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Tributyltin Inhibits Neural Induction 
of Human Induced Pluripotent 
Stem Cells
Shigeru Yamada1,5, Yusuke Kubo1, Daiju Yamazaki1, Yuko Sekino2, Yoko Nomura3, 
Sachiko Yoshida4 & Yasunari Kanda1

Tributyltin (TBT), one of the organotin compounds, is a well-known environmental pollutant. In our 
recent study, we reported that TBT induces mitochondrial dysfunction, in human-induced pluripotent 
stem cells (iPSCs) through the degradation of mitofusin1 (Mfn1), which is a mitochondrial fusion factor. 
However, the effect of TBT toxicity on the developmental process of iPSCs was not clear. The present 
study examined the effect of TBT on the differentiation of iPSCs into the ectodermal, mesodermal, 
and endodermal germ layers. We found that exposure to nanomolar concentration of TBT (50 nM) 
selectively inhibited the induction of iPSCs into the ectoderm, which is the first step in neurogenesis. 
We further assessed the effect of TBT on neural differentiation and found that it reduced the expression 
of several neural differentiation marker genes, which were also downregulated by Mfn1 knockdown in 
iPSCs. Taken together, these results indicate that TBT induces developmental neurotoxicity via Mfn1-
mediated mitochondrial dysfunction in iPSCs.

Organotin compounds, such as tributyltin (TBT), are typical environmental contaminants and endocrine dis-
ruptive chemicals, causing various developmental defects including increased fetal mortality, decreased fetal 
birth weight, behavioral abnormalities, and teratogenicity in the offspring of rats1,2. Although the use of TBT is 
currently restricted, the presence of butyltin compounds, including TBT, has been reported at nanomolar levels 
(50–400 nM) in human blood3. In the present study, we set out to elucidate the mechanisms through which nano-
molar TBT levels cause developmental toxicity. We used undifferentiated normal stem cells as the most suitable 
platform for differentiation studies.

Several studies have revealed the cytotoxic effects of nanomolar concentrations of TBT in stem (like) cells. For 
example, TBT is known to activate retinoid X receptor (RXR) and/or peroxisome proliferator-activated receptor 
γ (PPARγ). These genomic transcriptional activations result in developmental effects, such as the imposex in 
many marine species4 and the enhancement of adipocyte differentiation in adipose-derived stromal stem cells 
(ADSCs)5. Moreover, transcriptome analysis after induction of TBT-dependent apoptosis revealed changes in the 
expression levels of genes involved in Ca2+ mobilization, retinoic acid signaling, and apoptosis6. In addition to 
the genomic effects, we previously found the non-genomic action of TBT. TBT reduced intracellular ATP levels 
by targeting glycolysis and mitochondrial systems, and inhibited the growth of human embryonic carcinoma 
NT2/D1 cells7–10. We also found that TBT induced the growth inhibition of human induced pluripotent stem 
cells (iPSCs) through mitochondrial dysfunction, such as decreased ATP levels, depolarization of mitochondrial 
membrane potential (MMP) and mitochondrial fragmentation, via the degradation of mitochondrial fusion fac-
tor, mitofusin1 (Mfn1)11.

Mitochondria are dynamic organelles that continuously undergo fusion and fission events. Mitochondrial 
fusion is regulated by the fusion factors Mfn1, Mfn2, and optic atrophy 1 (Opa1)12,13, and produces elongated or 
tubular mitochondria, which facilitate the exchange and equal distribution of metabolites between mitochon-
dria14. Mitochondrial fission is regulated by fission factors such as fission protein 1 (Fis1) and dynamin-related 
protein 1 (Drp1)15,16, and not only facilitates the generation of healthy new mitochondria but also allows the seg-
regation of non-functional mitochondria17. Thus, these morphological changes maintain mitochondrial quality, 
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which is responsible for cellular energy supply, by allowing impaired mitochondria to be recycled14,17. Therefore, 
mitochondrial dynamics are necessary for cell survival as well as adaptation to changing conditions needed for 
cell growth18. Several studies have shown the relationship between mitochondrial fragmentation and cellular 
and neurodevelopmental defects. For example, Mfn1 knockout mice show developmental delay at the midg-
estational embryonic stage and ultimately die19. In addition, embryonic fibroblasts from these knockout mice 
display distinct types of fragmented mitochondria, which is a phenotypical characteristic of a severe reduction 
in mitochondrial fusion19. Based on these findings, we hypothesized that nanomolar TBT could also affect the 
developmental process of iPSCs, which can differentiate into somatic cells from three developmental germ layers 
(ectoderm, mesoderm, endoderm)20.

In the present study, we investigated the effect of TBT on the differentiation of iPSCs into germ layers as a 
model of human organ development21. Our results showed that 50 nM TBT selectively suppressed the induc-
tion of iPSCs into the ectoderm during neurogenesis. Moreover, TBT reduced the expression of several neu-
ral differentiation marker genes, which were also downregulated by Mfn1 knockdown. These data suggest that 
TBT-induced neurodevelopmental toxicity involves Mfn1-mediated mitochondrial dysfunction in human iPSCs, 
without affecting mesodermal and endodermal inductions.

Results
Effect of TBT on Differentiation of iPSCs into Three Germ Layers. To examine the effects of TBT 
on fetal development, we studied its effects on the differentiation of iPSCs into ectodermal, mesodermal, and 
endodermal germ layers. In ectoderm induction, we found that treatment with 50 nM TBT significantly reduced 
the gene expression of the OTX2 marker that regulates neurogenesis22 (Fig. 1a). We also found that TBT reduced 
another ectodermal marker IRX1 expression23 (Fig. 1b). In contrast, TBT had little effect on the inductions of 
mesodermal (BRACHYURY, MIXL1) and endodermal (SOX17, FOXA2) markers24–27 (Fig. 1c–f). TBT at 50 nM 
has the ability to bind to PPARγ with a higher affinity than that of the intrinsic ligands, and these genomic tran-
scriptional activations have been reported to mediate neurodevelopmental defects5. To investigate the molecular 
mechanisms by which TBT inhibits ectodermal induction, we examined the effect of the PPARγ agonist rosigl-
itazone (RGZ), which had been confirmed in our previous report, as having agonistic effects on PPARγ10. We 
found that RGZ did not reduce OTX2 expression (Fig. S1). Taken together, these data suggest that TBT inhibits 
ectodermal induction in iPSCs regardless of PPARγ activation.

Effect of TBT on Neural Differentiation of iPSCs. The production of ectodermal germ layer is the 
first step in neurogenesis28. Next, to examine the effects of TBT on neural differentiation, we performed the 
differentiation into neural progenitor cells (NPCs) from iPSCs (Fig. 2a). There has been reported for neural 
differentiation methods from iPSCs based on different protocols, such as neural induction through embry-
oid body formation29, inhibition of TGF-β and BMP signaling pathways (dual SMAD inhibition)28, or forced 
expression of neurogenin-2 with puromycin selection30. We chose dual SMAD inhibition protocol, because it is 
simple, non-viral, low-priced, non-time consuming, highly efficient, reproducible and similar to in vivo neuro-
genic processes among these methods. We examined the expression of several neural differentiation markers. 
Immunocytochemical analysis showed strong expression levels of PAX6, a marker of neuroectoderm28, by 
day 4 compared to that on day 0 while TBT exposure significantly decreased the percentage of PAX6 positive 
cells at day 4 (Fig. 2b). In addition, real-time PCR analysis revealed that TBT significantly downregulated the 
expression of Nestin (day 8), which is a marker of NPCs31 (Fig. 2c). These data suggest that TBT has an inhibi-
tory effect on the neural induction of iPSCs.

Effect of Mfn1 Knockdown on Neural Differentiation of iPSCs. We previously found that TBT 
induced mitochondrial dysfunction by degrading Mfn111. In addition, as described above, Mfn1 is reported to be 
involved in neural development19. To investigate the involvement of Mfn1 in the effects of TBT on neural induc-
tion, we performed a knockdown (KD) of Mfn1 using lentivirus-delivered shRNAs. Our previous study showed 
that the KD was selective for Mfn1 and not Mfn2, with an efficiency of approximately 70%32. The Mfn1 KD cells 
were used to perform neural induction. We found that Mfn1 KD significantly reduced the gene expression of 
OTX2 at day 2 after neural induction (Fig. 3a). Immunocytochemical analysis revealed a strong expression of 
PAX6 by day 4 after neural induction in the control cells while Mfn1 KD significantly reduced the percentage of 
PAX6 positive cells at day 4 (Fig. 3b). We further found that Mfn1 KD significantly decreased the gene expression 
of Nestin at day 8 (Fig. 3c). These data suggest that Mfn1 is involved in the TBT-mediated negative effects on 
neural induction of iPSCs.

Negative Regulation of Neural Induction by TBT Exposure. A previous report indicates that Mfn1 
directly binds Ras and Raf, thereby inhibiting Ras-Raf-ERK signaling, as determined using biochemical analy-
sis33,34. Thus, ERK has been reported to be activated after depletion of Mfn135. Moreover, ERK signaling is known 
to inhibit neural induction via OTX2 silencing in human embryonic stem cells36. Therefore, we focused on inves-
tigating the involvement of ERK signaling in the effect of TBT on neural induction. We found that TBT exposure 
significantly increased basal ERK phosphorylation levels, while this effect was neglected by treatment with the 
ERK inhibitor U0126 (Fig. 4a and b). To further investigate whether OTX2 downregulation in TBT-exposed cells 
was mediated by ERK signaling, we examined the effect of U0126 on OTX2 expression. Only U0126 treatment 
increased OTX2 expression during ectodermal induction (Fig. 4c), suggesting that ERK signaling negatively reg-
ulated neural induction. In contrast, U0126 suppressed the expressions of BRACHYURY and SOX17 marker 
genes in mesodermal and endodermal induction respectively (Fig. 4d and e), supporting previous reports that 
ERK signaling contributes to mesodermal and endodermal differentiation37,38. U0126 quenched the negative 
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effect of TBT on OTX2 gene expression (Fig. 4c). In the differentiation into three germ layers, we confirmed the 
Mfn1 downregulation in TBT-treated groups (Fig. S2). These data suggest that TBT prevents neural (ectodermal) 
induction via ERK phosphorylation and subsequent OTX2 downregulation.

Figure 1. TBT inhibits ectodermal induction of iPSCs. (a,b) Ectodermal induction was initiated after exposure 
to 50 nM TBT for 24 h. Cells were continuously exposed to TBT throughout the induction. At day 4 after the 
induction, the expression of ectodermal markers (OTX2, IRX1) was examined using real-time PCR analysis. 
(c,d) Mesodermal induction was initiated after exposure to 50 nM TBT for 24 h. Cells were continuously 
exposed to TBT throughout the induction. At day 1 after the induction, the expression of mesoderm markers 
(BRACHYURY, MIXL1) was examined using real-time PCR analysis. (e,f) Endodermal induction was initiated 
after exposure to 50 nM TBT for 24 h. Cells were continuously exposed to TBT throughout the induction. At day 
4 after the induction, the expression of endoderm markers (SOX17, FOXA2) was examined using real-time PCR 
analysis. Each bar represents the mean ± SD from three independent experiments. *P < 0.05.



www.nature.com/scientificreports/

4SCIENTIfIC REPORTS |  (2018) 8:12155  | DOI:10.1038/s41598-018-30615-2

Discussion
In the present study, we demonstrated that exposure to 50 nM TBT inhibited ectoderm induction by suppression 
of OTX2 in iPSCs. In addition, the negative effect of TBT on neurogenesis was likely mediated by Mfn1 degra-
dation, followed by ERK phosphorylation. Based on the data obtained in our study, we propose a mechanism by 
which the TBT-induced developmental neurotoxicity is mediated by mitochondrial dysfunction (Fig. 5).

We showed that TBT selectively inhibited ectodermal induction during the differentiation of iPSCs into the 
three germ layers (Fig. 1). A previous report suggests the presence of organotin compounds such as TBT, at con-
centrations between 50 and 400 nM in human blood3. Thus, the concentration (50 nM) of TBT used in our studies 

Figure 2. TBT inhibits neural differentiation of iPSCs. (a) Schematic time course of NPC induction from 
iPSCs using dual SMAD inhibition. Neural induction was initiated after exposure to 50 nM TBT for 24 h. Cells 
were continuously exposed to TBT throughout neural differentiation. (b) At day 4 after neural induction, 
the expression of neuroectodermal marker, PAX6, was observed by immunocytochemistry using anti-PAX6 
antibodies. Nuclei were counterstained with DAPI. PAX6 positive nuclei were counted using the ImageJ 
software. Bar = 100 μm. (c) At day 8 after neural induction, the expression of NPC marker, Nestin, was examined 
using real-time PCR analysis. Each bar represents the mean ± SD from three independent experiments. 
*P < 0.05.
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Figure 3. Mfn1 knockdown inhibits neural differentiation of iPSCs. (a–c) Cells were infected with lentiviruses 
containing a vector encoding shRNA directed against Mfn1 or scrambled sequence shRNA (control) for 24 h. 
Infected cells were selected using puromycin (1 μg/ml) for 24 h and cultured for an additional 72 h before neural 
differentiation. (a) The expression of OTX2 (day 2) was examined with real-time PCR. (b) The expression of 
PAX6 (day 4) was observed by immunocytochemistry using anti-PAX6 antibodies. Nuclei were counterstained 
with DAPI. PAX6 positive nuclei were counted using the ImageJ software. Bar = 100 μm. (c) The expression of 
Nestin (day 8) was examined with real-time PCR. Each bar represents the mean ± SD from three independent 
experiments. *P < 0.05.
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Figure 4. TBT negatively regulates neural induction. (a) Cells were exposed to TBT (50 nM) or TBT + U0126 
(5 μM) for 24 h. ERK phosphorylation was analyzed by western blotting using anti-phospho-ERK antibodies. 
Cropped blots were shown and the full-length blots were indicated in Supplementary Fig. 3. (b) Relative 
densities of bands were quantified using ImageJ software. Relative changes in expression were determined 
by normalization to total ERK protein level. (c) At day 2 after ectodermal (neural) induction with TBT or 
TBT + U0126, the expression of OTX2 gene was analyzed using real-time PCR. (d) At day 1 after mesodermal 
induction with TBT or TBT + U0126, the expression of BRACHYURY gene was analyzed using real-time PCR. 
(e) At day 4 after endoderm induction with TBT or TBT + U0126, the expression of SOX17 gene was analyzed 
using real-time PCR. Each bar represents the mean ± SD from three independent experiments. *P < 0.05.
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are relevant to human exposure levels. Moreover, the inhibitory effect of TBT on ectodermal induction was also 
supported by the knockdown of Mfn1, which mimics the effect of TBT on Mfn111. In contrast, TBT did not affect 
mesodermal or endodermal induction of iPSCs. A previous report has shown that the ablation of Mfn1 in the 
embryonic mouse heart, which is derived from embryonic mesodermal germ layer, arrests its development39. 
Therefore, TBT may affect the differentiation processes after the mesodermal germ layer, which in turn may 
potentially lead to cardiomyocyte. Further studies are needed to elucidate whether TBT actions contain the stage 
selectivity in the differentiation into mesodermal- or endodermal-derived cells.

We demonstrated that TBT negatively affected the levels of OTX2 in the neural differentiation (Fig. 1), which 
acts as a transcriptional regulator during forebrain development in vertebrates40. In addition, the targeted disrup-
tion of PAX6 in rodents led to the loss of anterior neural tissues41, suggesting a central role for PAX6 in forebrain 
development. TBT exposure causes decreases in forebrain weight with a reduction of synaptogenic markers in 
the developing rat brain42. These TBT-induced defects of the forebrain may be caused by transcriptional silencing 
of anterior neural markers, such as OTX2 and PAX6, during early neurogenesis. As a neural progenitor marker, 
Nestin was downregulated during the neural differentiation of iPSCs exposed to TBT, and further studies in NPCs 
are required to determine whether TBT affects their differentiation into specific neuronal subtypes, e.g., glutama-
tergic, GABAergic, or cholinergic.

We further demonstrated that the negative effect of TBT on neurogenesis was probably mediated by Mfn1 
degradation, followed by ERK phosphorylation (Fig. 4). A previous report indicates that Mfn1 directly binds Ras 
and Raf, thereby inhibiting Ras-Raf-ERK signaling, as determined using biochemical analysis33,34. Thus, Mfn1 
reduction by TBT or shRNA could reverse the inhibition of ERK signaling. The mobilization of Ca2+ from intra-
cellular stores including the mitochondria was reported to result in the phosphorylation of MAPKs, the authors 
stating that the process was suppressed by the chelation of intracellular Ca2+ in human T lymphoblastoid cells43. 
The established mitochondrial uptake of any Ca2+ that accumulated in the cytosol was shown to be depend-
ent on MMP44 with the mitochondrial dysfunction induced by TBT exposure probably causing an overload of 
Ca2+, which resulted in ERK activation. Moreover, the ERK signaling was reported to inhibit neural induction 
by silencing PAX6 through upregulation of the stemness factors NANOG/OCT4 and downregulation of OTX236. 
Thus, TBT-induced ERK phosphorylation could downregulate PAX6 expression by the suppression of OTX2 
in mediating its developmental neurotoxicity in iPSCs. Moreover, ERK signaling evoked by TBT may affect the 
expression of other PAX6 regulatory factors such as NANOG/OCT4. In future studies, it would be expedient for 
us to further investigate the mechanisms underlying the TBT-induced negative regulation of neural induction 
via ERK.

In summary, our results demonstrate a novel mechanism underlying the cytotoxicity and neurodevelopmental 
toxicity of TBT in iPSCs. There seems to be line-to-line differences in hiPSCs45. Although we used 253G1 cells 
in the present studies, line-to-line differences of hiPSCs in the neural differentiation should be investigated in 
future. Recently, significant progress has been made in the induction of differentiation of pluripotent stem cells 
into a variety of cell types46. Further studies are needed to evaluate the developmental effects of TBT on vari-
ous types of iPSC-derived cells. Moreover, we showed that the TBT-induced cytotoxicity was likely caused by 
Mfn1-mediated mitochondrial dysfunction, which is also involved in the toxicities of other endocrine disrup-
tive chemicals47,48, such as chlorpyrifos32 and silver nanoparticles49. Thus, further investigation of mitochondrial 

Figure 5. Proposed mechanism of TBT-induced developmental neurotoxicity in human iPSCs. TBT exposure 
causes Mfn1 reduction, which induces mitochondrial dysfunction, including mitochondrial fragmentation and 
decreased ATP levels. Mitochondrial dysfunction subsequently evokes ERK phosphorylation, leading to the 
suppression of OTX2, which is an early marker of neurogenesis.
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functions influenced by Mfn1 would be an important next step to examine the mechanisms underlying the tox-
icities induced by chemicals.

Methods
Chemicals and Reagents. TBT was obtained from Tokyo Chemical Industry (Tokyo, Japan) and dissolved 
in dimethyl sulfoxide (DMSO). Rosiglitazone (RGZ), 2-mercaptoethanol (2-ME), and sodium butyrate (NaB) 
were obtained from Sigma-Aldrich (St. Louis, MO, USA). Y-27632, SB431542, LDN193189, and CHIR99021 were 
obtained from Wako (Tokyo, Japan). The penicillin-streptomycin mixture (PS) was obtained from Thermo Fisher 
Scientific (Waltham, MA, USA). U0126 was obtained from Enzo Life Sciences (Farmingdale, NY, USA). All other 
reagents were of analytical grade and were obtained from commercial sources.

Cell culture. We used the human iPSC line 253G1 (Riken BRC Cell Bank, Tsukuba, Ibaraki, Japan), which 
was established through the retroviral transduction of Oct3/4, Sox2, and Klf4 into adult human dermal fibro-
blasts50. The cell culture was performed as previously reported11. Briefly, the cells were cultured under feeder-free 
conditions using human embryonic stem cell (ESC)-qualified Matrigel (BD Biosciences, San Jose, CA, USA) and 
TeSR-E8 medium (Stemcell Technologies, Vancouver, BC, Canada) at 37 °C in an atmosphere containing 5% CO2. 
For passaging, the iPSC colonies were dissociated into single cells using Accumax (Innovative Cell Technologies, 
San Diego, CA, USA) and cultured in TeSR-E8 medium supplemented with the ROCK-inhibitor Y-27632 (10 μM) 
for the first two days.

Neural differentiation. The neuronal lineages derived from the ectodermal germ layer were induced using 
the dual SMAD inhibition protocol as previously described with modifications28. Briefly, iPSC colonies were 
dissociated into single cells with Accumax. The cells were seeded at a density of 7 × 104 cells/cm2 in the TeSR-E8 
medium on Matrigel-coated plates to reach a near confluent level within 2 days after seeding. The initial ecto-
derm differentiation was performed using a knockout serum replacement (KSR) medium [Knockout DMEM 
(Thermo Fisher Scientific) containing KSR (Thermo Fisher Scientific), L-glutamine (Thermo Fisher Scientific), 
non-essential amino acids (NEAA; Thermo Fisher Scientific), 2-ME, PS] containing SB431542 (TGFβ inhibitor, 
10 μM) and LDN193189 (BMP inhibitor, 1 μg/ml). After 4 days, N2 medium [Neurobasal containing N2 (Thermo 
Fisher Scientific), B27 (minus vitamin A, Thermo Fisher Scientific), GlutaMAX (Thermo Fisher Scientific), PS] 
was added to the KSR medium with LDN193189 every 2 days.

Mesoderm Induction. For the induction of the mesodermal germ layer, a cardiomyocyte differentiation 
protocol was used as previously described with modifications24. Briefly, iPSC colonies were dissociated into 
single cells using Accumax. The cells were seeded at a density of 6 × 104 cells/cm2 in the TeSR-E8 medium on 
Matrigel-coated plates to achieve an approximately 80–90% confluence within 2 days after seeding. Then, the 
medium was replaced with RPMI1640 (Nacalai Tesque, Kyoto, Japan) containing B27 (minus insulin, Thermo 
Fisher Scientific), CHIR99021 (a GSK3 inhibitor, 10 μM), and PS for 1 day.

Endoderm Induction. For the induction of endodermal germ layer, hepatic differentiation protocol was 
used as previously described with modifications25. Briefly, iPSC colonies were dissociated into single cells with 
Accumax. The cells were seeded at a density of 5 × 104 cells/cm2 in the TeSR-E8 medium on Matrigel-coated 
plates to reach an approximately 70% confluence level within 2 days after seeding. Then, the medium was replaced 
with RPMI1640 containing B27 (Thermo Fisher Scientific), activinA (100 ng/ml; R&D Systems, Minneapolis, 
MN, USA), Wnt3a (50 ng/ml; R&D Systems), and PS. The next day, NaB (0.5 mM) was added to the culture 
medium, followed by a 1-day incubation period and then the medium was replaced with RPMI1640 containing 
B27, activinA, Wnt3a, and PS for an additional 2 days.

Real-Time PCR. Total RNA was isolated from iPSCs using TRIzol reagent (Thermo Fisher Scientific), and 
quantitative real-time reverse transcription (RT)-PCR was performed using a QuantiTect SYBR Green RT-PCR 
kit (Qiagen, Valencia, CA, USA) using an ABI PRISM 7900HT sequence detection system (Applied Biosystems, 
Foster City, CA, USA) as previously reported51. Relative changes in transcript levels were normalized to the 
mRNA levels of GAPDH. The following primer sequences were used for real-time PCR analysis: OTX2, forward, 
5′-ACAAGTGGCCAATTCACTCC-3′ and reverse, 5′-GAGGTGGACAAGGGATCTGA-3′; IRX1, forward, 
5′-CGCGGATCTCAGCCTCTTC-3′ and reverse, 5′-CCCCAGGGTTGTCCTTCAGT-3′; BRACHYURY, forward, 
5′-TGCTTCCCTGAGACCCAGTT-3′ and reverse, 5′-GATCACTTCTTTCCTTTGCATCAAG-3′; MIXL1, for-
ward, 5′-CCGAGTCCAGGATCCAGGTA-3′ and reverse, 5′-CTCTGACGCCGAGACTTGG-3′; SOX17, forward, 
5′-CGCTTTCATGGTGTGGGCTAAGGACG-3′ and reverse, 5′-TAGTTGGGGTGGTCCTGCATGTGCTG-3′; 
FOXA2, forward, 5′-TGGGAGCGGTGAAGATGGAAGGGCAC-3′ and reverse, 5′-TCATGCCAGCGCCCACGT 
ACGACGAC-3′; Nestin, forward, 5′-GGCAGCGTTGGAACAGAGGT-3′ and reverse, 5′-CATCTTGAGGTG 
CGCCAGCT-3′; GAPDH, forward, 5′-GTCTCCTCTGACTTCAACAGCG-3′ and reverse, 5′-ACCACCCT 
GTTGCTGTAGCCAA-3′.

Immunocytochemistry. Cell staining was performed as previously described51. Briefly, cells were cultured 
on glass coverslips, fixed in 4% paraformaldehyde in phosphate-buffered (PBS, pH 7.4) for 15 min at room tem-
perature, and then incubated with anti- PAX6 polyclonal antibodies (1:100, Biolegend, San Diego, CA, USA) 
overnight at 4 °C. Then, the cells were incubated with Alexa 555-conjugated secondary antibodies (1:200, 
Thermo Fisher Scientific) for 1 h at room temperature. Nuclei were counterstained with DAPI (Nacalai Tesque). 
Fluorescence images were obtained using a BIOREVO BZ-9000 fluorescent microscope (Keyence, Osaka, Japan). 
PAX6 positive nuclei were counted using the ImageJ software (NIH, Bethesda, MD, USA).
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Gene Knockdown Using Short Hairpin RNA (shRNA). Knockdown experiments were performed using 
Mfn1 shRNA lentiviruses from Sigma-Aldrich (MISSION shRNA), as previously reported8. A scrambled hairpin 
sequence was used as the negative control. Briefly, the cells were infected with the viruses at a multiplicity of infec-
tion (moi) of 1 in the presence of 8 μg/mL hexadimethrine bromide (Sigma-Aldrich) for 24 h. After the medium 
exchange, the cells were selected with 1 μg/mL puromycin for 24 h and cultured for an additional 72 h prior to the 
functional analyses.

Western Blot Analysis. Western blot analysis was performed as previously reported52. Briefly, the cells were 
lysed with cell lysis buffer (Cell Signaling Technology, Danvers, MA, USA), the proteins were separated using 
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and then electrophoretically trans-
ferred to Immobilon-P membranes (Millipore, Billerica, MA, USA). Then, the membranes were probed with 
anti-ERK1/2 polyclonal antibodies (1:1000, Cell Signaling Technology), anti-phospho ERK1/2 (Thr202/Tyr204) 
monoclonal antibodies (1:2000, BD Biosciences), anti-Mfn1 monoclonal antibodies (1:1000, Cell Signaling 
Technology), and anti-β-actin monoclonal antibodies (1:5000, Sigma-Aldrich). The membranes were then incu-
bated with secondary antibodies against rabbit or mouse horseradish peroxidase-conjugated immunoglobulin 
G (IgG, Cell Signaling Technology). The bands were visualized using an enhanced chemiluminescence (ECL) 
western blotting analysis system (GE Healthcare, Buckinghamshire, UK) and the images were acquired using an 
LAS-3000 imager (FUJIFILM UK Ltd., Systems, Bedford, UK).

Statistical analysis. All the data are presented as means ± standard deviation (SD) from three independ-
ent experiments and the Student’s t-test was used to analyze the data in Figs 1, 2c, 3a,c and S1. An analysis of 
variance (ANOVA) followed by the Bonferroni posthoc test was used to analyze the data in Figs 2b, 3b and 4. 
P-values < 0.05 were considered statistically significant.
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