of U-net predictions. The use of MCD uncertainty
improved the segmentation performance of the model applied to cardiovascular disease image data.
Regarding specifically applications on medical sensor data, classification of electromyographic (EMG)
hand gesture signals was done using three novel ConvNet methods by Côté-Allard et al. [35].
To deal with the overfitting issue, they employed the MCD, batch normalization and early stopping.
In [36], the electromagnetic radiation effects of wireless devices on the brain are studied by using an
autoencoder with MCD for UQ.

3. Materials

SCA2 is a neurodegenerative, hereditary disease that gradually affects movement. It is incurable;
nonetheless, EOG makes the assessment of preliminary symptoms possible and consequently allows
physicians to take action in decelerating the installation of the disease.

The data set used in this study was provided by the Center for Research and Rehabilitacion of
Hereditary Ataxias (CIRAH), Holguín, Cuba. It can be downloaded for research purposes from the
following link: https://dx.doi.org/10.6084/m9.figshare.11926812.

Eighty-five EOG tests with visual stimuli of four different angles were recorded. Segments from
the velocity profiles were grouped into two categories using the k-means algorithm, and segments
corresponding to the group with high velocity were considered as saccades. Each saccade has a

https://dx.doi.org/10.6084/m9.figshare.11926812
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length of 192 samples at regular time steps with normalized amplitude in the interval [−0.5, 0.5]
(see [2] for a detailed description of the acquisition and preprocessing stages). In total, there are 5953
saccades collected for all the individuals that had undergone examination. The saccades that belong
to the same patient are held in a unique register. The register has one of the three labels: control (C),
presymptomatic (P) and sick (S). The control class gathers the healthy eye movement, the sick contains
the visibly deformed saccades due to the presence of SCA2 and the presymptomatic labels consist of
the presumably precursory precondition.

Each register thus corresponds to one patient and has a unique class attributed to the three. It also
consists of a variable number of saccades. For some cases the physician can rapidly reach the diagnosis,
while for others several trials need to be performed to arrive at an accurate judgment. In this situation,
a different number of saccades are produced. This underlines the fact that many of the samples in one
patient register have a shape that does not necessarily reflect the pattern of the class attributed to that
register, but there were a number of other saccades that made the physician arrive at that final decision.

To summarize, there are 85 registers (corresponding to the performed tests) and 5953 saccades
in total, each with a length of 192. Figure 1 shows examples of saccades contained in registers of the
three classes.
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Figure 1. Examples of 3 random registers used for training: from left to right, for control,
presymptomatic and sick.

Figure 2 indicates the 40%–40%–20% split of the registers used for training, validation and testing.
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Figure 2. Each plot shows the number of saccades for each register in turn. From left to right,
the registers considered for the training, validation and test sets are shown.

The average, standard deviation (StD), minimum (Min) and maximum (Max) number of saccades
present in a register for each class is presented in Table 1.

Table 1. Average, standard deviation, minimum and maximum number of saccades per register in the
entire data set.

Class Average StD Min Max

Control 78.3 21.6 38 169
Presymptomatic 76.7 25 28 172
Sick 54 49 6 172
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The difficulty of the current medical problem ensues from the different number and variable shape
of saccades in each register, especially those with presymptomatic label. Hence, the differentiation is
strongly impeded by the uncertainty in the data.

4. Methods

The proposed methodology comprises two stages: DL with MCD and DT. The former, depicted
in Section 4.1, outlines the MCD approach at the training level of the DL model and the sample
labeling at the validation/test stages, also on the premise of MCD. The latter, described in Section 4.2,
consists in the construction of the DT using the feature information extracted from the MCD stochastic
outcome for the validation registers and its prediction on the test registers with their MCD probabilistic
label characteristics.

The methodological flow is depicted in Figure 3. The DL architecture with N MCD repetitions
is appointed for the training data at the saccadic samples level. It outputs both the MCD ensemble
accuracy and mean accuracy for validation and test sets over the N runs. Subsequently, the MCD
application at the validation and test levels performs the labeling of individual saccadic samples
in each register into the three classes. For each such formed group of saccades within a register,
the cardinal, mean and standard deviations of the probabilities of constituent saccades belonging
to each of the three classes are computed. The values for these new features are collected for every
register and the ones corresponding to the validation set are fed to the DT, where they serve as training
data. Hence, the validation samples have two roles: firstly, they are used to evaluate the CNN-LSTM
model for individual classification of each saccade and, secondly, the aggregated results of the MCD
on the validation registers are further used to train the DT model. Once the DT model is constructed,
the decision rules are visualized and the classification accuracy is calculated for the test data using the
statistical features.  !"#$%&'"()*'%*+,#- "#$%&'"()*'%*+, ."!/0*+*+, 10'*%02*$+"3045'&3"6*27"8'033"#- "5/$909*'*2*&3!&32"3045'&3"6*27"8'033"#- "5/$909*'*2*&3 !&32"3&2"6*27"4&0+"0+%":2 ";/$4"#- "5/$909*'*2*&3";$/"&087"/&,*32&/10'*%02*$+"3&2"6*27"4&0+"0+%":2 ";/$4"#- "5/$909*'*2*&3";$/"&087"/&,*32&/  !"4$%&'"0+%"/)'&"3&2#$%&'"9)*'%*+,<&,*32&/"'09&'"5/&%*82*$+

Figure 3. Flowchart of the proposed DL-MCD-DT learning: DL training of saccades with MCD,
statistical feature extraction from groups in validation registers, DT model construction and
classification and rules on the test registers.

4.1. Deep Modeling with Monte Carlo Dropout for EOG Saccades

The basic DL architecture chosen for the EOG data is a CNN-LSTM tandem that demonstrated
to be most effective in the prior study [3]. The novel element in this work is the addition of MCD to
achieve UQ.

The DL model starts with two convolutional layers with a kernel size of 3 and a number of filters
of 128, ReLU activation and subsequent max pooling layers of size 2 and stride 2. The output is given
to a LSTM layer with 100 units. At this point, in the current version of the architecture, MCD steps
in with a dropout rate of 0.5. The final dense layer with 3 units and a softmax activation ends the
sequence. An overview of the architecture is sketched in Figure 4.
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Figure 4. Proposed CNN-LSTM architecture. MCD intervenes in the final dropout layer, with a
different mask for every forward pass.

Apart from its presence during the training stage, MCD appears also in the subsequent
validation/test steps. Algorithms 1 and 2 depict how validation and test saccades are being labeled in
the N consecutive MCD runs and in an ensemble fashion, respectively.

In Algorithm 1, during each run, the model is applied to every individual saccade.
The probabilities of the current saccade belonging to each of the three classes is obtained (line 3).
The maximum value of these three probabilities yields the prediction X ∈ {C, P, S} for the sample
(line 4). The occurrence (0 or 1) of an accurate classification is computed as the indicator function of a
match between the predicted label and the real one (line 5). The average classification accuracy at the
end of the run is calculated (line 7) and the average over all the N MCD runs is obtained (line 9).

Algorithm 1: Calculation of class probabilities, labeling of individual saccades and
computation of mean accuracy over the N runs of the MCD. This procedure is applied to
both validation and test registers with constituent saccades

Data: Saccades in validation and test registers
Result: Mean MCD accuracy over N runs

1 for each MCD run i = 1, ..., N do
2 for each validation/test saccade j = 1, 2, ..., m do
3 Obtain ProbCji , ProbPji and ProbSji ;

4 Compute predicted class Predji = X : ProbXji = max(ProbCji , ProbPji , ProbSji );

5 Accji = 1{Predji=Realj};

6 end
7 MCDacci =

1
m ∑m

j=1 Accji;

8 end
9 MCDaccmean = 1

N ∑N
i=1 MCDacci;

10 Return MCDaccmean;

In Algorithm 2, for each saccade (validation or test), the model is applied over the N runs and
its probability of belonging to each of the three classes is obtained for each run (line 3). Its mean
probabilities for each class are then computed for the corresponding values obtained over N MCD
runs (lines 5–7). The class predicted for the current saccade is the maximum value of the three mean
probabilities (line 8). The prediction accuracy (0 or 1) for the current saccade is calculated (line 9) and
the average accuracy of the ensemble over all saccades is reached (line 11).
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Algorithm 2: MCD ensemble (MCDE) calculation of class probabilities and labeling for
individual saccades and computation of accuracy. This procedure is applied to both
validation and test registers with constituent saccades

Data: Saccades in validation and test registers
Result: MCD ensemble accuracy from N runs

1 for each validation/test saccade j = 1, 2, ..., m do
2 for each MCD run i = 1, ..., N do
3 Obtain ProbCij , ProbPij and ProbSij ;

4 end
5 for X ∈ {C, P, S} do
6 ProbXj =

1
N ∑N

i=1 ProbXij ;

7 end
8 Compute predicted class Predj = X : ProbXj = max(ProbCj , ProbPj , ProbSj );

9 Accj = 1{Predj=Realj};

10 end
11 MCDEacc = 1

m ∑m
j=1 Accj;

12 Return MCDEacc;

4.2. Feature Extraction and Classification of Registers via Decision Trees

Although the accuracy returned by the ensemble model from multiple MCD runs (MCDEacc in
Algorithm 2) tops the accuracy of the single CNN-LSTM approach or the average over the MCD runs
(MCDaccmean in Algorithm 1), it still does not solve the complex problem of classifying correctly the
registers of saccades, specifically recognizing the presymptomatic behavior.

Algorithm 3 presents a mechanism to reach a label of registers, using new features which
count the probabilities for each class of the constituent saccades and a DT approach to mine this
novel information.

The classification at the register level starts from the previous Algorithm 2 that establishes
the ensemble computation of class probabilities and labeling for every validation and test saccade.
Therefore, the saccades from each register can be arranged in groups (line 3 from current Algorithm 3)
following the labels that were predicted in line 8 of Algorithm 2. For every group, the mean and
standard deviation of probabilities found in saccades by lines 5–7 of Algorithm 2 are calculated for
every three classes (lines 5–10). Note that there may be obviously groups with no attributed saccades,
e.g., for a certain register i, there may be no saccade labeled as presymptomatic so that Pi

pred = ∅.

In this case the mean and standard deviations Meani
XYpred

, StDi
XYpred

with X = P cannot be computed.
All these new features are recorded for every register: the number of saccades in each found label

group and all the mean and standard deviation values from the probabilities for saccades also per
assigned group. This results in 3 (for cardinals of each found group) + 9 (for means) + 9 (for standard
deviations) = 21 features for each register.

A DT with a Gini metric is constructed from the features of the validation registers (line 12).
Once the model is built, it is applied for the test registers (line 13) so that the classification accuracy as
well as a visualization of the decision rules are obtained (line 14).
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Algorithm 3: DT model construction on the validation registers and prediction on the
test registers

Data: Validation and test registers.
Probabilities of classes ProbCj , ProbPj , ProbSj for each saccade j from Algorithm 2, lines 5–7.
Predicted class Predj for each saccade j from Algorithm 2, line 8
Result: DT accuracy and tree

1 for each validation/test register i = 1, ..., n do
2 Group saccades of register i according to prediction into Ci

pred, Pi
pred, Si

pred, where

3 Xi
pred = {saccade j ∈ register i : Predj=X };

4 Compute number of saccades in each subset |Ci
pred|, |P

i
pred|, |S

i
pred|;

5 for X ∈ {C, P, S} do
6 for Y ∈ {C, P, S} do

7 Compute Meani
XY =

∑
|Xi

pred |
j=1 ProbYj

|Xi
pred |

;

8 Compute StDi
XY =

√√√√∑
|Xi

pred |
j=1 (ProbYj

−Meani
XY)

2

|Xi
pred |

;

9 end
10 end
11 end
12 Build DT from the collected new features of the validation registers;
13 Apply reached DT model on test registers with new attributes;
14 Return test classification accuracy and tree;

5. Experimental Results

The current section illustrates the results obtained by our proposed approach (in Algorithm 3)
using the described data set. Section 5.1 discusses the configuration of the experiment, Section 5.2
illustrates the visual representation of results and the outputs are represented in Section 5.3.

5.1. Experimental Setup

Figure 2 shows the training, validation and testing registers used for this experiment. Due to the
stochastic nature of the procedure, to gather statistically consistent data, there are 10 repeated runs on
the same data splits for the entire DL approach using MCD with 500 passes. Accordingly, 10 slightly
different data sets with features are created and finally the DT are built on each of these.

The mean accuracy result of DT is obtained after running the model 100 times. The large number
of repeated runs is possible due to fast running time and hence it confirms the impartiality in the results.

5.2. Results and Visualization

Figure 5 shows the distribution of predictions over the 500 MCD runs (Algorithm 1) and the
accuracy of the ensemble (Algorithm 2) in one of the 10 repetitions of the DL.
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Figure 5. Distribution of the 500 MCD accuracy predictions (MCDacci in Algorithm 1) for the validation
(left) and test (right) sets in a single run of the approach. The vertical line represents the classification
accuracy of the ensemble MCD (MCDE in Algorithm 2) model.

Figure 6 illustrates the manner in which the MCDE approach outputs the probabilities for each of
the three classes (control, presymptomatic and sick) Algorithm 3, by showing one particular register
in each class. The number of saccades included in each box plot is mentioned in the title of the
corresponding chart.
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Figure 6. Box plots of 3 registers corresponding to each class of the problem: first row corresponds
to a control register, second refers to a presymptomatic register and third to a sick register. For each
register, mean and standard deviation results are outlined for saccades with the labels given by the
MCDE approach, as described in Algorithm 3.

The DT used a subset of features saved from the MCDE approach, as described in Section 4.2,
to build a model that is able to classify the registers. The description shown in Figure 7 is the one that
yielded the best test accuracy from one of the 10 repeated runs of the entire DL-MCDE-DT approach.
More details about the interpretability of the DT rules are discussed in the next section.
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Figure 7. Illustration of the decision tree model obtained from the validation data in one of the
repeated runs.

Figure 8 shows how a presymptomatic register is mistaken as control by another DT.

≥<

saccadesC allSickProbsSMean allSickProbsPMean ...

72.00 0.52 0.17 ...

Prediction

C

Figure 8. One presymptomatic register wrongly classified as control by a decision tree. The features
involved in the decision appear at the bottom of the plot.
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Table 2 has two sections, one dedicated to the saccade classification results on the validation and
test sets, as obtained by MCD and its ensemble version along the CNN-LSTM without Monte Carlo
uncertainty and a support vector machine (SVM). All results are reported out of 10 repeated runs.
The second part of the table shows the results obtained by the DL-MCDE-DT model, the CNN-LSTM
without MCD and SVM, when applied to the register test set. For the last two approaches, the label of
a register is established as the class of the majority of its saccades. The last 3 rows depict the precision,
recall and F1-score obtained by the proposed DL-MCDE-DT.

Table 2. Summary of classification performance obtained for various combinations of approaches and
for other methods.

Approach Average (%) Standard Deviation (%) Minimum (%) Maximum (%)

Saccade classification

DL-MCD validation 68.07 0.74 66.68 69.29
DL-MCD Ensemble validation 68.77 0.51 67.78 69.48
CNN-LSTM validation 70.38 0.28 69.7 70.7
SVM validation 60.06 0 60.06 60.06
DL-MCD test 70.28 1.15 68.57 72.19
DL-MCD Ensemble test 70.84 1.29 68.81 72.75
CNN-LSTM test 74.12 0.17 73.9 74.4
SVM test 63.18 0 63.18 63.18

Register classification on the test set

DL-MCDE-DT Accuracy 81.18 7.16 72.12 94.12
CNN-LSTM Accuracy 76.47 0 76.47 76.47
SVM Accuracy 64.71 0 64.71 64.71
DL-MCDE-DT Precision 81.9 9.05 68.63 94.77
DL-MCDE-DT Recall 81.18 9.04 70.59 94.12
DL-MCDE-DT F1-score 80.93 9.16 69.36 93.87

Finally, Figure 9 indicates on the left plot the correctly and mislabeled registers in the 10 runs
corresponding to Table 2 register accuracy results, while the right one shows the ROC curves in one of
the 10 runs.
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Figure 9. Confusion matrix of test registers obtained after 10 repeated runs of the DL-MCDE-DT model
(left) and ROC curves for one run (accuracy 82.35%) (right).

5.3. Discussion

When the class for each register is taken directly as the vote given by the majority of its constituent
saccades, the results are not encouraging: the control and sick registers are correctly identified, but most
of the presymptomatic registers are mistaken.

Figure 6 depicts the results of MCDE probabilities for three distinct registers, one representing
each class. To further dissect the output, the attention is next focused on the plots of the first row.
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The register C020 from the control class has 85 saccades and 83 out of these are labeled by the MCDE
approach correctly. This is depicted in the first plot that shows the probabilities for the saccades
of register C020 that have the largest value for control. There is only one saccade that has a larger
probability for the presymptomatic class (top-center plot) and one saccade where the largest probability
targets the sick class (top-right plot). The majority of saccades (83 out of 85, that is 97.6%) are in this
case labeled correctly (as control).

The second row of plots shown in Figure 6 illustrates a presymptomatic register. However,
the MCDE does not classify any of the saccades as presymptomatic. Nevertheless, out of 52 saccades,
33 are classified as control (center-left plot) and 19 are labeled as sick (center-right plot). Hence
presymptomatic saccades are misclassified. The decision on the label of the register needs to be
established mainly by balancing the control and sick saccades.

Finally, the plots corresponding to the third row of Figure 6 correspond to the classification of the
56 saccades in the sick register S008. In this, 2 may be labeled as control, 1 as presymptomatic and 53
as sick. The ones labeled as sick are established by the DL-MCDE with a remarkably high certainty.

Naturally, the three registers from Figure 6 do not necessarily reflect the manner in which the
saccades are labeled in all the other registers from the same corresponding classes. There are control
registers in which all saccades are correctly identified in their entirety, while there are also others where
more saccades are mislabeled. We initially attempted to manually establish rules (with thresholds) for
balancing the control and sick saccades towards reaching an accurate classification of the validation
registers. However, this path was abandoned as the rules became too complex to follow. Consequently,
we extracted various statistical features at the register level from the obtained results and fed them to a
DT model to extract the rules.

Figure 7 illustrates such a tree with rules obtained by the DT model. The most important attribute,
i.e., the one from the root with the highest gini value, is represented by the number of saccades that
are labeled as control. If there are less than 22 samples in the same register that are labeled as control
by the MCDE model, the class of that register is established as sick. Figure 2 shows the overview with
respect to the amount of saccades for each register and three classes. Most of the registers that have
a limited number of saccades (e.g., less than 30) belong to the sick class (and the number of control
saccades naturally falls below 22). When evaluating such a patient, the physicians decided that no
more tests are necessary, since they observed an impaired behavior and this is accurately identified by
the DL-MCDE approach, as well. For other registers with more samples, when the number of control
saccades was below 22, the label was sick for all validation cases. Actually, it can also be observed in
Figure 9 that this rule proved to be accurate for the test registers too, since all sick class registers are
correctly classified.

When there are more than 21 samples classified as control in a register, the differentiation is to be
made between presymptomatic and control. The next most important attribute is represented by the
mean probability of the sick class for the samples that are classified as sick by the MCDE (the rightmost
box plots with S in Figure 6). Naturally, this attribute is very important, since it represents the average
probability returned by the softmax activation in the CNN-LSTM approach according to which the
saccades should be labeled as sick. However, this does not directly decides the class of the register,
but it leads to a further check on the mean probability of the presymptomatic label, also for the set
of saccades when the sick probability is the highest. In the same Figure 6, this corresponds to the
middle box plot (labeled with P) from the same rightmost plots. Finally, the mean probability of control
saccades in the same set of samples labeled as sick (i.e., cases with the highest probability for sick)
is another decision attribute. This corresponds to the box plot labeled with C in the same rightmost
charts of Figure 6.

Figure 8 illustrates another tree that is similar in some nodes with the one from Figure 7. This new
illustration is concentrated in pointing how a test register with the presymptomatic class is categorized
as control. Each node shows a histogram with the registers in each class: the horizontal line contains the
interval for the current attribute and the black triangle indicates the determined gini value. The features
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involved in the DT classification are written in orange at the bottom of the plot and also indicated with
an orange triangle in each node of the tree. The run whose result is outlined in the figure had only one
mistaken register in the test set, i.e., the one represented.

One drawback of the MCDE approach is given by the running time. While applying 500 passes of
the MCDE over the validation set takes 24.16 min (2.9 s per iteration), the same amount of applications
on the test set takes 11.33 min (1.36 s per iteration). We recall that the test set is smaller than the
validation set, as shown in Figure 2. The experiments are performed on a PC with an Intel i7-4770
CPU, 3.40 GHz, 16 GM RAM and a GPU GeForce GTX 1650. The program is written in Python, uses
the TensorFlow library and it runs on the GPU.

The DT in Figure 7 provided the highest classification accuracy of 94.12% for the test registers.
It misclassified one presymptomatic register for one control. It is interesting to acknowledge that
besides the first attribute that refers to the number of saccades labeled by the model as control, all
the rest used only mean probabilities from the set of samples in the registers that have the highest
probability for the sick class (corresponding to the box plots from the rightmost charts in Figure 6).
Naturally, not all DT rules from the 10 repeated runs were identical and different attributes were also
considered in other cases.

The results of saccade classification shown in Table 2 indicate the best result for the CNN-LSTM
approach, both for the validation and the test sets. The high advantage is however not preserved
when the classified samples are used to establish the label of the register. Despite the fact that all
control and sick registers are accurately identified by taking the class of the majority of the saccades,
the presymptomatic registers are all misclassified for control when the additional DT is not used.

The second part of the table indicates the results obtained for register classification. Besides the
accuracy of the DL-MCDE-DT tandem, the CNN-LSTM and the SVM results are also reported, with the
majority of samples establishing the label of their register. Although the values from the standard
deviation in the saccade classification for CNN-LSTM indicate some spreading, this is not enough
to change any label at the level of the register, hence the null value for the standard deviation in the
second part of the table for the same classifier. Afterwards, the weighted results for the precision, recall
and F1-score are shown. As it can be observed in the first plot from Figure 9 with the confusion matrix,
all sick registers are correctly identified and no other register is mistaken for sick, as opposed to the
output in [3]. The matrix is symmetric, hence there are very close values for the precision, recall and
F1-score in Table 2. The values for the three measures in the table are not however identical to those in
the figure, because they are computed as average over all 10 runs and not directly from the confusion
matrix results.

A higher degree of presymptomatic signs are now correctly identified, as opposed to the results
in [3]. This is also visible from the right plot in Figure 9 with the ROC curves, which are calculated
for one of the 10 runs. The micro- and macroaverages are also computed. The high value for the
microaverage is of special interest, since the classes of the problem are unbalanced (more control
registers and less presymptomatic ones) and this measure adequately captures the precision in such
cases. It would still be useful to have a significantly larger number of registers to train the DT model
with more data and make it more robust.

6. Conclusions

This paper investigates the need and benefits of UQ in the medical field where the main intricacy
comes from the uncommon nature of the sensor-derived data. Our proposed model is able to
classify the person suspected of SCA2 in one of the three classes: control, presymptomatic and
sick. However, the register of an individual is formed by several saccadic movements obtained from
the electrooculogram and the class is defined based on the entire set. The complexity results from
the fact that the presymptomatic registers contain many samples that have the normal behavior,
representative for control and also some that are typical for sick.
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A CNN-LSTM model using Monte Carlo dropout learned to distinguish between the validation
saccades. In each validation and test register, subsets of saccades are classified as control,
presymptomatic and/or sick. For each of these subsets, mean and standard deviation are computed
from their probabilities. The new numerical validation data set is fed to the DT for training, with an
aim to better assess the classes of the registers. The rules of the DT are further applied on the test data
with the same type of features.

Our proposed model obtained an average overall classification accuracy of 81.18% (as opposed to
the previous 78.24% reported in [3]), with a relatively good identification of presymptomatic registers.
Moreover, it also provides explainable rules for the decision.

The use of UQ can be further explored for the current problem by paying special attention to
the saccades where the uncertainty is very low or, on the contrary, to those where its value is very
high. These numbers could be used as features that might determine the type of the register and are
considered as a future line of research.
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