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Abstract
Purpose In primary brain tumors, the efficacy of immune-modulating therapies is still under investigation as inflammatory 
responses are restricted by tight immunoregulatory mechanisms in the central nervous system. Here, we measured soluble 
PD-L1 (sPD-L1) in the plasma of patients with recurrent glioblastoma (GBM) and recurrent WHO grade II–III glioma treated 
with bevacizumab-based salvage therapy.
Methods Thirty patients with recurrent GBM and 10 patients with recurrent WHO grade II–III glioma were treated with 
bevacizumab-based salvage therapy at the Medical University of Vienna. Prior to each treatment cycle, EDTA plasma was 
drawn and sPD-L1 was measured applying a sandwich ELISA with a lower detection limit of 0.050 ng/ml. Leukocyte counts 
and C-reactive protein (CRP) levels were measured according to institutional practice.
Results Median number of sPD-L1 measurements was 6 per patient (range: 2–24). At baseline, no significant difference 
in sPD-L1 concentrations was observed between WHO grade II–III glioma and GBM. Intra-patient variability of sPD-L1 
concentrations was significantly higher in WHO grade II–III glioma than in GBM (p = 0.014) and tendentially higher in 
IDH-mutant than in IDH-wildtype glioma (p = 0.149) In WHO grade II–III glioma, sPD-L1 levels were significantly lower 
after one administration of bevacizumab than at baseline (median: 0.039 ng/ml vs. 0.4855 ng/ml, p = 0.036). In contrast, no 
significant change could be observed in patients with GBM.
Conclusions Changes in systemic inflammation markers including sPD-L1 are observable in patients with recurrent glioma 
under bevacizumab-based treatment and differ between WHO grade II–III glioma and GBM.
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Introduction

Despite optimal surgical and adjuvant treatment, diffuse glio-
mas have a recurrence rate of up to 90% due to their infiltrative 
growth pattern [2]. However, the range of available treatment 
options at recurrence is very limited, underlining the urgent need 
for new therapeutic approaches. While immune-modulating 
therapies have revolutionized oncology, a clinically relevant 
efficacy in primary brain tumors such as glioma has not been 
observed so far. The CheckMate-143 trial comparing nivolumab 
with bevacizumab in recurrent glioma was unable to show a 
superiority of immune checkpoint inhibition [3]. However, a 
small subset of patients (objective response rate 7.8%) showed 
durable responses, underscoring the need for a more profound 
understanding of inflammatory subgroups in glioma potentially 
profiting  from immune-modulating therapies [4].

Soluble programmed death receptor ligand 1 (sPD-L1) has 
been shown to correlate with prognosis and the response toward 
immune-modulating agents in a wide array of solid tumors [5–9]. 
Most probably, sPD-L1 is generated by proteolytic cleavage of 
membrane-bound PD-L1 on both tumor and immune cells. Cleav-
age may be generated by metalloproteinases such as ADAM10 
or ADAM17 [10] whose expression has been described to cor-
relate with poor prognosis in glioma [11]. Previously, we showed 
that sPD-L1 levels and detectability differ in different brain tumor 
entities and observed a correlation with survival in lower-grade 
glioma (LGG) and glioblastoma (GBM) [12]. Specifically, patients 
with GBM had longer overall survival (OS) in the presence of 
sPD-1 as compared to their counterparts (median OS 20.9 vs. 8.4 
months, p = 0.006). In contrast, patients with LGG presented with 
worse OS when sPD-L1 could be detected (median OS 38.9 vs. 
89.6 months, p = 0.028). These results suggest that the immune 
phenotype of LGG and GBM might differ, probably due to the 
immunosuppressive role of the metabolite 2-hydroxyglutarate 
(2-HG) in isocitrate dehydrogenase (IDH)-mutated tumors [13, 
14]. Bevacizumab treatment is frequently used as a salvage treat-
ment in patients with symptomatic glioma progression in need for 
steroid treatment [15]. Importantly, vascular endothelial growth 
factor signaling was previously shown to impact the efficacy of 
immune-modulating therapies in extracranial malignancies [16, 
17]. Therefore, we aimed in the present study to investigate the 
longitudinal sPD-L1 concentrations as a systemic inflammatory 
marker in patients with recurrent LGG and GBM treated with 
bevacizumab-based therapy.

Materials and methods

Patient cohort

Patients ≥ 18 years with a recurrence of a histologically 
confirmed WHO grade II–IV glioma (as determined at the 

time of first surgery) planned for bevacizumab-based sal-
vage treatment with bevacizumab (either 400 mg or 10 mg/
kg body weight) every 2 weeks were included in this study. 
Blood samples were drawn before starting systemic bevaci-
zumab-based salvage treatment and prior to each treatment 
cycle. Other inflammatory markers such as leukocyte counts 
and C-reactive protein (CRP) levels were concurrently 
measured at the Department of Laboratory Medicine of 
the Medical University of Vienna according to institutional 
practice. All patients were followed up until death. Patient 
data were stored in a password-secured database (FileMaker 
Pro Advanced/Server® 17, FileMaker Inc., Santa Clara, 
CA, USA) and were handled anonymously. The study was 
conducted according to the Declaration of Helsinki and its 
amendments as well as to local and institutional guidelines. 
The study was approved by the ethics committee of the Med-
ical University of Vienna (approval no. 1315/2015).

Immunohistochemistry

Anti-IDH1 R132H antibody (clone H09, Dianova GmbH, 
Hamburg, Germany) was used on a Ventana Benchmark 
Ultra immunostaining platform for evaluation of IDH 
mutation status [18]. Samples with specific staining in the 
tumoral region were classified as IDH-mutant (IDH-mt), 
while negative samples were classified as IDH-wildtype 
(IDH-wt).

sPD‑L1 ELISA

sPD-L1 levels were measured using a sandwich enzyme-
linked immunosorbent assay (ELISA) as described previ-
ously [12]. Based on the standard dilution curve, a lower 
limit of sPD-L1 detection of 0.05 ng/ml was measured.

Statistical analysis

The coefficients of variation (CV) were calculated to 
describe the variation of sPD-L1 concentrations within 
patients over time. Continuous variables were compared 
between groups by the Mann–Whitney U and Wilcoxon 
signed-rank test for unpaired and paired values, respec-
tively. Overall survival (OS) was defined as the time 
between blood draw for sPD-L1 measurement and all-
cause death and was compared applying the log-rank test. 
Results were considered significant at a p value of ≤ 0.05. 
As the study was aimed at the generation of hypotheses, 
no adjustment for multiple testing was performed [19].

Statistical analysis was performed using R 3.6.1 (The 
R Foundation for Statistical Computing, Vienna, Austria) 
with RStudio 1.2.1335 (RStudio Inc., Boston, MA, USA) 
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and the packages “haven” (version 2.1.1), “ggplot2” (ver-
sion 3.2.0), “gridExtra” (version 2.3), “GGally” (version 
1.4.0), “labelled” (version 2.2.1), “scales” (version 1.0.0), 
and “survival” (version 2.44–1.1).

Results

Patients’ characteristics

Thirty patients with recurrent GBM and 10 patients with 
recurrent WHO grade II–III glioma were included in this 
study. The baseline characteristics of our cohort are listed 
in Table 1. Of note, IDH mutational status was available 
in 35/40 (87.5%) patients with 29/35 (82.9%) patients with 
IDH-wt and 6/35 (17.1%) with IDH-mt glioma. Baseline 

characteristics according to the presence/absence of IDH 
mutations are shown in Supplementary Table 1.

sPD‑L1 concentrations

In patients with GBM, the median number of sPD-L1 
measurements per patient was 6 (range: 2–16), while in 
median 5 measurements (range: 2–24) were available in 
patients with WHO grade II–III glioma. Figure 1 shows a 
timeline which illustrates survival and the available meas-
urements from the time of treatment initiation.

At baseline, sPD-L1 could be detected in 19/30 (63.3%) 
patients with GBM, whereas sPD-L1 could be found in the 
plasma of 8/10 (80.0%) patients with WHO grade II–III 
glioma (p = 0.451, Fisher’s exact test). The median sPD-
L1 concentration in sPD-L1-positive samples at baseline 
was 0.321 ng/ml (range: 0.080–42.110 ng/ml) in patients 

Table 1  Baseline characteristics

Glioblastoma (n = 30) Lower-grade glioma (n = 10)

Gender
Male 24 (80.0%) 8 (80.0%)
Female 6 (20.0%) 2 (20.0%)
Age at first diagnosis (years)
Median (range) 52 (20–75) 47.5 (27–56)
IDH mutation
IDH-wt 24/30 (73.3%) 5/10 (50.0%)
IDH-mt 1/30 (3.3%) 5/10 (50.0%)
Unknown 5/30 (23.3%) 0/10 (0.0%)
MGMT promoter methylation status
Methylated 4 (13.3%) –
Unmethylated 8 (26.7%) –
Unknown 18 (60.0%) 10 (100.0%)
Treatment
Bevacizumab alone 14 (46.7%) 5 (50.0%)
Bevacizumab + alkylating agent 9 (30.0%) 4 (40.0%)
Bevacizumab + tyrosine kinase inhibitor 7 (23.3%) 1 (10.0%)
Bevacizumab dosage
400 mg absolute 16 (53.3%) 8 (80.0%)
→ Corresponding to mg bevacizumab per kg body weight; median, range 5.1 (4–8.2) 4.7 (4–6.7)
10 mg/kg body weight 14 (46.7%) 2 (20.0%)
Documented dexamethasone use during study
Yes 18 (60.0%) 3 (30.0%)
No 12 (40.0%) 7 (70.0%)
sPD-L1
Detection rates at baseline 19 (63.3%) 8 (80.0%)
Median (range) of positive samples at baseline [ng/ml] 0.321 (0.080–42.110) 0.658 (0.060–2.250)
Median number of measurements per patient 6 (2–16) 5 (2–24)
Median time to bevacizumab treatment in months (range) 12.1 (5.8–88.6) 37.5 (12.1–81.0)
Median overall survival from first diagnosis (months) 21.5 (95% CI: 17.9–31.9) 53.2 (95% CI: 32.2–72.4)
Median overall survival from first bevacizumab treatment (months) 5.3 (95% CI: 4.7–7.9) 6.8 (95% CI: 3.3–14.6)
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with GBM and 0.658 ng/ml (range: 0.060–2.250 ng/ml) 
in patients with WHO grade II–III glioma (p = 0.465, 
Mann–Whitney U test; Supplementary Fig. 1A).

In 18/29 (62.1%) of IDH-wildtype (IDH-wt) patients, 
sPD-L1 could be detected at baseline while this was 
the case in 5/6 (83.3%) IDH-mutated (IDH-mt) patients 
(p = 0.64, Fisher’s exact test). Median sPD-L1 concentra-
tion in sPD-L1-positive patients at baseline was 0.2795 ng/
ml (range: 0.057–3.383 ng/ml) in IDH-wt and 0.563 ng/
ml (range: 0.127–2.245 ng/ml) in patients with IDH-mt 
tumors (p = 0.551, Mann–Whitney U test; Supplementary 
Fig. 1B).

Longitudinal changes in sPD‑L1 concentrations 
over time

Median CV was 0.63  (range: 0–2.606) in GBM and 1.766 
(range: 0.252–3.958) in WHO grade II–III glioma. Intra-
patient variation of sPD-L1 concentrations was significantly 
higher in patients with WHO grade II–III glioma compared 
to patients with GBM (p = 0.014, Mann–Whitney U test; 
Fig. 2). Moreover, a trend toward higher sPD-L1 variation 
in IDH-mt (median: 1.71, range: 0.25–3.96) glioma was 
observed as compared to IDH-wt tumors (median: 0.77, 
range: 0–3.162; p = 0.149). No difference in intra-patient 
variation of sPD-L1 could be observed between patients who 

received dexamethasone during their treatment (median: 
0.64, range: 0–2.64) and those who did not (median: 0.93, 
range: 0–3.96; p = 0.279). Furthermore, CV did not dif-
fer based on whether patients were treated with bevaci-
zumab alone, bevacizumab + alkylating agent or bevaci-
zumab + tyrosine kinase inhibitor (p = 0.764, Kruskal–Wallis 
test). A numerical trend towards higher intra-patient varia-
tion of sPD-L1 levels was observed in patients who received 
bevacizumab 10 mg/kg body weight as compared to patients 
where 400 mg bevacizumab were administered (p = 0.103, 
Mann–Whitney U test).

In GBM, there was no significant difference between pre-
treatment levels of sPD-L1 and sPD-L1 concentrations before 
cycle 2 of bevacizumab-based treatment (median sPD-L1 
pre-treatment = 0.13 ng/ml vs. before cycle 2 = 0.2025 ng/
ml, p = 0.648, Wilcoxon signed-rank test; Fig. 3a, left panel). 
In contrast, sPD-L1 levels significantly decreased in WHO 
grade II–III glioma (median sPD-L1 pre-treatment = 0.4855 
vs. before cycle 2 = 0.039; p = 0.036; Fig. 3a, right panel). 
Similarly, leukocyte counts significantly diminished in WHO 
grade II–III glioma (median leukocyte counts pre-treat-
ment = 7.3 G/l vs. before cycle 2 = 5.2 G/l, p = 0.005; Fig. 3b, 
right panel), while there was no significant change in GBM 
(median pre-treatment = 8.6 G/l vs. before cycle 2 = 7.2 G/l, 
p = 0.859; Fig. 3b, left panel). In contrast, CRP levels increased 
in patients with GBM (median pre-treatment = 0.1 mg/dl vs. 
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before cycle 2 = 0.195 mg/dl, p = 0.039; Fig. 3c, left panel), 
while no significant change could be observed in WHO grade 
II–III glioma (median pre-treatment = 0.06 mg/dl vs. before 
cycle 2 = 0.13 mg/dl, p = 0.886; Fig. 3c, right panel).

No significant differences could be detected between pre-
treatment and after cycle 1 in both IDH-wt and IDH-mt tumors 
in terms of sPD-L1, leukocyte counts and CRP levels. How-
ever, a numerical trend toward a decrease of sPD-L1 in IDH-mt 
glioma (median pre-treatment = 0.4855 ng/ml vs. before cycle 
2 = 0.039 ng/ml, p = 0.138; Fig. 3d, right panel) was observed. 
Furthermore, in IDH-wt tumors, leukocyte counts tendentially 
decreased (median pre-treatment = 8.6 G/l vs. before cycle 
2 = 7.03 mg/dl, p = 0.096; Fig. 3e, left panel) and CRP levels 
tendentially increased (median pre-treatment = 0.11 mg/dl vs. 
before cycle 2 = 0.26 mg/dl, p = 0.114; Fig. 3f, left panel).

Survival analysis—prognostic impact of sPD‑L1

With respect to overall survival (OS), there were no sig-
nificant differences between sPD-L1 positive and negative 
patients at baseline in the GBM (p = 0.56, log-rank test) 
and WHO grade II–III glioma subgroups (p = 0.68) as well 
as in confirmed IDH-wt cases (p = 0.63, Supplementary 
Fig. 2A-C).

Furthermore, the prognosis of patients with decreasing 
sPD-L1 in the course of bevacizumab-based therapy did not 
differ from those where sPD-L1 increased between baseline 
and the second measurement in both the GBM (p = 0.77) 
and WHO grade II–III sub-cohorts (p = 0.9) (Supplementary 
Fig. 2D/E). Similarly, there was no difference in OS in IDH-
wt glioma according to the change in sPD-L1 levels after 
the first treatment cycle (p = 0.65) (Supplementary Fig. 2F). 
Survival analysis in the IDH-mt subgroup was not performed 
due to small sample sizes.

Discussion

In the present study, we analyzed the time course of sPD-L1 
as a surrogate marker for systemic inflammation in patients 
with recurrent glioma receiving bevacizumab-based treat-
ment. As shown previously [12], sPD-L1 is a detectable 
marker in brain tumors and correlates with local and sys-
temic inflammatory parameters. Here, we found a significant 
decrease in sPD-L1 levels upon initiation of bevacizumab-
based salvage treatment in WHO grade II–III glioma. This 
change was accompanied by alterations of other established 
markers of systemic inflammation such as leukocyte counts 
and CRP levels.

Timely changes of sPD-L1 and other inflammatory 
parameters in bevacizumab-treated patients with glioma 
suggest that tumor–immune system interactions are observ-
able on a systemic level. Although gliomas rarely show 

extracranial metastases and present with a growth pattern 
restricted to the CNS, several studies previously suggested 
that systemic inflammation is altered by glioma. Erythrocyte 
sedimentation rate, CRP levels and the neutrophil-to-lym-
phocyte ratio were shown to correlate with survival prog-
nosis [20, 21]. Further, an association of systemic inflam-
mation markers such as leukocyte, neutrophil and platelet 
counts as well as CRP levels with markers of the local tumor 
microenvironment and overall survival was reported [22]. 
Indeed, the variability in the systemic inflammation could 
be an explanation for the so far lacking clinical efficacy of 
immuno-modulatory therapies in glioma. Systemic inflam-
mation as measured by CRP, neutrophil-to-lymphocyte 
ratio or recently also sPD-L1 was shown to correlate with 
the likelihood of response to immune checkpoint inhibi-
tors in extracranial malignancies [23]. Profiling of systemic 
tumor–immune system interactions could therefore allow for 
a rational selection of patients who potentially benefit from 
immunotherapy. Notably, although the CheckMate-143 trial 
failed to meet its primary endpoint, few durable responses 
were observed in the nivolumab arm, suggesting that a small 
subgroup of patients with GBM benefits from immunother-
apy [3].

There was higher inter-patient variability of sPD-L1 con-
centrations in WHO grade II–III glioma than in GBM as 
determined by the CV. Although not statistically significant, 
we could detect tendentially higher intra-patient variabil-
ity in IDH-mt glioma than in IDH-wt tumors. WHO grade 
II–III gliomas more frequently display IDH mutations lead-
ing to an abundant production of the oncometabolite 2-HG 
exerting local immune-modulating effects. Here, we provide 
further data on distinct glioma–immune system interac-
tions on systemic level, adding further to the evidence that 
tumor–immune system interactions differ between glioma 
subtypes.

In the present study, only patients receiving bevaci-
zumab-based treatment were included. It is well known 
that therapies targeting the vascular endothelial growth 
factor (VEGF) axis interact with local and systemic 
inflammation. Specifically, VEGF inhibition regulates the 
infiltration of immune cells to the tumor microenviron-
ment by normalizing the tumor vasculature and altering 
the endothelial expression of cell adhesion molecules [24]. 
Furthermore, VEGF along with other immunosuppres-
sive factors exerts systemic immunosuppressive effects 
hampering effective antitumor immune responses [25]. 
Recently, the results of a phase II trial of pembrolizumab 
with bevacizumab in recurrent glioma were presented 
[26]. However, combination therapy was not superior in 
terms of efficacy as compared to historical bevacizumab 
monotherapy controls. With regard to our data, it remains 
elusive whether the observed effects on systemic inflam-
mation are bevacizumab-related or rather due to glioma 
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progression, as bevacizumab exerts only minor antitumoral 
efficacy in glioma and is mainly used for symptomatic con-
trol without significant benefit in terms of overall survival 
[27].

Clearly, our study has several limitations which are 
mainly due to its exploratory, retrospective design and the 
small patient number resulting in limited statistical power 
to detect significant alterations especially in subgroup 
analyses. The variability in number of measurements per 
patient with as few as two measurements available in some 
patients impeded statistical testing for time-dependent 
effects. Moreover, although we applied the same sandwich 
ELISA as previously published [12], the method has not 
been systemically validated with other assays. Lastly, with 
only 6 IDH-mutant glioma cases, further analyses with 
respect to molecular subtypes could not be performed.

In conclusion, our data show that tumor–immune sys-
tem interactions are observable on a systemic level in 
patients with recurrent glioma. sPD-L1 concentrations 
change over time in a cohort treated with bevacizumab-
based salvage treatment and correlations with other mark-
ers of systemic inflammation could be detected, although 
the mechanistic foundations remain to be elucidated. Our 
data underscore the need for comprehensive panels of 
immune-related biomarkers for the conception of prospec-
tive immunotherapy trials in CNS tumors. Furthermore, 
our data add to the available evidence that tumor–immune 
system interactions differ between glioma subtypes which 
should be considered in future studies on immune-modu-
lating agents and combinations thereof in glioma.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00262- 021- 02951-2.
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