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3D reconstruction from cryo-EM projection images
using two spherical embeddings
Yonggang Lu 1✉, Jiaxuan Liu 1, Li Zhu 2,3✉, Bianlan Zhang1 & Jing He4

Single-particle analysis (SPA) in cryo-electron microscopy has become a powerful tool for

determining and studying the macromolecular structure at an atomic level. However, since the

SPA problem is a non-convex optimization problem with enormous search space and there is

high level of noise in the input images, the existing methods may produce biased or even wrong

final models. In this work, to deal with the problem, consistent constraints from the input data

are explored in an embedding space, a 3D spherical surface. More specifically, the orientation of

a projection image is represented by two intersection points of the normal vector and the local

X-axis vector of the projection image on the unit spherical surface. To determine the orientations

of the projection images, the global consistency constraints of the relative orientations of all the

projection images are satisfied by two spherical embeddings which estimate the normal vectors

and the local X-axis vectors of the projection images respectively. Compared to the traditional

methods, the proposed method is shown to be able to rectify the initial computation errors and

produce a more accurate estimation of the projection angles, which results in a better final

model reconstruction from the noisy image data.
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Cryo-electron microscopy (Cryo-EM) has become an
increasingly powerful and popular technique for three-
dimensional (3D) structure determination of biological

macromolecules1,2. With recent revolutionary technological
advancements, single-particle analysis (SPA) in cryo-EM has been
used to successfully determine the structure of biological mac-
romolecules to near atomic resolution3–6. Cryo-EM was selected
by the journal Nature Methods as the Method of the Year 20152.
The advances in the cryo-EM technique were also recognized by
the 2017 Nobel Prize in Chemistry (https://www.nobelprize.org/
nobel_prizes/chemistry/laureates/2017).

In SPA, the 3D structure of a molecule is reconstructed from a
large number of its 2D projection images taken by a transmission
electron microscope (TEM). The most important and challenging
task in the 3D structure reconstruction is to determine the
orientation of individual 2D experimental projection images,
which are usually represented by projection angles7,8. Nevertheless,
due to the low signal-to-noise ratio (SNR) in cryo-EM, contrast
transfer function (CTF) of the microscope, and errors introduced
during particle picking, it is usually difficult to determine the
projection angles directly from the 2D projection images9. Thus,
most of the existing 3D reconstruction methods use expectation
maximization to iteratively refine the projection angle estimation
and the 3D model starting from an initial condition, such as
in EMAN10 and RELION11. Improvements of the methods include
using stochastic hill climbing12,13, stochastic gradient descent14,
and particle filtering with a posterior probability density
estimation15. Although in some cases these methods can converge
successfully from a random initialization, they may still converge
to local optimal solutions16,17.

The 3D reconstruction problem can be viewed as an optimi-
zation problem in which a 3D model is searched to agree with 2D
projection images overall. The major difficulty is that it is a non-
convex optimization problem with enormous search space, which
implies that the initialization may affect the optimization
greatly16. The impacts of the initialization on the 3D recon-
struction have been observed in many experiments. With low-
quality initial models, biased final models13,18 or even completely
wrong reconstructions, such as the Einstein from noise pitfall19

may be produced. The situation becomes worse when the 3D
model contains no symmetry. Consequently, there is still great
need for developing robust 3D reconstruction methods.

A plausible way towards this goal is to use priors as little as
possible while exploring more constraints from the input data.
One traditional solution is to estimate the orientation of the
projection image using angular reconstitution20, based on the
estimated common lines among the projection images according
to the central section theorem21. The methods based on angular
reconstitution can be used to estimate the projection angles
without using any prior information. However, these traditional
methods rely heavily on the common line detection between
projection images, while low-quality common lines are usually
estimated from the noisy input images, which can affect the
reconstruction result greatly13,19. Moreover, the estimated com-
mon lines are usually inconsistent among different image pairs,
which cannot be satisfied together during the 3D reconstruction.

In order to build more robust common line-based 3D recon-
struction methods, consistent information needs to be extracted
from the input of inconsistent common lines. Singer et al. have
proposed methods to enhance the accuracy of orientation
determination by using consistency constraints of all the common
lines22–24. In 2010, they have proposed a voting algorithm22

which uses an improved Bayesian approach based on voting to
identify consistent common line information and produces a
voting score which represents the reliability of each common line.
The voting method can be used to estimate the common lines of

the projection images, but cannot be used to directly estimate the
projection angles.

Later, they have proposed two methods for simultaneous
projection angle estimation considering all the common lines at
once. One is called the least unsquared deviations (LUD)
method23, which first defines a global self-consistency error of all
common lines and then a global orientation assignment is pro-
duced by minimizing a global self-consistency error via semi-
definite relaxation. The other is called the synchronization
method24 which uses common lines between all the triplets of
projection images to define spatial constraints. The global
orientation assignment is produced by maximizing the number of
the satisfied spatial constraints, which is solved by transferring it
into an eigenvalue problem of an appropriately constructed
matrix. Later, the second method is improved by first partitioning
the images into two consistent handedness groups followed by
handedness synchronization25. Both the LUD method and the
synchronization method estimate all the projection angles
simultaneously by maximally satisfying the constraints extracted
from all the common lines together, thus it can work with falsely
detected common lines under low SNR.

In this work, instead of using the consistency constraints of all
the common lines, the consistency constraints of the relative
orientations (relative projection angles) of all the projection
images are exploited. In our method, the orientation of a pro-
jection image is represented by its normal vector and its local
X-axis vector which are perpendicular to each other in the 3D
space as shown in Fig. 1. It can be seen from Fig. 1b that the
normal vector of a projection image can be determined by the
Euler angles α and β, and vice versa. So, the normal vector is
equivalent to the Euler angles α and β. When the normal vector is
given, the local X-axis vector can be used to determine the in-
plane rotation, which gives the Euler angle γ. As shown in Fig. 1b,
the normal vector and the local X-axis vector can be represented
by their intersection points on a 3D unit spherical surface,
respectively. This way, the orientation of a projection image can
be represented by two intersection points on the unit 3D spherical
surface. It can be seen that the 3D spherical surface is a natural
space for representing the orientation of the projection images.

To represent the relative orientation between two projection
images, the dihedral angle and the angle between the local X-axis
vectors of the two images can be used. The dihedral angle is the
angle between the normal vectors of the two images, which is also
equivalent to the distance between the two intersection points of
the two normal vectors on the unit spherical surface.

In the proposed method, the dihedral angles and the angles
between X-axis vectors are estimated using two spherical
embeddings separately. First, the dihedral angles between all the
pairs of projection images are estimated from the common lines
using the voting method22 introduced by Singer et al. in 2010.
The estimated dihedral angle between a pair of images is pro-
duced by considering not only the common line of the two
images, but also the common lines between an image in the pair
and all the other images, so it is more reliable than the common
line information. However, the estimated dihedral angles are still
not consistent between all the image pairs in the 3D space,
because they are estimated independently. Theoretically, in order
to satisfy the independently estimated dihedral angles simulta-
neously, the degree of freedom has to be conserved. If there are N
(>3) projection images, the independently estimated dihedral
angles (angle between normal vectors) should have the same
degree of freedom as the N normal vectors of the N images. Since
the degree of freedom of the N normal vectors equals N,
the independently estimated dihedral angles can be satisfied
simultaneously in an N-dimensional space, but not in a 3D space.
So, by reducing the dimensionality from N to 3 using a
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dimensionality reduction method, the consistent dihedral angles
in the 3D space can be obtained. The dimensionality reduction
used in our method is spherical embedding26 which is an unsu-
pervised machine learning method whose aim is to find a
representation of the data on a certain spherical surface such that
the distances (or dissimilarities) between the data points are
preserved as better as possible. Using the spherical embedding,
the intersection points of the normal vectors of the projection
images on the 3D unit spherical surface can be determined, which
gives the consistent dihedral angles in the 3D space. The con-
sistent angles between X-axis vectors of the projection images in
the 3D space can be produced similarly using another spherical
embedding. Finally, the results of the two spherical embeddings
are aligned together using an orthogonal constraint to produce
the final estimation of the orientations for the projection images.

The benefit of using the spherical embedding compared with
other methods for dealing with the inconsistency is that the
spherical embedding is a dimension reduction method whose
results will be determined mainly by the consistent information
on the 3D spherical surface which is the natural space for
representing the relative orientations, leading to a more accurate
and robust projection angle estimation.

Results
The proposed method (Spherical Embedding) is implemented in
Matlab and is compared with the LUD method23, the Synchro-
nization method with partitioning of handedness groups25,
EMAN 2.110, and RELION-211 on both simulated projection
images and two real projection images. These projection images
belong to 3D models with no symmetry.

Preparation of the simulated projection images. The simulated
projection images are generated from the EM density map of
Escherichia coli 70S ribosome-ArfA-RF2 complex (EMD-3508,
ref. 27) with a resolution of 3.1 Å (0.143 FSC). The real map is
rotated at random angles from uniform distribution on SO(3) to
produce n simulated projection images. Four sets of the clean
projection images are produced, setting with n= 100, 500, 1000,
and 2000, respectively. The box size of each image is 260 × 260
pixels, with a pixel size of 1.084 Å. To evaluate the performance of
the methods under different noise levels, Gaussian white noise,
setting with SNR= 0.1, 0.2, 0.3, 0.4, 0.5, and 1.0, respectively, is
applied to the n= 1000 image set to produce 6 sets of noisy
projection images, which is called ImageSet_A. To evaluate the

performance of the methods with different number of input
images under a certain noise level, Gaussian white noise with
SNR= 0.2 is added to the four sets of the clean projection images
(with n= 100, 500, 1000, and 2000) to produce 4 sets of noisy
projection images, which is called ImageSet_B. For the recon-
structions from the simulated projection images, ImageSet_A and
ImageSet_B, the real map EMD-3508 serves as the reference map.

Evaluation of the estimated projection angles for the simulated
data. The proposed method (Spherical Embedding) is compared
with the methods of LUD and Synchronization for the projection
angle estimation. The ImageSet_A dataset is used to evaluate the
estimated projection angles under different noise levels. For the
simulated projections, their actual projection angles are known,
which are called the reference angles.

First, the estimated dihedral angles between each pair of the
projection images are computed from the estimated projection
angles, while the actual dihedral angles are computed from the
reference angles. The estimated dihedral angles under different
noise levels are plotted versus the actual dihedral angles in Fig. 2.
The initial dihedral angles estimated by the voting method18 are
used as the input for the proposed method, and the results of the
voting method are also shown in the first column of Fig. 2 for
comparison. It demonstrates that with the SNR increasing, all
the estimations become more accurate. The proposed method
produces the most accurate estimation under all 6 different SNR
levels, rectifying the input dihedral angles obtained by the voting
method (which produces lots of large errors in the estimation
except for the case of SNR= 1.0). In addition, the methods of
LUD and synchronization generate more accurate dihedral angle
estimation than the voting method, but less accurate estimation
than the proposed method. When SNR= 0.1, the proposed
method produces dihedral angle estimation with the maximum
error= 24.5°, while the other methods all produce much larger
estimation errors (the maximum errors for the voting method,
the LUD method, and the synchronization method are 162.9°,
71.5°, and 57.4°, respectively). It is also noted that, when
SNR ≥ 0.2, the proposed method can produce very accurate
results with the maximum estimation error as low as 2.6°. It can
be seen that the spherical embedding in the proposed method is
very effective for producing accurate estimations of the dihedral
angles, which correspond to the Euler angles α and β.

To evaluate the estimated projection angles corresponding to
the Euler angles α, β, and γ, the estimated projection angles of all
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Fig. 1 The orientation of a projection image can be represented by its normal vector and its local X-axis vector which are perpendicular to each other.
a The projection image in its local coordinate system. b The projection image in the 3D reconstruction space, where the normal vector can be represented
by its intersection point N on the unit spherical surface, and the local X-axis vector can be represented by its intersection point A on the unit spherical
surface. The Euler angle β is the angle between the Z-axis and the normal vector, the Euler angle α is the angle between the X-axis and N′ vector which
is the projection of the normal vector on the X–Y plane, and the Euler angle γ is determined by the in-plane rotation of the local X-axis vector along the
normal vector.
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the images are aligned to the reference angles by a rotation
transformation around the center and an optional mirror
transformation, to minimize the sum of the differences between
the two sets of the projection angles. The root mean square error
(RMSE) of the Euler angles α, β, and γ between the aligned
estimated angles and the reference angles are listed in Table 1.
Since the dihedral angles produced by the voting method are not
consistent for all the images, they cannot be used to estimate the

projection angles directly. So only the results of the proposed
method, the LUD method and the synchronization method are
listed in Table 1. It can be seen that except SNR= 1.0, the
proposed method produces the lowest RMSEs in all three Euler
angle estimations. When SNR= 1.0, all the three methods can
produce very good estimation, while the synchronization method
produces the best one. When SNR is low, the performance gain of
using the proposed method becomes prominent. For example,

Fig. 2 Comparison of the estimated dihedral angles (vertical axis) and the actual dihedral angles (horizontal axis) for simulated images produced at
different SNR levels (0.1, 0.2, 0.3, 0.4, 0.5, 1.0), using the Voting method, LUD, Synchronization, and the proposed method (Spherical Embedding).
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when SNR is 0.2 or 0.1, the RMSE produced by the proposed
method is much lower than that produced by either LUD or
synchronization.

Evaluation of the 3D reconstruction under different noise
levels. In order to evaluate the performance of the initial model
reconstruction from images at different noise levels, 3D recon-
struction is produced from the images by different methods
without using 2D classification. After the projection angles are
estimated using the proposed method (Spherical Embedding),
LUD and Synchronization for ImageSet_A, the 3D reconstruction
results are produced using the FIRM method in the ASPIRE 0.14
(http://spr.math.princeton.edu) with the maximum iteration
number setting to 30. In addition, EMAN 2.1 and RELION-2 are
also used to reconstruct the initial models from the images in
ImageSet_A. Resolution is estimated by calculating the FSC
curve28 between the reconstructed 3D model and the original
EMD-3508 density map. Results from different methods are
shown in Fig. 3.

It can be seen from Fig. 3 that the FSC curves produced by the
proposed method (Spherical Embedding) are above the curves
produced by all the other methods when SNR is set to 0.1, 0.2, 0.3,
0.4, and 0.5. When SNR= 1, the FSC curves produced by the
proposed method, the LUD method and the Synchronization
method overlaps, while they are all above the curves produced
using EMAN 2.1 and RELION-2. The results demonstrate that
the proposed method generates the best reconstruction for the
1000 projection images at different SNR levels. Furthermore,
when the SNR level is as low as 0.2 or 0.1, the proposed method
can still produce obviously higher resolution models compared to
the other methods.

Evaluation of the 3D reconstruction using different number of
projection images. To evaluate the performance of the initial
model reconstruction from different number of images, similar
experiments are performed as in the above evaluation, except that
ImageSet_B is used instead of ImageSet_A. The SNR levels are all
0.2 for the images in ImageSet_B. The FSC curves between the
reconstructed 3D model and the original density map of different
methods are shown in Fig. 4a. It is noticed that better models can
usually be reconstructed from projection images with a larger
dataset, while the proposed method (Spherical Embedding) can
produce the best model within all the five methods as indicated by
the FSC curves. When the number of images is larger than 500,
the benefit of using the proposed method becomes prominent.

As a visual example for the reconstructions from the simulated
projection images, Fig. 4b through Fig. 4g show the reference map
(EMD-3508) and the reconstructions from the simulated data
(n= 1000, SNR= 0.2) which is a subset of the ImageSet_B data-
set. Spherical Embedding, Synchronization, and LUD produce

similar maps with the reference map. Among the three results, the
reconstruction by Spherical Embedding is more similar to the
reference map in details. Poor results are produced by
both EMAN 2.1 and RELION-2. The poor result of EMAN 2.1
may be caused by that the filtering algorithm in EMAN 2.1 is not
suitable for the simulated noise. And for RELION-2, the low
resolution is related to its initial model reconstruction process.

Evaluation of the 3D reconstructions for the EMPIAR-10028
dataset. The first real projection data, micrographs and particle
coordinates of the Plasmodium falciparum 80S ribosome dataset,
are downloaded from the EMPIAR database (EMPIAR-10028,
ref. 29). The corresponding EM density map EMD-2660 is also
downloaded, which is used as the reference map for resolution
estimation. The original sampling rate for the deposited dataset of
EMPIAR-10028 and EMD-2660 is 1.34 Å/pixel, which is binned
by 2 in the down-sampling process for our subsequent procedure,
resulting in a pixel size of 2.68 Å. CTFFIND430 is performed to
determine the CTF parameters for the entire dataset. Totally 136
out of 499 micrographs with defocus values lower than −2.2 μm
are selected for particle extraction, yielding a 11,983 particle set,
which is subjected to 2D classification by RELION. To obtain
enough 2D class averages as input projection images for calcu-
lating the initial model by different methods, class averaging
process in RELION is run 50 times, and class averages with good
quality and low similarity are manually selected, yielding 531
class averages, named ImageSet_C. The ImageSet_C dataset is
used as input to generate 3D initial models by Spherical
Embedding, Synchronization, LUD, EMAN 2.1, and RELION-2,
instead of using the original 11,983 particle images. For Spherical
Embedding, Synchronization and LUD, the class averages are
aligned by the center alignment algorithm from ASPIRE 0.14
toolkit. While for EMAN 2.1 and RELION-2, they have their own
center alignment algorithm in the initial model reconstruction
process.

Resolutions are estimated by calculating FSC curves between
the reconstructed density maps and the reference map of EMD-
2660 binned to 2.68 Å/pixel. The FSC curves are shown in Fig. 5a
and Fig. 5b. It can be seen from Fig. 5a that the FSC curves
produced by Spherical Embedding, Synchronization, and LUD
are very similar to each other, while they are all much better than
the curves produced by EMAN 2.1 and RELION-2. From Fig. 5b
which shows the details within the dashed red rectangle in Fig. 5a,
it can be seen that the resolution of the map produced by the
Spherical Embedding is slightly better than both Synchronization
and LUD. The performance gain of the proposed method on this
dataset is not as remarkable as on ImageSet_A and ImageSet_B,
which may be caused by the high SNR and the small number of
the class averages in ImageSet_C.

Figure 5c through Fig. 5h show the reference map (EMD-2660)
and the reconstructions by the five methods. Spherical Embedding,

Table 1 Comparison of the RMSEs (in degrees) of the estimated Euler angles produced at different SNR levels by LUD,
Synchronization, and the proposed method (Spherical Embedding).

SNR LUD Synchronization Spherical Embedding

α β γ α β γ α β γ

0.1 10.10 23.48 21.59 10.56 13.90 15.29 2.60 4.81 6.02
0.2 3.27 8.34 7.64 4.30 4.72 5.32 0.41 0.68 0.70
0.3 2.14 3.51 2.92 2.05 2.05 2.25 0.26 0.53 0.50
0.4 1.75 2.54 2.04 1.00 1.02 1.09 0.23 0.54 0.51
0.5 1.60 2.07 1.60 0.54 0.64 0.67 0.22 0.52 0.49
1.0 0.47 0.77 0.65 0.20 0.48 0.47 0.22 0.52 0.50

The bold value represent the best result for each Euler angle estimation at a specific SNR level.
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Synchronization, LUD all produced very similar maps with the
reference map, not only fitting the overall shape but also
representing some structural details. EMAN 2.1 produced a map
with a roughly similar outline comparing with the reference map,
while the map generated by RELION-2 lost much information as
comparing with others especially at the 40S part. These results are
consistent with the FSC curves shown in Fig. 5a.

The reason why EMAN 2.1 and RELION-2 do not perform
well may be that only the 531 class averages are used in the
reconstruction, without using any information from the original
11,983 images. The strategy is just set for a fair comparison, and
not for exploring the full extent of the methods’ capabilities.

Evaluation of the 3D reconstructions for the EMPIAR-10328
dataset. The second real projection data, particles of the
Hedgehog receptor Patched (PTCH1) in complex with a con-
formation selective nanobody TI23, are downloaded from the
EMPIAR database (EMPIAR-10328, ref. 31). The corresponding
EM density map EMD-22689 is downloaded as the reference map

for resolution estimation. The sampling rate for the dataset of
EMPIAR-10328 is 1.059 Å/pixel. RELION-2 is used to produce
2D class averages from the original 307,652 particle images using
the CTF parameters contained in the original star file. After 2D
classifications are performed 5 times, manually selected 390 class
averages with good quality and low similarity are produced,
which is named ImageSet_D.

The ImageSet_D dataset is used as input to generate 3D
initial models by Spherical Embedding, Synchronization, LUD,
EMAN 2.1, and RELION-2, instead of using the original
307,652 particle images. For Spherical Embedding, Synchroni-
zation, and LUD, the same center alignment algorithm used for
ImageSet_C is applied. For both EMAN 2.1 and RELION-2, the
number of initial models is set to 1 for a fair comparison with
the other three methods.

Resolutions are estimated by calculating FSC curves between the
reconstructed density maps and the reference map EMD-22689.
The FSC curves are shown in Fig. 6a, b. It is found that the FSC
curves produced by Spherical Embedding, Synchronization, and
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Fig. 3 Comparison of the FSC curves produced at different SNR levels (0.1, 0.2, 0.3, 0.4, 0.5, and 1.0), by the proposed method (Spherical Embedding),
Synchronization, LUD, EMAN 2.1, and RELION-2.
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Fig. 4 Comparison of the FSC curves produced from different number of projection images (n= 100, n= 500, n= 1000, and n= 2000), and the
comparison of the reconstructions by different methods for the simulated data (n= 1000, SNR= 0.2). a The FSC curves produced from different
number of projection images (n= 100, n= 500, n= 1000, and n= 2000) by the proposed method (Spherical Embedding), Synchronization, LUD, EMAN
2.1, and RELION-2. b The reference density map (EMD-3508). Others are the reconstructed maps by: c the proposed method (Spherical Embedding),
d Synchronization, e LUD, f EMAN 2.1, and g RELION-2.
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LUD are similar to each other, and they are all better than the
curves produced by EMAN 2.1 and RELION-2 at FSC= 0.143.
But in the low-frequency region, RELION-2 performs better than
the other methods. From Fig. 6b which shows the details within the
dashed red rectangle in Fig. 6a, it can be seen that the resolution of
the map produced by Spherical Embedding is slightly better than
both Synchronization and LUD. Similar to the ImageSet_C dataset,
the performance gain by the Spherical Embedding method on this
dataset is not as remarkable as on ImageSet_A and ImageSet_B,
which may also be caused by the high SNR and the small number of
the class averages in the ImageSet_D dataset.

Figure 6c through Fig. 6h show the reference map (EMD-22689)
and the reconstructions by the five methods. The reconstructions of
Spherical Embedding and Synchronization are similar. Compared

with Spherical Embedding and Synchronization, the reconstruction
of LUD has less information in detail. Although the reconstructions
of EMAN 2.1 and RELION-2 are similar with the reference map in
the outline, much detailed information is lost compared to the other
three methods. Similar to ImageSet_C, the reason why EMAN 2.1
and RELION-2 do not perform well on this real dataset may be that
only the 390 class averages are used as input in the reconstruction,
but not the original 307,652 images.

Discussion
In this work, a new 3D initial model reconstruction method is
proposed for SPA. Two spherical embeddings are used to deter-
mine the normal direction and the in-plane rotation of a pro-
jection image, respectively, which produces the projection angle

Reference map Spherical Embedding Synchronization

f

LUD EMAN RELION

60S

40S

c d e

g h

a b

Fig. 5 Evaluation using the FSC curves and the reconstructions for the EMPIAR-10028 dataset. a Comparison of the FSC curves produced by the
proposed method (Spherical Embedding), Synchronization, LUD, EMAN 2.1, and RELION-2. b The zoom-in of the red dashed rectangle region in (a), which
shows the details of the FSC curves around the spatial frequency of 0.04 1/Å. c The reference density map (EMD-2660). Others are the reconstructed
maps from the class averages by: d the proposed method (Spherical Embedding), e Synchronization, f LUD, g EMAN 2.1, and h RELION-2.
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estimation by satisfying global consistency constraints derived
from all the projection images. The proposed method can pro-
duce favorable results compared to other popular 3D recon-
struction methods on both simulated datasets and two real
datasets. The results show that the spherical embedding can be
used to improve the initial model reconstruction for SPA. Since
the result of the spherical embedding is directly related to the
orientation of the projection image, the proposed method has the
advantage of exploring the global consistency constraints directly
and efficiently on the 3D spherical surface, which may contribute
to its success of producing more accurate projection angle esti-
mations than the other methods.

Although the proposed method can improve the 3D recon-
struction result significantly when the number of the projection
images is larger than 500 and the SNR level is as low as 0.2 or 0.1,
it can only produce similar results with Synchronization and LUD
in some other situations, such as smaller dataset or higher SNR
levels. When applied to the real dataset, the performance gain of

the proposed method is not as remarkable as well compared to
the other methods. Thus, it will be marked as the main goal of
our future work to further improve the performance of the 3D
reconstruction method for the real dataset.

Methods
In the proposed method, the orientation of a projection image is represented by its
normal vector and its local X-axis vector, which is equivalent to the representation
by Euler angles α, β, and γ defined by van Heel et al.20, as shown in Fig. 1. The
Euler angles α and β can be determined by the normal vector alone, while the
rotation of the local X-axis vector along the normal vector gives the Euler angle γ.
So, after the determination of the normal vector and local X-axis vector for each
projection image, the orientation represented as Euler angles can be easily derived.
In the paper, Euler angles α and β defined here are also used to represent the
position of a point on the unit spherical surface.

The main procedure of the proposed spherical embedding method is shown in
Fig. 7. The method includes mainly 6 steps: (1) common line detection; (2) dihedral
angle estimation; (3) the first 3D spherical embedding; (4) estimating angles
between local X-axis vectors; (5) the second 3D spherical embedding; (6) alignment
of the normal vectors and the local X-axis vectors.

Reference map Spherical Embedding Synchronization

f

LUD EMAN RELION

c d e

g h

a b

Fig. 6 Evaluation using the FSC curves and the reconstructions for the EMPIAR-10328 dataset. a Comparison of the FSC curves produced by the
proposed method (Spherical Embedding), Synchronization, LUD, EMAN 2.1, and RELION-2 on the EMPIAR-10328 dataset. b The zoom-in of the red dashed
rectangle region in (a), which shows the details of the FSC curves around the spatial frequency of 0.09 1/Å. c The reference map (EMD-22689). Others are
the reconstructed maps from the class averages by: d the proposed method (Spherical Embedding), e Synchronization, f LUD, g EMAN 2.1, and h RELION-
2. The density around the transmembrane region in the lower part of the initial models of the PTCH1::T123 complex belongs to the detergent micelle.
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In ideal cases, based on the Central Section Theorem21, the 2D Fourier trans-
form of a projection image is the same as the slice perpendicular to the projection
angle in the 3D Fourier transform of the 3D protein model. So, two projection
images with different orientations will intersect at a common line in the Fourier
space. In step (1), the common line between two projection images can be detected
using normalized cross correlation20.

Using the common line information, the dihedral angles between all pairs of
images can be estimated by the voting method introduced by Singer et al.22. For a
pair of images i and j, using a different third image k usually gives a different
dihedral angle θij(k) between the image pair due to the errors introduced in
the common line estimation. The voting method will consider the dihedral angles
computed using all the other images k ≠ i, j, and select the most popular angle
estimation by creating a histogram of the computed dihedral angles θij(k):

histijðtÞ ¼ ∑
k≠i;j

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e�ðσt�θij
ðkÞ Þ2=ð2σ2Þ; σ ¼ π=T; t 2 ½0; :::;T � 1� ð1Þ

The final estimation of the dihedral angle θij corresponds to the maximum
height of the histogram, hij, which indicates the reliability of the estimation:

tmax ¼ arg max
t2½0;:::;T�1�

fhistijðtÞg ð2Þ

hij ¼ histijðtmaxÞ ð3Þ

θij ¼ tmaxσ ð4Þ
Using the voting method, the dihedral angles between all pairs of images in step

(2) can be estimated, which is more reliable compared to the original common line
information.

For any pair of projection images, the dihedral angle between them in the 3D
reconstruction space equals to the angle between their normal vectors. After the
dihedral angles between all pairs of images are determined, they are used as the
initial values for the angles between the corresponding normal vectors. If the
normal vectors are at unit length, the angles between them can be treated as the
distances between the intersection points of the normal vectors on a unit spherical
surface as shown in Fig. 8a.

In the ideal case, all the dihedral angles are consistent to each other. According
to the Central Section Theorem, all the projection images in the Fourier space pass
through the same center point, so their normal vectors should pass through the
same center point too, and all the intersection points of the normal vectors can be
embedded on the same 3D unit spherical surface together.

But in reality, these estimated dihedral angles are usually not consistent to
each other due to the errors introduced during the early computation. Suppose
that the distances between the intersection points of the normal vectors on the
unit spherical surface all satisfy the triangular inequality, these intersection
points can be treated as the objects embedded in a metric space. For 3 inter-
section points, they can be embedded on a 3-dimensional spherical surface
together while preserving the distance values. For n (>3) intersection points, to
preserve all the distances between intersection points, they can be embedded on
a n-dimensional spherical surface, but they usually cannot be embedded on a
3-dimensional spherical surface if there are inconsistencies caused by errors in
the earlier computations. To produce an embedding of all the n intersection
points on a 3-dimensional spherical surface as shown in Fig. 8b, some initial
distances between the intersection points have to be modified, which can be
realized by the spherical embedding method26.

After the spherical embedding, a consistent solution to the normal directions of
all the projection images is found. The spherical embedding not only can satisfy the
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Fig. 7 The flowchart of the proposed method. The ovals represent processing methods, and the rounded rectangles represent data.

Fig. 8 Illustration of the normal vectors and their intersection points on a unit spherical surface. a The angle between the normal vectors of two images
equals to their dihedral angle in the 3D reconstruction space. Ni and Nj are the intersection points of the normal vectors of image i and image j, respectively,
on the unit spherical surface. The distance between Ni and Nj on the unit spherical surface equals to the dihedral angle θij. b The spherical embedding of
1000 intersection points of the normal vectors on a unit spherical surface.
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consistency constraints of all the dihedral angles, but also can rectify the errors
introduced in the earlier steps of the projection angle estimation by modifying the
initial distances between the intersection points. This is the key observation which
leads to the design of the proposed method.

In the step (3) of the proposed method, the 3D spherical embedding method
proposed by Wilson et al.27 is used to estimate the intersection points of the
normal vectors, using the dihedral angles θij computed in step (2) as initial
distance values. The goal of the 3D spherical embedding is to find an embedding
of the intersection points with Euler angles (αi, βi), i= (1, 2, …, n), on the 3D
unit spherical surface, such that the distortion of the distances, ε, defined as
follows is minimized:

ε ¼ ∑
i≠j
ωijðθij � θEijÞ

2
ð5Þ

where θEij ¼ arc cosðcos βi cos βj þ sin βi sin βj cosðαi � αjÞÞ is the dihedral
angles after spherical embedding, and ωij is the weight which is determined by
the maximum height of the histogram computed in the voting method in step (2)
in the proposed method:

ωij ¼
�
hij if hij >H

0 otherwise
ð6Þ

where H is the 10th percentile value from the set {hij | i= 1, 2, …, n; j= 1, 2, …, n}.
Since there may be two mirror rotations that both satisfy the distance con-

straints, to select the correct one, the common line between a good pair of pro-
jection images which have the highest hij score produced by the voting method can
be used. The correct rotation will rotate the common lines on both projection
images to a similar direction in the 3D space.

Until now, the embedding results give the two Euler angles (αi, βi), i= (1, 2, …, n),
which determine the normal vectors of all the projection images. The rest steps of the
method is used to find another Euler angle γi, i= (1, 2, …, n).

To estimate the initial value of the angles between local X-axis vectors in step (4),
the common line information as well as the dihedral angles after the spherical
embedding are used. As shown in Fig. 9, for any two images i and j, a coordinate
system can be setup such that image i is on the XY plane, and the common line
between the two images is along the X-axis. If Cij represents the angle between the
common line and the local X-axis vector of the image i, Cji represents the angle
between the common line and the local X-axis vector of the image j, θEij is the
dihedral angles between the two images after the first spherical embedding, Ai is the
intersection point of the local X-axis vector of image i on the unit spherical surface,
and Aj is the intersection point of the local X-axis vector of image j on the unit
spherical surface, it can be seen that the coordinate of Ai is ðcosCij; sinCij; 0Þ, the
coordinate of Aj is ðcosCji; sinCji cos θ

E
ij ; sinCji sin θ

E
ijÞ, and the angle between the

two local X-axis vectors is:

φij ¼ arc cosðcosCij cosCji þ sinCij sinCji cos θ
E
ijÞ ð7Þ

Similarly, in step (5), the 3D spherical embedding of the intersection points of
the local X-axis vectors on the unit spherical surface is carried out using the
method proposed by Wilson et al.26, where the angles φij computed in step (4) are
used as initial values and ωij as the weights. The resulting embedding with Euler
angles ðα0i; β0iÞ, i= (1, 2, …, n), minimizes the error:

ε00 ¼ ∑
i≠j
ωijðφij � φE

ijÞ
2 ð8Þ

where φE
ij ¼ arc cosðcos β0i cos β0j þ sin β0i sin β

0
j cosðα0i � α0jÞÞ.

Finally, in step (6), the two spherical embedding results are aligned using an
orthogonal constraint that the local X-axis vector should be perpendicular to the

normal vector for each image. This is done by finding a rotation matrix R:

R ¼
R11 R12 R13

R21 R22 R23

R31 R32 R33

2
64

3
75 ð9Þ

which minimizes the following error that is the summation of all the dot products
of the local X-axis vectors and the corresponding normal vectors:

ε00 ¼ ∑
n

i¼1

sin β00i cos α
00
i

sin β00i sin α
00
i

cos β00i

2
64

3
75
T

�
sin βi cos αi
sin βi sin αi

cos βi

2
64

3
75

¼ ∑
n

i¼1
½cos βi cos β00i þ sin βi sin β

00
i cosðαi � α00i Þ�

ð10Þ

where
sin β00i cos α00i
sin β00i sin α00i

cos β00i

2
4

3
5 ¼

R11 R12 R13
R21 R22 R23
R31 R32 R33

2
4

3
5 �

sin β0i cos α
0
i

sin β0i sin α
0
i

cos β0i

2
4

3
5

Because there are 9 unknown variables in the rotation matrix R and the image
number n is usually much larger than 9, the problem can be transformed into an
overdetermined homogenous linear system:

sin β00i cos α
00
i

sin β00i sin α
00
i

cos β00i

2
64

3
75
T

�
sin βi cos αi
sin βi sin αi

cos βi

2
64

3
75

¼
sin β0i cos α

0
i

sin β0i sin α
0
i

cos β0i

2
64

3
75
T

�
R11 R12 R13

R21 R22 R23

R31 R32 R33

2
64

3
75
T

�
sin βi cos αi
sin βi sin αi

cos βi

2
64

3
75 ¼

0

0

0

2
64

3
75

ð11Þ

where i= 1, 2, …, n, and Rkl (1 ≤ k ≤ 3, 1 ≤ l≤ 3) are the 9 unknown variables.
In the proposed method, the least square method is used to solve the over-

determined system. For Ax= 0, where x represents Rkl (1 ≤ k ≤ 3, 1 ≤ l ≤ 3), the
approximate solution of the system is the eigenvector corresponding to the smallest
eigenvalue of the matrix ATA.

After the rotation R is found, the Euler angles ðα00i ; β00i Þ, i= (1, 2, …, n) which
represent positions of the aligned X-axes can be obtained. Then the Euler angle γi,
i= (1, 2, …, n), can be determined using the following equation:

cos γi
sin γi
δi

2
64

3
75 ¼

cos βi 0 � sin βi
0 1 0

sin βi 0 cos βi

2
64

3
75 �

cos αi sin αi 0

� sin αi cos αi 0

0 0 1

2
64

3
75 �

sin β00i cos α00i
sin β00i sin α00i

cos β00i

2
64

3
75
ð12Þ

In the ideal case, δi in the above equation is zero. So, the value of ∑n
i¼1 δ

2
i =n can

be used as an indication of the consistency of the two spherical embeddings, with a
smaller value indicates a better result.

After the projection angles are estimated, the FIRM method included in the
package ASPIRE 0.14 (http://spr.math.princeton.edu) can be used to produce the
final 3D reconstruction result.

Statistics and reproducibility. The experiments were repeated several times, and
yielding similar results. When generating the simulated datasets, Gaussian noises
with different random seeds were used in the experiments. Researchers were
blinded to the expected results. Different researchers were responsible for data
preparation, coding, result collection, and data analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the data needed for repeating the experiments described in the paper are available at
https://github.com/yluATlzu/3DReconstruction_SE. We have used the following publicly
available datasets: EMD-3508 (cryo-EM structure of Escherichia coli 70S ribosome-ArfA-
RF2 complex, https://www.emdataresource.org/EMD-3508), EMD-2660 (cryo-EM
structure of the Plasmodium falciparum 80S ribosome, https://www.emdataresource.org/
EMD-2660), EMPIAR-10028 (micrographs and particle coordinates of a Plasmodium
falciparum 80S ribosome, https://www.ebi.ac.uk/empiar/EMPIAR-10028/), and
EMPIAR-10328 (micrographs and particle coordinates of PTCH1-TI23 complex, https://
www.ebi.ac.uk/empiar/EMPIAR-10328/).

Code availability
The code used in the paper for 3D reconstruction using spherical embedding is available
at https://github.com/yluATlzu/3DReconstruction_SE. Before running the 3D
reconstruction code, ASPIRE 0.14, which is available at http://spr.math.princeton.edu,
needs to be installed first.
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Fig. 9 Computation of the angle between the local X-axis vectors of
image i and image j. Image i is on the XY plane. The common line between
image i and image j is along X-axis.
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