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Alzheimer’s disease (AD) stands as the most prevalent neurodegenerative ailment, presently 
lacking a definitive cure. Given that primary medications for AD patients in the early or middle 
stages demonstrate optimal efficacy, it becomes crucial to delve into the identification of risk genes 
associated with early onset. In our study, we compiled and integrated three transcriptomics datasets 
(GSE48350, GSE36980, GSE5281) originating from the hippocampus of 37 AD patients and 66 healthy 
controls (CTR) for comprehensive bioinformatics analysis. Comparative analysis with CTR revealed 25 
up-regulated genes and 291 down-regulated genes in AD. Those down-regulated genes were notably 
enriched in processes related to the transmission and transport of synaptic signals. Intriguingly, 27 
differentially expressed genes implicated in AD were also correlated with the Braak stage, establishing 
a connection with various immune cell types that exhibit differences in AD, including cytotoxic T cells, 
neutrophils, CD4 T cells, Th1, Th2, and Tfh. Significantly, a Cox model, constructed using nine feature 
genes, effectively stratified AD samples (HR = 2.72, 95% CI 1.94 ~ 3.81, P = 3.6e–10), highlighting 
their promising potential for risk assessment. In conclusion, our investigation sheds light on novel 
genes intricately linked to the onset and progression of AD, offering potential biomarkers for the early 
detection of this debilitating condition. This study contributes valuable insights toward enhancing the 
strategies for preventing and treating AD.

Keywords  Alzheimer’s disease, Hippocampus, Transcriptomics, Gene, Biomarker

Alzheimer’s disease (AD) stands as a progressive neurodegenerative disorder influenced by an interplay of 
genetic and epigenetic factors, alongside gene-environment interactions that potentially contribute to its onset1. 
AD holds the prominent position as the world’s foremost prevalent neurodegenerative disorder, commanding 
significant attention and concern globally. Clinically, AD manifests as a profound impairment of executive and 
cognitive functions2. Pathologically, the disease progression is characterized by escalating hippocampal and 
cortical atrophy, observable through neuroimaging and visual examination. This is accompanied by the presence 
of intracellular neurofibrillary tangles (NFTs) and the extracellular deposition of hyperphosphorylated amyloid-
beta (Aβ) 1–42 peptides, leading to neuronal and synaptic loss, as well as reactive glial hyperplasia1,3–5. As the 
aging population burgeons, AD has emerged as the predominant cause of dementia, accounting for 50–75% of 
cases, with its incidence doubling approximately every 5 years after the age of 656. The escalating prevalence of 
AD, coupled with its growing social and economic burden, has positioned it as a significant societal challenge, 
imperiling the health of both urban and rural residents in China7. A recent national cross-sectional study in 
China reported 15.07 million dementia patients aged 60 and above, among whom 9.83 million are afflicted with 
AD7. Given that most FDA-approved drugs exhibit optimal efficacy in the early or middle stages of AD, there is 
an imperative need to explore the risks associated with the early onset of this debilitating condition.

Modern high-throughput sequencing technologies have empowered the generation of vast datasets, 
providing a robust methodology for delving into the etiology of AD. Molecular genetic investigations have 
revealed key genes implicated in AD, including amyloid precursor protein (APP)8,9, presenilin 1 (PSEN1)9,10, and 
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presenilin 2 (PSEN2)9,11, identified as causative factors. Several risk factors influencing AD development have 
also been identified, encompassing elements such as smoking12, stress13, depression14, and insufficient sleep15. 
Furthermore, extensive family studies have pinpointed a robust risk gene—the E4 allele of Apolipoprotein E 
(ApoE), which significantly heightens the risk of AD across diverse populations16–18. Additionally, the triggering 
receptor expressed on myeloid cells 2 (TREM2) gene has emerged as another noteworthy contributor, elevating 
the risk ratio by 2.9% for the development of AD19,20.

The upregulation or downregulation of genes can instigate changes in metabolic, immune, and other 
physiological processes, contributing to the onset of diseases21,22. Therefore, the identification of differentially 
expressed genes (DEGs) is a crucial avenue for unraveling altered biological pathways in various diseases, 
including neurological disorders and cancers23. Given that the selective vulnerability of specific brain regions 
plays a pivotal role in neurodegenerative disorders, and AD is characterized by profound neuronal damage in 
the hippocampus situated in the medial temporal lobe24, exploring DEGs becomes particularly pertinent. While 
the occurrence of AD is known to increase with age, we contend that abnormal transcriptional alterations may 
also contribute to disease-related mechanisms25,26. In essence, it is imperative to investigate whether these DEGs 
in the hippocampus may exert an influence on the onset of AD.

Consistent with our previous research, the integration of uniform data from multiple studies has been shown 
to increase the statistical power of genetic analysis27. In this study, we performed a thorough search and retrieved 
three transcriptomic datasets of the hippocampus from the Gene Expression Omnibus. By leveraging integrated 
data from matched baselines between AD patients and controls, we conducted a meticulous analysis of DEGs 
to precisely investigate the pivotal role of gene transcription in the pathogenesis of AD. The objective of this 
investigation is to uncover novel risk genes associated with the pathogenesis of AD.

Materials and methods
Data source and processing
We conducted a thorough search on the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo) 
using the keywords “Alzheimer” and “hippocampus”. Subsequently, we identified three microarray datasets 
utilizing the GPL570 platform, namely GSE48350, GSE36980, and GSE5281 (Table S1). The raw “CEL” files for 
each dataset were procured from the GEO database and subjected to processing and normalization using the R 
package affy (version 1.68.0). Following this, the datasets were integrated to mitigate batch effects, employing 
the R package sva (version 3.38.0). The merged dataset encompassed 37 AD samples and 66 CTR samples. We 
have retrieved all the RNA sequencing data related to the hippocampus of AD patients from the GEO database. 
Although the sample size is limited, the sample we utilized is invaluable as it was derived from the hippocampus of 
actual patients. The hippocampus, a crucial region of the brain, is responsible for memory processing and spatial 
orientation. AD patients often exhibit hippocampal damage and functional decline. During the progression of 
AD, the hippocampus undergoes a range of pathological changes, including neuronal death, neurofibrillary 
tangles, and amyloid protein deposition. These alterations lead to hippocampal atrophy and loss of function, 
which subsequently impacts the patient’s memory and cognitive abilities. Hence, there is a close association 
between AD and the hippocampus.

The procedural details are visually represented in Figure S1, elucidating the workflow undertaken in our 
analysis.

Identification of DEGs and enrichment analysis
In our analysis, the representation of a gene’s expression value involves calculating the average value across 
corresponding probes when multiple probes are associated with the same gene. Conversely, when a probe 
corresponds to multiple genes, the expression values of those respective genes are uniformly represented by the 
expression value of the probe. DEGs between AD and CTR samples were identified using the R package limma 
(version 3.54.2). We applied stringent criteria, setting thresholds at an adjusted P value less than 0.05 and an 
absolute log2 fold change (log2FC) greater than 0.585. Subsequently, down-regulated and up-regulated DEGs 
were separately subjected to Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses28–30 using the R package clusterProfiler (version 4.6.2).

Similarly, DEGs between Braak stages (i.e., III_IV vs V_VI) were computed using the R package limma 
(version 3.54.2) and screened based on thresholds of a P value less than 0.05 and an absolute log2FC greater 
than 0.585.

Correlation analysis of DEGs
The Pearson’s correlations among pivotal DEGs were computed and visually presented using the R package 
Corrplot (version 0.92).

Protein–protein interaction (PPI) network analysis
The DEGs between AD and CTR samples were subjected to imputation using the STRING database ​(​​​h​t​t​p​s​:​/​/​s​t​r​
i​n​g​-​d​b​.​o​r​g​/​​​​​) to elucidate PPI with a combined score exceeding 0.7, indicative of high confidence. Subsequently, 
the PPI network was retrieved and visualized through Cytoscape software (version 3.6.1). In the resulting 
network, nodes represented genes, and their distinct colors delineated up-regulated or down-regulated genes. 
Edges symbolized interactions between genes, with their sizes reflecting the strength of these relationships.

Evaluation of immune cells infiltration
The transcriptome expression matrix, post-removal of batch effects, was utilized to assess immune cell infiltration 
using the web-based tool ImmuCellAI (http://bioinfo.life.hust.edu.cn/ImmuCellAI/#!/analysis). This analysis 
involved estimating the abundance of twenty-four immune cell types within the microenvironment of subjects’ 
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hippocampus. These twenty-four cell types were categorized into two layers: Layer 1, encompassing DC, B cell, 
Monocyte, Macrophage, NK, Neutrophil, CD4 T, CD8 T, NKT, Tgd and Layer 2, comprising CD4 naive, CD8 
naive, Tc, Tex, Tr1, nTreg, iTreg, Th1, Th2, Th17, Tfh, Tcm, Tem, MAIT.

Construction of classification model
The DEGs were individually utilized as features to construct classification models using the R package caret 
(version 6.0–94). In this context, three distinct machine learning methods were employed to develop predictive 
models, each exploring different tuning parameters. These methods comprised Random Forest (rf), Neural 
Network (nnet), and Support Vector Machines with Radial Basis Function Kernel (svmRadial). Details regarding 
these methods, including their associated R packages and tuning parameters, can be found in Table S2. For model 
training, 70% of the samples were randomly selected as the training set, with the remaining 30% constituting 
the test set. Receiver Operating Characteristic (ROC) curves were generated using the R package pROC (version 
1.18.0), and the Area Under Curves (AUC) was employed to assess the predictive performance of the classifiers.

Construction of prognostic model
The identified pivotal DEGs were employed as features in a multivariable Cox proportional hazards regression 
model, executed using the R package survival (version 3.5–3). Kaplan–Meier survival curves were then 
constructed with the R package survminer (version 0.4.9), and the significance of survival differences was 
assessed through log-rank tests. The risk score was computed as follows:

	
Riskscore =

8∑
i=1

Coefi × Featurei =

8∑
i=1

lnHRi × Featurei

where ‘i’ denotes the i-th feature, ‘Feature’ represents its expression value, and ‘Coef ’ stands for its coefficient in 
the fitted Cox model. The ‘Coef ’ corresponds to the natural logarithm of the hazard ratio (HR).

In our dataset, the median of the risk score was utilized to categorize samples into high- and low-risk groups. 
Subsequently, univariable Cox proportional hazards regression analysis was performed to ascertain the HR, 
along with its 95% confidence interval (CI) and associated P-value, comparing the high- and low-risk groups.

Results
Identification of differentially expressed genes in AD compared with CTR
As detailed in Table S1, three datasets involving the sequencing of hippocampal tissue were acquired from GEO. 
All samples were amalgamated after mitigating batch effects. To discern the differentially expressed genes in 
AD relative to CTR, we specifically opted for age- and sex-matched samples. This subset comprised 37 AD 
samples and 46 CTR samples. Notably, only those samples with an age exceeding 60 were retained for subsequent 
analyses (Table 1).

In this analysis, a total of 316 DEGs were discerned in AD compared with CTR, comprising 25 up-regulated 
and 291 down-regulated genes (Fig. 1A, Table S3). The prevalence of down-regulated DEGs suggests that the 
biological pathways associated with these genes may be suppressed, potentially linking them with the pathogenesis 
of AD. Subsequently, the up-regulated and down-regulated genes underwent KEGG enrichment analysis and 
GO enrichment analysis, respectively. Due to the limited number of up-regulated genes, no significant pathways 
were enriched. Delving into the biology pathways influenced by the down-regulated DEGs, KEGG enrichment 
analysis and GO enrichment analysis were conducted. As anticipated, the results revealed significant enrichment 
in pathways such as Alzheimer’s disease and Pathways of neurodegeneration—multiple diseases, aligning with 
prior studies31,32. GO enrichment analysis further highlighted biological processes (BP) related to AD, including 
vesicle-mediated transport in synapses, neurotransmitter transport, learning or memory, exocytosis, and 
axonogenesis (Fig. 1B, Table S4B). Concurrently, significantly enriched cellular components (CC) encompassed 
distal axon, neuronal cell body, and synaptic membrane, while molecular functions (MF) were associated with 
transmembrane transporter binding, channel regulator activity, and metal ion transmembrane transporter 
activity (Fig. 1B). These findings underscore the potential association of these down-regulated DEGs with the 
transmission and transport of synaptic signals, potentially contributing to the onset of disease in AD patients.

AD (n = 37) CTR (n = 66) P value

Number (age > 60) 37 46

Age ± sd (years) 83.51 ± 8.75 80.74 ± 9.06 0.1615#

Sex (Male/Female) 18/19 26/20 0.5132*

Braak stage AD (III_IV) AD (V_VI)

Number 7 11 /

Age ± sd (years) 86.57 ± 5.71 81.09 ± 9.79 0.1535#

Sex (Male/Female) 4/3 4/7 0.6305*

Table 1.  The characteristics of all subjects used in this study. # represents two-tailed Welch’s t-test. *stands for 
Fisher’s test.
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Furthermore, we highlighted the down-regulated DEGs involved in the top 10 BP (Fig.  1C), revealing 
numerous genes participating in multiple pathways. This observation may stem from the shared functionality 
of these signaling pathways, indirectly bolstering the credibility of the association between these DEGs and AD. 
For instance, SNCA has been identified as a key player in a multitude of BPs, encompassing vesicle-mediated 
transport in synapses, synaptic vesicle cycle, neurotransmitter transport, synapse organization, and regulation 
of membrane potential. Similarly, YWHAZ, TUBB, and GLRB were all implicated in synapse organization. 
Furthermore, we constructed a PPI network using all DEGs with a combined score exceeding 0.7 (Fig. 1D). This 
underlines the high-confidence interactions among these DEGs at the protein level.

Screening of Braak stage-related DEGs in AD
Furthermore, building upon the analysis of AD samples categorized by Braak stage (i.e., III_IV, V_VI), we delved 
deeper into the exploration of DEGs associated with the Braak stage (Table 1). In this context, we identified 
46 up-regulated genes and 98 down-regulated genes (Fig. 2A, Table S5). Subsequently, these genes underwent 
intersection analysis with the DEGs derived from AD and CTR samples. Intriguingly, we observed that 4 
DEGs consistently exhibited up-regulation, while 23 DEGs consistently displayed down-regulation (Fig. 2B). 
This suggests that these genes are not only implicated in the onset of AD but also play a role in the disease’s 
progressive development.

As depicted in Fig. 2C, the 27 consistent DEGs were visually presented. Notably, intriguing patterns of positive 
correlations among the down-regulated DEGs and negative correlations between the down-regulated DEGs 

Fig. 1.  Identification and analysis of DEGs between age-matched AD patients and controls. (A) Volcano plot 
shows the DEGs between AD samples and controls. (B) The significant GO BP, CC, and MF enriched by down-
regulated genes in AD. (C) Those down-regulated DEGs involved in the top 10 BP. (D) PPI network with high 
confidence constructed by all DEGs. Nodes in red and in blue represented by up-regulated and down-regulated 
genes, respectively. Edges stand for the interaction score between proteins.
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and the up-regulated DEGs were observed (Fig. 2D). This observation hints at a potential regulatory interplay 
wherein the four up-regulated DEGs may inhibit the expression of the down-regulated genes. This, in turn, could 
suppress the activity of certain pathways, contributing to the onset and progression of AD. Simultaneously, this 
intriguing correlation pattern suggests the potential of these 27 genes as biomarkers, indicating their candidacy 
for further exploration in the context of AD.

Evaluation and comparison of immune cells infiltration in hippocampus from AD subjects
The transcriptomic profiling derived from age- and sex-matched samples, comprising 37 AD samples and 
46 CTR samples, was employed to assess immune cell infiltration in the microenvironment of the subjects’ 
hippocampus tissue. Utilizing ImmuCellAI, twenty-four cell types were estimated and categorized into two 
layers: layer 1 (DC, B cell, monocyte, macrophage, NK, neutrophil, CD4 T, CD8 T, NKT, Tgd) and layer 2 
(CD4 naive, CD8 naive, Tc, Tex, Tr1, nTreg, iTreg, Th1, Th2, Th17, Tfh, Tcm, Tem, MAIT) (Fig. S2). Initially, 
the percentages of these twenty-four immune cells were individually compared between AD and CTR samples, 
revealing significant differences in six cell types (Fig. 3A). Specifically, neutrophil cells and cytotoxic T cells were 

Fig. 2.  Identification and analysis of DEGs between Braak stage of AD patients. (A) Volcano plot shows 
the DEGs between Braak stage of AD patients. (B) Venn diagram presents those overlapped DEGs. (C) The 
abundance of 27 overlapped DEGs (KTN1, TOB2, EGFR, ANKRD36B, EPB41L3, PTPN3, TAC1, SST, LAMP5, 
YWHAH, YWHAZ, SLC39A10, KIFAP3, GLRB, MDH1, SCG2, SYNPR, SCG5, SNCA, KCNQ5, PTPN5, CALY, 
PNMAL1,PITHD1, TUBB, UQCRC2, SGIP1). (D) Pearson’s correlation at the transcriptomic level among the 
27 overlapped DEGs.
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observed to be enriched in AD, while CD4 T cells, Th1, Th2, and follicular helper T cells (Tfh) were found to 
be depleted in AD. Moreover, when comparing these immune cells based on the Braak stage of AD patients, no 
significant associations were identified. This suggests that the variations in immune cells appear to be linked to 
the AD disease itself rather than being correlated with the Braak stage of AD patients.

Furthermore, we conducted an exploration of Pearson’s correlations between the twenty-four immune cells 
and the aforementioned twenty-seven DEGs. Notably, as illustrated in Fig. 3B, we observed positive correlations 
between the down-regulated genes and the depleted immune cells (i.e. Th1, Th2, central memory cell), while 
negative correlations were evident with the enriched immune cells (i.e. neutrophil). This intriguing finding 
suggests that the differential infiltration of immune cells in the microenvironment may be a consequence of the 
altered expression patterns of these specific genes.

Construction of classifiers and Survival analysis based on the key DEGs in AD
To assess their potential as discriminative features for AD, the 27 identified key DEGs were employed to 
construct classification models using three machine learning algorithms—random forest (rf), neural network 
(nnet), and support vector machines with radial basis function kernel (svmRadial). The AUC for each model 
was then individually evaluated. Simultaneously, we discovered that fourteen classifiers, each characterized by 
one of the genes (KTN1, YWHAZ, KIFAP3, PNMAL1, MDH1, PITHD1, SCG5, UQCRC2, YWHAH, SLC39A10, 
TUBB, SNCA, GLRB, and PTPN3), consistently achieved an AUC exceeding 0.7 across all three machine 

Fig. 3.  The proportion of immune cells in the subjects’ hippocampus evaluated by immuCellAI. (A) 
Comparison of several immune cells between AD patients and CTR. (B) Pearson’s correlation between the 24 
immune cells and the 27 overlapped DEGs.
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learning algorithms. This observation underscores the promising potential of these feature genes in effectively 
characterizing AD samples from controls (Fig. 4A).

Given that the hippocampal tissues used in this study were sampled within a few hours post-mortem, we 
proceeded to explore the potential of the identified key DEGs for survival analysis in AD. Specifically, we selected 
AD samples, utilizing the patients’ age as the survival time. Leveraging the fourteen feature genes mentioned 
earlier, we conducted a multivariable Cox proportional hazards regression analysis and employed a backward 
stepwise algorithm for model selection based on the Akaike Information Criterion (AIC). Subsequently, an 
exceptional prognostic model featuring nine genes, with a concordance index of 0.76 and a significance level 
less than 0.001, was identified (Fig. 4B). Notably, genes YWHAZ, PITHD1, SCG5, YWHAH, TUBB exhibited a 
Hazard Ratio (HR) less than 1, indicating that higher expression levels of these genes are associated with a lower 
risk of AD and a slower disease progression. Conversely, genes PNMAL1, SLC39A10, GLRB, PTPN3 presented 
a significant HR greater than 1, signifying that higher expression of these genes is linked to a greater risk of AD 
and a faster disease progression.

After calculating the risk score for each AD sample using the nine characteristic genes, we observed that 
the median risk score effectively stratified the AD samples into distinct high- and low-risk groups (Fig.  4C, 
HR = 2.72, 95% CI 1.94 ~ 3.81, P = 3.6e–10). Notably, the high-risk group exhibited a significantly poorer overall 
survival age.

Similarly, leveraging the six immune cells (i.e. Cytotoxic, Neutrophil, CD4_T, Tfh, Th1, Th2) that demonstrated 
significant differences in AD, we constructed a Cox prognostic model. Consistently, based on the median risk 
score, these AD samples were notably categorized into high- and low-risk groups with statistical significance 
(Fig. 4D, HR = 2.72, 95% CI 1.37 ~ 5.38, P = 0.0035).

Discussion
In this study, we conducted an integrative analysis of three datasets, employing bioinformatics methods to 
identify DEGs in the hippocampus between AD patients and controls (Figs. 1, 2). A predominant proportion 
of those DEGs exhibited down-regulation, and these down-regulated genes were notably enriched in processes 
related to the transmission and transport of synaptic signals, including neurotransmitter secretion and transport, 
synaptic vesicle cycle, and vesicle-mediated transport in synapses. Significantly, a multitude of studies has 
underscored the pivotal role of declined neurotransmission function and synaptic degeneration in the initiation 
and progression of cognitive decline33–35. Moreover, a recent scientific report in 2022 highlighted the interplay 
between extracellular endocytosis and autophagosome biogenesis at presynaptic sites, influencing activity-
dependent synaptic vesicular cycling36. Additionally, research has demonstrated that the loss of neural network 
connections contributes to synaptic loss34.

Here, a comprehensive analysis revealed a total of 27 DEGs (Fig.  2C,D), comprising 23 down-regulated 
and 4 up-regulated genes (Fig. 2B), identified not only in AD but also correlated with the Braak stage of AD 
patients (Fig. 2C). This implies a potential association of these genes with both the onset and progression of 
AD. Specifically, KTN1, YWHAZ, KIFAP3, PNMAL1, MDH1, PITHD1, SCG5, UQCRC2, YWHAH, SLC39A10, 
TUBB, SNCA, GLRB, and PTPN3 were individually employed to construct classifiers, achieving an Area Under 
the AUC exceeding 0.7 (Fig. 4A). This underscores their potential for characterizing AD samples effectively. 
Furthermore, a nine-gene-feature prognostic model was established, significantly stratifying AD patients 
(Fig.  4B). The risk score derived from these nine genes demonstrated a capacity to indicate the progression 
of AD. Notably, SNCA, recognized as a causative gene for Parkinson’s disease, has also been reported to be 
associated with AD37–39. SNCA is intricately involved in the binding process with Aβ peptides to facilitate their 
aggregation40, and modulating the activity of BACE1 to regulate APP processing37,41. Dysregulated level of SNCA 
has been linked to cognitive performance42, and the effect of SNCA protein on memory has been documented43. 
Moreover, SST and TAC1, were identified as hub genes through PPI analysis of DEGs in the hippocampus of 
AD patients44, adding another layer to the complexity of AD. Additionally, we observed that TUBB, GLRB, and 
YWHAZ were enriched in the synaptic organization pathway.

Several prior studies have highlighted the pivotal roles of YWHAZ45,46 and TUBB47,48 in the development 
of AD, with reduced protein expression of YWHAZ reported in the hippocampus of AD patients46. Previous 
studies also showed that EGFR is a potential dual molecular target for AD49. This strategy can treat AD through 
EGFR protein degradation50.TAC1 is identified as the hub gene and may be related to synaptic function and 
inflammation which was also identified as a key gene in the frontal cortex of AD51. And more abundant TAC1 
was showed in AD-resilient than AD-dementia brain52. Excessive SST-14 release accumulates near SST-positive 
interneurons(SST-INs) in the form of amyloids, which bind to Aβ to form toxic mixed oligomers. Conversely, 
chronic stimulation of postsynaptic SST2/4 on gulutamatergic neurons by hyperactive SST-INs promotes 
intense MAPK p38 activity, leading to somatodendritic p-tau staining and apoptosis/neurodegenerationn53. 
Loss of LAMP5 interneurons drives neuronal network dysfunction in Alzheimer’s disease54. Copper metabolism 
biomarkers SCG5 altered AD progression55. KCNQ5 was identified as attractive drug targets in neuropsychiatric 
diseases including AD56. PITHD1 exhibits a strong association with AD. PITHD1-/- mice exhibit olfactory 
bulb (OB) proteome changes related to synaptic transmission, cognition, and memory. OB PITHD1 expression 
increases with age in wild-type (WT) mice and decreases in Tg2576 AD mice at late stages57.

The infiltration of immune cells and the subsequent neuroinflammatory response within the brain 
parenchyma and adjacent structures are believed to play a pivotal role in the onset and progression of AD58. 
Recent discoveries, notably the association of immune receptor genes such as TREM2 and CD33 with AD, 
further underscore the significance of immune-related mechanisms59,60. Clinical analyses of pre-AD conditions, 
including Mild Cognitive Impairment (MCI), provide additional evidence of early and substantial involvement 
of inflammation in the disease pathogenesis61,62. Consequently, our analysis revealed distinct infiltration patterns 
of several immune cell types in the hippocampus of AD patients compared to controls, encompassing cytotoxic T 
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Fig. 4.  Classification model and Cox regression model constructed by the characteristic genes. (A) Fourteen 
classifiers featured by genes KTN1, YWHAZ, KIFAP3, PNMAL1, MDH1, PITHD1, SCG5, UQCRC2, YWHAH, 
SLC39A10, TUBB, SNCA, GLRB, and PTPN3, respectively. Three machine learning algorithms were used, 
including random forest(rf), neural network (nnet), and support vector machines with radial basis function 
kernel (svmRadial). (B) Forest plot of the Cox regression model constructed by nine feature genes. (C) 
Kaplan–Meier survival curve fitted by nine feature genes. (D) Kaplan–Meier survival curve fitted by six 
immune cells, including cytotoxic, neutrophil, CD4 T, Tfh, Th1, Th2.
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cells, neutrophils, CD4 T cells, Th1, Th2, and Tfh (Fig. 3A). Intriguingly, these immune cells exhibited significant 
correlations with the aforementioned DEGs, implying a potential essential role of these DEGs in immune 
infiltration (Fig. 3B). Notably, no differences were observed in these immune cells based on the Braak stage of 
AD patients. However, this finding warrants further validation in larger cohorts to solidify its significance.

In addition, there are two limitations in this study. The sample size used in this study was relatively small and 
all of them were downloaded from GEO. It is necessary to obtain samples from real world in a larger sample sizes 
and test our findings. At the same time, Lab-based experiments is also needed to design and verify the above 
results in the future.

Conclusion
We explored novel genes linked to the onset and progression of AD, anticipating that they may prove to be 
effective biomarkers for AD onset. The novel genes identified are linked to the Braak stage in AD patients and 
hold the potential to effectively characterize AD. They can also significantly stratify AD patients and indicate the 
progression of AD. Considering that the major drugs for AD exhibit optimal efficacy in the early or intermediate 
stages, these risk genes associated with early onset have significant implications for guiding clinical medication. 
This study offers a new perspective that could contribute to enhancing strategies for the prevention and treatment 
of AD.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request. All data generated or analysed during this study are included in this published article and its supple-
mentary information files.
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