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Method: automatic segmentation of mitochondria
utilizing patch classification, contour pair
classification, and automatically seeded level sets
Richard J Giuly*, Maryann E Martone and Mark H Ellisman

Abstract

Background: While progress has been made to develop automatic segmentation techniques for mitochondria,
there remains a need for more accurate and robust techniques to delineate mitochondria in serial blockface
scanning electron microscopic data. Previously developed texture based methods are limited for solving this
problem because texture alone is often not sufficient to identify mitochondria. This paper presents a new three-
step method, the Cytoseg process, for automated segmentation of mitochondria contained in 3D electron
microscopic volumes generated through serial block face scanning electron microscopic imaging. The method
consists of three steps. The first is a random forest patch classification step operating directly on 2D image patches.
The second step consists of contour-pair classification. At the final step, we introduce a method to automatically
seed a level set operation with output from previous steps.

Results: We report accuracy of the Cytoseg process on three types of tissue and compare it to a previous method
based on Radon-Like Features. At step 1, we show that the patch classifier identifies mitochondria texture but
creates many false positive pixels. At step 2, our contour processing step produces contours and then filters them
with a second classification step, helping to improve overall accuracy. We show that our final level set operation,
which is automatically seeded with output from previous steps, helps to smooth the results. Overall, our results
show that use of contour pair classification and level set operations improve segmentation accuracy beyond patch
classification alone. We show that the Cytoseg process performs well compared to another modern technique
based on Radon-Like Features.

Conclusions: We demonstrated that texture based methods for mitochondria segmentation can be enhanced
with multiple steps that form an image processing pipeline. While we used a random-forest based patch classifier
to recognize texture, it would be possible to replace this with other texture identifiers, and we plan to explore this
in future work.

Background
The improved resolution and amount of detail afforded
by emerging electron microscopy techniques, such as
serial block-face scanning electron microscopy
(SBFSEM) [1], is enabling researchers to explore scienti-
fic questions that were previously impossible. SBFSEM
enables mapping of subcellular structures within large
3D regions, 1 mm × 2 mm in the XY plane and greater
than 0.5 mm in Z. However, the interpretation of data
acquired with these techniques requires high-throughput

segmentation that addresses the complexity and multi-
scale nature of these data.

Biological motivation
The morphology and distribution of mitochondria has
biological significance. For example, morphology of mito-
chondria has been studied as a means to detect abnormal
cell states such as cancer [2]. Additionally, abnormal
morphologies and distributions of mitochondria are asso-
ciated with neural dysfunction and neurodegenerative dis-
ease [3]. As described previously, SBFSEM techniques,
coupled to new staining protocols [4], are able to reveal
both cell boundaries and many membrane-bounded
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intracellular components, such as mitochondria. Figure 1
shows slices of mouse cerebellum from a volume
acquired with a specialized scanning electron microscope
equipped with a high precision Gatan 3View ultramicro-
tome for serial blockface imaging, which involves use of a
vibrating diamond knife to precisely plane away material
from the surface of a specimen while imaging.
Current methods for extracting information from com-

plex cellular datasets reflect a long history of incremental
development. Following specimen preparation and data
acquisition, image stacks must be segmented before cel-
lular structure-function relationships can be fully ana-
lyzed. During segmentation, compartments of interest
are delimited. Since segmentation is typically performed
by hand or semi-automatically with manual correction, it
can be notoriously time consuming and represents a
clear bottleneck in cellular imaging [5,6]. In a typical sce-
nario, segmentation involves a single trained expert using
automated algorithms or manually going through each
individual slice and tracing contours around the struc-
tures of interest using a program such as IMOD [7],
JINX [8], or any number of other specialized programs.

Serial blockface imaging modality
Specifically, this paper addresses segmentation of mito-
chondria in SBFSEM data. Other previously addressed
technologies are serial section electron microscopy and
focused ion beam serial electron microscopy (FIBSEM).
We chose to use SBFSEM because it achieves full auto-
mation, acquires rapidly, produces well registered
images, and has commercial availability. While FIBSEM
has ability to image with higher Z resolution (5-6 nm
between slices), SBFSEM affords a larger imaging sur-
face and higher speed. Use of a microtome with
SBFSEM is faster than the ion milling process of

FIBSEM and allows for a larger cutting surface, ~2
mm2, compared to ~0.5 mm2 for FIBSEM[9].
Ability to rapidly scan tissue is important when acquir-

ing large datasets and studying the distribution of struc-
tures within tissue. Acquisition time increases with finer
resolution in XY and also increases with smaller Z step
size [1]. While sampling with larger steps in X, Y, and Z
requires that the automatic segmentation operate on
sparser data, it makes the image acquisition more practi-
cal in terms of time and disk storage. We chose an XY
pixel size of 10 nm × 10 nm and Z step size of 50 to 70
nm. At a rate of 10 microseconds per voxel, this would
allow an acquisition rate of 0.5 to 0.7 cubic microns per
second. Because a full dataset can cover millions of cubic
microns, imaging can require multiple days of acquisition
time and the acquisition rate is critical.
For each test, two subsets of data used for testing our

method in this paper has dimensions of 3.5 microns ×
3.5 voxels × 0.75 microns. We chose 10 nm × 10 nm ×
50-70 nm voxel size suitable for imaging large blocks in
reasonable time, and we show that our method is robust
enough to perform well even with anisotropic resolution
and sparse sampling (especially in the Z direction). The
purpose of this work is to demonstrate accuracy and time
feasibility of this method on test samples. We used a sin-
gle core processor for all of the testing reported here. As
future work, we plan to process full datasets using paral-
lel processing resources with thousands of cores.

Previous work in automatic segmentation
The electron microscopic staining and imaging technol-
ogy used for this work highlights intracellular structures,
such as vesicles and mitochondria, as well as cellular
membranes resulting in complex, textured images. While
staining of multiple structures makes it possible to

Figure 1 Examples of mitochondria in SBFSEM micrographs of mouse cerebellum. Arrows indicate mitochondria. Images are
3.1 μm × 3.1 μm.
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accomplish the identification of most cellular and subcel-
lular tissue components simultaneously, it makes auto-
matic segmentation and identification of these more
challenging. Automatic segmentation accuracy is critical,
as each manual correction requires human effort and
ultimately increases the time and cost required for seg-
mentation. Modern three dimensional TEM and SEM
images involve a large number of objects with various
three dimensional shapes. Image intensity alone does not
accurately identify a given structure, and identification of
objects typically involves a knowledge of various textures
and shapes present in the data. Therefore, the numerous
segmentation algorithms developed for other biomedical
imaging modalities are not directly applicable to thin sec-
tions from TEM and serial block face derived SEM
images. Level-set [10] and active contour segmentation
methods are not effective when directly applied to auto-
matically segmenting mitochondria in the data presented
here because the edge attraction terms used in these
methods are easily confused by the presence of signifi-
cant textures. (However, we establish that a level set may
be used effectively as a final step in a process.)
While progress has been made to develop automatic

segmentation techniques appropriate for mitochondria
[2,11-15] and cells [16-20], there remains a need for
more accurate, rapid, and robust techniques to delineate
mitochondria in SBFSEM data. In [14,2], and [15], pri-
marily texture detection is used to segment mitochon-
dria. Although texture based methods may be
appropriate for high resolution thin section transmission
electron microscopy (TEM) images, current SBFSEM
technology does not provide the resolution required for
distinct textures in neuropil.
In typical SBFSEM data, separation between XY planes

may be greater than FIBSEM, with typical ranges of 30-
100 nm, giving lower effective resolution in Z than ×
and Y. Rather than using only 3D operations, we use a
combination of 2D and 3D processing. This allows us to
take advantage of the higher resolution available in the
XY plane. A 2D patch classifier is used at step 1. For
step 2, we use a custom method of 2D contour identifi-
cation which is based on isocontour detection and con-
tour pair filtering. Use of 2D contours is advantageous
because the contours often outline the mitochondria,
which have various but often recognizable shape. At
step 3, we use a 3D level set operation which increases
the 3D smoothness of the detected structure and helps
increase the true positive rate.
Lucchi et al. [12,13] published a method for mito-

chondria segmentation in FIBSEM images achieving
pixel classification accuracy as high as 98%. Note that
accuracy is defined on pixel classification as (TP + TN)/
(TP + FP + FN + TN), where TP is the number of true
positives, TN is the number of true negative, FP is the

number of false positives, and FN is the number of false
negatives. To utilize 3D image information, Lucchi et al.
used a classifier to recognize which pairs of 3D super-
voxels are most likely to straddle a relevant object
boundary. In their FIBSEM data, X, Y, and Z resolution
are all 5-6 nm, which makes use of 3D supervoxel
approach appropriate. However, to address SBFSEM
data with generally coarser and anisotropic resolution,
we use a different approach as described above.
In other previous work [21], shape rather than texture

information is used for detection of mitochondria in 2D
slices of FIBSEM data. Our goal differs from this in that
we are concerned with segmentation, not only detection,
in 3D images, and our approach uses information in
more than one plane to discriminate between mitochon-
dria and other objects.
We have previously explored use of texture and shape

to automatically segment mitochondria in tomography
[22], and SBFSEM [23]. In this work we present our
complete multi-step method and test it against human
segmentation. We demonstrate that similar accuracy can
be achieved with SBFSEM which has different resolution
characteristics than aforementioned techniques but
allows rapid automated 3D scanning of relatively large
three dimensional regions with commercially available
microscopes.

Methods
The Cytoseg process (CP) for segmentation presented
here consists of three steps (see Figure 2): patch classifi-
cation, contour set classification, and a level set opera-
tion. Each step produces output that feeds the following
step(s) of the process. For the first step, we use a ran-
dom forest classification technique for identification of
pixels that belong to subcellular objects. This step serves
to identify texture. The input vector is a set of values
from an N×N patch of pixels. Results with mitochondria
segmentation indicate that the patch classification learn-
ing process can be accomplished rapidly (for 1591
image patches, 13 seconds on single 2.6 GHz processor).
For the second step, we perform random-forest-based
classification on contours or pairs of contours generated
by outlining connected components after thresholding
the patch classification output with multiple thresholds.
To produce smooth 3D objects, we apply a third step in
which contours are used to find seed points for the initi-
alization of geodesic active contour operations (from the
Insight Segmentation and Registration Toolkit (ITK))
[24], which produces 3D blobs in an array of voxels.
The following describes each step in detail:

Step 1: 2D patch classification
The first step consists of a patch classifier using a ran-
dom forest [25]. A training data set is used with each
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pixel labeled mitochondria or not. The classifier uses
raw pixel values from 2D image patches. The output of
step 1 is a map of mitochondria probability. We chose
2D rather than 3D patches to produce a method that
would be robust when there are significant gaps
between XY slices.

Step 2: Contour Set Classification
In the second step, contours in XY planes of the volume
are detected using multiple isocontours applied to the
probability map from the pixel classifier of step 1. Iso-
contours are detected at 12%, 26%, 40%, 54%, 68%, 82%,
and 96% of the total intensity in the probability map
(14% intervals). After detection, contour pair classifica-
tion serves to eliminate the extraneous contours that do
not belong to mitochondria. In this paper, Ci, j is the
contour of in XY plane i with index j. Contours of
extreme size (perimeter less than 0.6 μm or greater than
6 μm) are not used. The extreme limits were deter-
mined based on the known size of mitochondria in our
data. It is unlikely that such a large or small contour
would delineate a mitochondria. For classification, con-
tours can be grouped into sets of M contours in adja-
cent planes. We explore use of M = 1 and M = 2.
When pairs of contours are used (M = 2), we eliminate
pairs whose centers differ by a large amount. That is,
we use all pairs Ci, m and Ci+1, n where Euclidean dis-
tance (in the XY plane) from the center of Ci, m to the
center of Ci+1, n is less than D. Although the random-
forest-based classification procedure is the primary
means of identifying salient pairs, this elimination pro-
cedure reduces computation time by quickly removing
many invalid pairs in which the two contours are very

far apart are not delineating the same mitochondria.
Based on experiment with our data, we chose D = 0.4
μm for results of this paper. Contour centers were cal-
culated as the average of all points on the
circumference.
The contour sets are classified based on geometric and

pixel value-based features of each contour in the set.
Seven features are used: (1) contour perimeter, (2) aver-
age gray value on the contour points, (3) average gray
value of the probability map inside the contour, (4) area
of the contour, (5) ellipse overlap, (6) ellipse width, and
(7) ellipse height. Ellipse overlap is a measure of how
elliptical the contour is. To compute this value, an
ellipse is first fit to the contour. Ellipse width and height
are the width and height of the ellipse that best fits the
contour. The fraction of overlap between the area inside
the ellipse and the actual contour area provides the
ellipse overlap value. When two adjacent contours (Ci, m

and Ci+1, n) are used for each example, the full feature
vector consists of (1) the seven features of each contour,
(2) the distance between the two contour centers, and
(3) the difference of the seven features, yielding a total
of 22 features per contour pair. For example, Figure 2(c)
shows all detected contours and (d) shows remaining
contours after classification and elimination of all pairs
below a probability threshold of T = 0.25.

Step 3: 3D level set operation
In the third step, a “geodesic active contour” level set fil-
ter is then used to produce 3D blobs that represent
mitochondria. The geodesic active contour filter takes
two input images (1) the result of an input fast march
filter and (2) the edge potential map. In our method, the

Figure 2 Automatic results for mitochondria segmentation in SBFSEM images. XY slices shown here are 2.1 μm × 3.1 μm. (a) Original data
for Test 1. (b) Step 1: Voxel classification result and contour detection. (c) Step 2: Detection of isocontours. (d) Salient contours after contour
classification. Notice that many contours that do not belong to mitochondria have been eliminated. (e) Step 3: Result of level set operation
seeded with inner region of salient contours. Note that the small isolated sets of pixels in (e) are a result of the 3D level set operation spreading
into a few pixels when seeded from an adjacent plane. Also, observe that contours occasionally are eliminated in the contour pair classification
set but re-appear after the level set operation. This is the result of contour classification eliminating a contour in one plane but accepting
contours in nearby planes above or below. Then salient contours above and below act as seed point regions, and the 3D level set operation
tends to fill in the region where the contour was eliminated.
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input of the fast march filter is the probability map from
step 1. For the edge potential map, we used the gradient
magnitude of the probability map from step 1. The filter
performs a level set operation to generate a final result.
Proper seeding of the input fast march is critical to pro-
duce an accurate segmentation. The inner region of the
contours detected in step 2 demarcates the initial seed
points, while the gradient magnitude of the 3D probabil-
ity map defines the edge potential image. The inner
region of contours is found by taking the full region of
the contour and eroding it by 10 pixels. The edge
potential image produces a “force” so that the geodesic
active contour filter operation tends to fill until it
reaches the boundary of mitochondria and non-mito-
chondria voxels. Results are shown in Figure 2(e) and 6
(b).

Results
A total of four test runs were performed to measure the
performance of the method in various types of mouse
brain tissue: cerebellum, dentate gyrus, and the CA3
division of hippocampus. The first test in cerebellar tis-
sue is described in detail and then supplementary three
tests are then described briefly in the additional testing
section below. With each test, 15 slices are used for
training data and 15 slices are used for testing. Accuracy
for each of the 4 tests is reported in Table 1.

Step 1: 2D Patch Classification Results
For Test 1, a subvolume of a 3D SBFSEM cerebellar
neuropil dataset (350 voxels × 350 voxels × 30 voxels)
was used. (The full volume is available at ccdb.ucsd.edu
as a microscopy product with the ID 8192.) Each voxel
was manually labeled mitochondria or not by an expert
electron microscopist, familiar with the ultrastructural
anatomy of the cellular region of the brain used to pro-
duce the test dataset. The first 15 XY slices were used
to train the patch classifier, and the classifier was then
run on a test set comprising the last 15 XY slices. The
dimensions of the image patches were 11 × 11. An

anisotropic voxel size was used, 10 nm in the XY plane
with 50 nm steps in Z. A subset of pixels was selected
from the training set at random to be used for training:
689 positive and 902 negative examples. The learning
process required 13 seconds running on a single 2.6
GHz processor. Classification for all pixels in the test
set required 80 minutes. Figure 3 shows the receiver
operating characteristic (ROC) curve for this patch clas-
sification in Test 1.
Mitochondria are typically dark, and simple threshold-

ing of pixel intensity was also tested as a baseline case
for identification of mitochondria. However accuracy
with thresholding alone is not sufficient, and the ROC
in Figure 3 indicates that more complex methods of
Radon-Like Features (RLF) and random forest classifica-
tion yield more accurate results, with the random forest
classification giving highest true positive rates and low-
est false positive rates compared to other methods
tested.

Step 2: Contour classification results
A 350 × 350 × 15 slab of data (corresponding to the
output of step 1) was used for quantification of contour-
set classification accuracy. To perform this test, patch
classification and contour detection was first performed,
as described earlier. The ground-truth labels for con-
tours were derived from the patch classification training
set: detected contours were considered salient if 90% or

Table 1 Test results

Test
#

Tissue TPR FPR
(RLF)

FPR
(CP)

Accuracy
(RLF)

Accuracy
(CP)

1 Cerebellum 0.8 0.05 0.02 0.94 0.97

2 Cerebellum 0.9 0.11 0.03 0.89 0.96

3 Dentate
Gyrus

0.84 0.29 0.02 0.72 0.97

4 CA3 0.9 0.3 0.07 0.72 0.93

Results for all tests. TPR stands for true positive rate. FPR stands for false
positive rate. Accuracy was calculated by comparing against manually labeled
data. TPR applies to both the RLF and CP methods. For comparison, in each
test, the RLF threshold was set so that its TPR would be equal to the TPR of
the Cytoseg process. Note that CP consistently gives higher accuracy and
lower FPR.

Figure 3 ROC results for each step of the automatic
segmentation process. ROC results for Test 1. The dotted ROC
curve is for a simple threshold of the raw data. The solid ROC curve
is for the random forest based patch classifier. The dot-dash ROC
curve is for the Radon-Like Features output. The circle marker shows
the false positive rate and true positive rate when the pixels inside
of automatically detected salient contours are marked as
mitochondria (classification was performed on contour pairs). The
triangle marker shows the false positive rate and true positive rate
when inner points of salient contours are used to initialize a level
set operation.
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more of the pixels within the contour were marked as
mitochondria in manually generated training data. To
quantify accuracy of the contour-set classifier, 5 fold
cross-validation was used. Figure 4 shows accuracy
using single contours and contour pairs. There were
1340 single contours and 6175 contour pairs. Learning
with single contours required 2 seconds. Classification
of single contours required 1 second. Learning with con-
tour pairs required 22 seconds. Classification of contour
pairs required 5 seconds.

Step 3: Level set results
In step 3, a 3D geodesic active contour level set opera-
tion [24] was performed. Results are shown in Figure 5.
This operation converts the 2D contour output into
smoother 3D objects which are more convenient for
viewing and editing than individual contours. The para-
meters for the operation were set as follows: advection
scaling: 160, curvature scaling: 6.75, propagation scaling:
1. The primary purpose of the operation is to increase
3D smoothness, which can simplify the editing process.
Smooth output is preferred because jagged edges in XY
planes and stair-stepping from slice to slice can be time
consuming to correct. Another advantage of smoothing
3D blob output is that manual culling of false positives
can be performed on a per 3D blob basis, requiring
fewer edits than editing on a per contour basis. In addi-
tion, as shown in Figure 3, the level set output has bet-
ter accuracy that the patch classification alone. Figure 6
shows the smoothing effect of step 3. When applied to
the 350 × 350 × 15 block of data referred to in the

previous section, the time required for step 3 was 5
minutes.

Additional testing
Typical use of the system will involve training on a small
manually segmented slab from a large acquisition and then
applying the automatic segmentation operation to the
entire acquisition or chosen portions of it. In addition to
Test 1 described above, Tests 2-4 were performed to evalu-
ate the robustness of the method. Test 2 was performed on
a different subset of the cerebellum data used in Test 1,
using the same training data. Test 3 and Test 4 were per-
formed in different tissues using training sets from corre-
sponding tissue samples. All parameters were the same as
with Test 1 unless stated otherwise. Results for all tests are
shown in Table 1. The CP method is compared to RLF.
The threshold for RLF was chosen in each test so that the
true positive rate (TPR) would match the TPR of the CP
method. Results indicate that the CP method performs
relatively well for each type of data tested.
Setting the threshold value T for each training data set

is important. Lower T increases true positives for the
complete Cytoseg process but also increases false posi-
tives. For each training data set, error measurements
were performed to determine an appropriate value for
the threshold T. We used only the training data to set
this value. To accomplish this, the first 7 slices out of
the 15 slices of training data were designated training
for the error measurement, and the last 7 slices as test
data for the error measurement. The threshold T was
set to minimize error E = af + b(1-t), where f is the
false positive rate of the complete Cytoseg process, p is
the true positive rate of the complete Cytoseg process,
and a and b and terms set by the user to weight the
importance of avoiding false positives versus detecting
true positives. For all error measurements, we used a =
7 and b = 1. To find the minimum error, the process
was run for values of T starting at 0.05 and increasing
in increments of 0.05 up to a maximum of 1. For the
cerebellum training data used in Tests 1 and 2, T =
0.25. Also for the dentate gyrus training data used in
Test 3, T = 0.25. For the CA3 training data, T = 0.1.
Balance of training examples can affect the perfor-

mance of training. To maintain an approximately con-
sistent ratio of 1:10 for positive example contour pairs
to negative example contour pairs, we added n dupli-
cates of each salient contour pair. We used n = 0 for
Test 1 and 2, n = 1 for Test 3, and n = 6 for Test 4.
For Test 1, the process was trained on a subvolume of

cerebellum as described previously. For patch classifica-
tion training, 696 positive and 869 negative examples
were used. For contour pair classification training, there
were 616 positive examples and 5559 negative examples.
Results are shown visually in Figure 5.

Figure 4 Classification improvement when using contour pairs
(M = 2) rather than single contours (M = 1). This compares
classification of single contours to contours pairs for Test 1. (An
example of salient contours in show in Figure 2 (d).) For the dotted
ROC curve, each classified example is based on a single contour. For
the solid ROC curve, each classified example is based on a pair of
contours.
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For Test 2, our method was applied to a subset of
mouse cerebellum different from the subset used in
Test 1. This slab of test data was located more than 10
microns away from the slab used for Test 1. The same
training data was used as with Test 1. Results are shown
in visually Figure 7. Note that the performance is similar
within cerebellum for Test 1 and Test 2 (see Table 1).
For Test 3, a volumetric image of mouse dentate gyrus

tissue data was acquired, and a voxel size of 10 nm × 10
nm × 50 nm was used. For patch classification training,
we used 898 positive examples and 959 negative exam-
ples. For contour pair classification training, there were
452 positive examples (including duplicates) and 6766
negative examples. Results are shown in Figure 8.

For Test 4, a volumetric image of the CA3 division of
mouse hippocampus was acquired, and a voxel size of 10
nm × 10 nm × 70 nm was used. For patch classification
training, we used 938 positive examples and 934 negative
examples. For contour pair classification training, there
were 573 positive examples (including duplicates) and
6506 negative examples. Results are shown in Figure 9.

Implementation
The code for this work was implemented in Python.
Python provides a suitable environment for rapid proto-
typing and has the advantage of being open source and
freely available. We utilized ITK and OpenCV libraries
as noted previously; both of which have python

Figure 5 Automatic results versus manually generated results for Test 1. Test 1 was performed on cerebellum tissue if a mouse. The XY
slices shown here are 3.1 μm × 3.1 μm. Out of the 15 XY slices processed, slice numbers 1, 7, and 13 are shown (from top to bottom). Column
(a) shows raw images. Column (b) shows final results of automatic segmentation using Radon-Like Features. Column (c) shows final results of
automatic mitochondria segmentation using the CP method presented in this paper. Column (d) shows manually generated mitochondria
segmentation. Differences between the automatic (b) and manual (d) images shown here represent error for the process presented in this
paper. Differences between the automatic (c) and manual (d) images shown here represent error for the Radon-Like Features method.
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wrappings. Additionally the Orange [26] data mining
library was used at the patch classification stage, and the
Python Imaging Library [27] (PIL) was used to load and
write images. To ensure reproducibility, our code is
available at http://cytoseg.googlecode.com.
To process very large datasets that may exceed random

access memory (RAM) limits, the full dataset is program-
matically split into multiple slabs of full XY extent but lim-
ited Z. Each slab is then processed in the same manner as
a full dataset. This provides a simple method to parallelize
the process for large datasets, and this or other paralleliza-
tion methods will be explored in future work.

Discussion
This work explores the use of multistep segmentation
involving patch classification, contour pair classification,

Figure 7 Automatic results versus manually generated results for Test 2. Test 2 was performed on a different slab of the cerebellum tissue
acquistion used for Test 1. The same training data was used for Tests 1 and 2. The XY slices shown here are 3.1 μm × 3.1 μm. Out of the 15 XY
slices processed, slice numbers 1, 7, and 13 are shown (from top to bottom). Column (a) shows raw images. Column (b) shows final results of
automatic segmentation using Radon-Like Features. Column (c) shows final results of automatic mitochondria segmentation using the CP
method presented in this paper. Column (d) shows manually generated mitochondria segmentation.

Figure 6 Smoothing effect of Step 3. (a) Stack of output contours
representing one mitochondria from step 2 using data from Test 1.
Contours are rendered as solid slabs. (b) Output of step 3. Notice
that the level set operation yields a result that is smoothed. (The
slice view for (a) and (b) is 3.5 μm × 3.5 μm in size.)
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and a level set operation. One alternative approach to
the segmentation problem is to build a single highly
accurate classifier, however this puts a significant bur-
den on the classifier. To handle a complex problem
such as automatic segmentation in neuropil, the classi-
fier complexity is typically high, so the training time
with a single classifier approach is significant and can
require days of CPU time to train [17]. By splitting the
problem into stages, training complexity can be reduced
at each stage. In our process, the first two steps learn
the texture and the shape independently and rapidly.
Less than a minute of training time was required for
training with the results presented in this paper. While
the voxel classification step requires significant time (80
minutes for 2 million patches), it can be distributed

among multiple cores as it operates on each patch inde-
pendently. (Testing on larger datasets using parallel
computing resources is a subject of future work.)
We designed each step to add to the accuracy of the

process. Our first texture processing step enhances the
mitochondria as shown in Figure 2(b), but allows many
false positive pixels where texture is similar to mito-
chondria. The second step uses pairs of contours on
adjacent plane and helps to reduce many false positive
contour pairs as shown in Figure 2(d). We chose to use
contour pairs because single contours are often not suf-
ficient to identify structures. This mimics manual seg-
mentation, where people often check multiple adjacent
slices to identify a structure. Use of contour pairs makes
use of two planes of information rather than one and

Figure 8 Automatic results versus manually generated results for Test 3. Test 3 was performed on a sample of tissue from the dentate
gyrus of a mouse. The XY slices shown here are 3.1 μm × 3.1 μm. Out of the 15 XY slices processed, slice numbers 1, 7, and 13 are shown
(from top to bottom). Column (a) shows raw images. Column (b) shows final results of automatic segmentation using Radon-Like Features.
Column (c) shows final results of automatic mitochondria segmentation using the CP method presented in this paper. Column (d) shows
manually generated mitochondria segmentation.
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increases the accuracy of identification. While the con-
tour pair classification is effective for identifying con-
tours that lie on mitochondria, it often detects
somewhat misshapen contours with rough edges. To
address this, we introduced a third step. Our third step
relies on the fact that mitochondria typically have a
smooth shape. A cleaner segmentation can be achieved
by enforcing this smoothness using a level set operation.
To fully automate our level set step, we designed it to

take seed points from the contour pair classification
step and an edge potential map derived from the patch
classification step as described earlier. The edge poten-
tial map is derived from the patch classification output
rather from the raw image so that the level set tends to
fill inside of the salient texture. For example, our results

for Test 1 show that the final level set operation
increased the true positive rate by 0.04 and the false
positive rate by 0.0025. Even though the false positive
rate increases slightly, the larger true positive rate
increase represents an overall improvement. Figure 6
demonstrates this increase in true positives visually as
many gaps in the segmentation are filled in with the
level set operation.
The resulting combination of all steps is a new pipe-

line where each contributes to the final result. Com-
pared to a single classifier, this pipeline helps break the
problem down into more manageable pieces. In future
work, each step can be refined separately, potentially by
different image processing specialists, the first focusing
on texture identification, the second on shape

Figure 9 Automatic results versus manually generated results for Test 4. Test 4 was performed a sample of tissue from the CA3 region of
a mouse hippocampus. The XY slices shown here are 3.1 μm × 3.1 μm. Out of the 15 XY slices processed, slice numbers 1, 7, and 13 are shown
(from top to bottom). Column (a) shows raw images. Column (b) shows final results of automatic segmentation using Radon-Like Features.
Column (c) shows final results of automatic mitochondria segmentation using the CP method presented in this paper. Column (d) shows
manually generated mitochondria segmentation.

Giuly et al. BMC Bioinformatics 2012, 13:29
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identification, and the third on enforcing smoothness
appropriate for the structure being segmented.

Conclusions
In this paper, our goal was to develop a method for
automatic segmentation of mitochondria in SBFSEM
data. These datasets were particularly challenging
because many internal structures were stained and spa-
cing between slices was significant. We used both tex-
ture and shape information to identify mitochondria in
a complex background. The technique involved three
major steps that progressively build a final result. Our
data had 4 to 7 times more resolution in the XY plane
than Z, so we chose a combination of 2D (step 1 and 2)
and 3D (step 3) processing that takes advantage of the
extra resolution in the XY plane. In the first step, we
showed that a random forest classifier applied directly
to pixel values of 2D patches has good performance as a
patch classifier. In step 2, we showed that detected con-
tours in the probability map from step 1 can be refined
using a contour pair classifier. We also showed the
advantage of using contour pairs rather than single con-
tours. In step 3, we showed that use of a level set proce-
dure, operating on the probability map from step 1, and
seeded with salient contour regions from step 2 can
enhance and smooth final results. The output is
smoothed in 3D to make visualization and manual cor-
rections more manageable. As show in Table 1, 93-97
percent accuracy is achieved on three types of tissue. In
future work, we plan to test with contour sets of three
or more to improve contour set classification accuracy.
In addition to accuracy, another advantage of our pipe-

line design is modularity. As a subject of future work,
each of the components of the pipeline may be improved
or replaced to suite different problems or improve accu-
racy. For example, while we used a random-forest based
patch classifier to recognize texture, it would be possible
to replace this with other texture identifiers.
Although this method was tuned for mitochondria, it

is flexible in that texture and shape are learned based
on training data. Therefore, if given the proper training
data, it may also be applicable to other structures with
well defined shape and texture. Application to other
structures is a subject for future testing.
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