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ABSTRACT
Tumor DNA contains specific somatic alterations that are crucial for the diagnosis 

and treatment of cancer. Due to the spatial and temporal intra-tumor heterogeneity, 
multi-sampling is needed to adequately characterize the somatic alterations. Tissue 
biopsy, however, is limited by the restricted access to sample and the challenges to 
recapitulate the tumor clonal diversity. Non-blood circulating tumor DNA are tumor 
DNA fragments presents in non-blood body fluids, such as urine, saliva, sputum, stool, 
pleural fluid, and cerebrospinal fluid (CSF). Recent studies have demonstrated the 
presence of tumor DNA in these non-blood body fluids and their application to the 
diagnosis, screening, and monitoring of cancers. Non-blood circulating tumor DNA 
has an enormous potential for large-scale screening of local neoplasms because of its 
non-invasive nature, close proximity to the tumors, easiness and it is an economically 
viable option. It permits longitudinal assessments and allows sequential monitoring 
of response and progression. Enrichment of tumor DNA of local cancers in non-blood 
body fluids may help to archive a higher sensitivity than in plasma ctDNA. The direct 
contact of cancerous cells and body fluid may facilitate the detection of tumor DNA. 
Furthermore, normal DNA always dilutes the plasma ctDNA, which may be aggravated 
by inflammation and injury when very high amounts of normal DNA are released 
into the circulation. Altogether, our review indicate that non-blood circulating tumor 
DNA presents an option where the disease can be tracked in a simple and less-
invasive manner, allowing for serial sampling informing of the tumor heterogeneity 
and response to treatment.

INTRODUCTION

Gene mutation and methylation play essential 
roles in tumorigenesis and metastasis [1–3]. Tumor DNA 
contains specific somatic alterations that are crucial for 
the diagnosis and treatment of cancer. Due to the spatial 
and temporal intra-tumor heterogeneity, multi-sampling is 
needed to adequately characterize the somatic alterations 
[4–6]. Tissue biopsy, primarily the “gold standard” for 
diagnosis, however, is limited by the restricted access to 
sample and the challenges to recapitulate the tumor clonal 
diversity [7, 8]. Plasma circulating tumor DNA (ctDNA) 
is DNA fragments that contain the tumor-specific somatic 
alterations in the blood. Recent studies have demonstrated 
the application of plasma ctDNA detection in the tumor 

diagnosis and monitoring [9–11]. It is of non-invasive and 
can be collected repeatedly with minimal discomfort to the 
patient. It also reflects the total tumor burden and genetic 
heterogeneity. 

Non-blood circulating tumor DNA are tumor DNA 
fragments presents in other body fluids, such as urine, 
saliva, sputum, stool, pleural fluid, and cerebrospinal 
fluid(CSF). Recent studies have demonstrated the presence 
of tumor DNA in these non-blood body fluids and their 
application to the diagnosis, screening, and monitoring of 
cancers [12] (Figure 1). The collection of these body fluids, 
such as urine, saliva, sputum, and stool, are relatively safe, 
non-invasive, economic and can be performed at home, 
without professional help [13, 14]. It also applies perfectly 
to patients with anemia, which is quite common in 
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advanced stage cancer patients. Moreover, enrichment of 
tumor DNA of local cancers in non-blood body fluids may 
help to archive a higher sensitivity than in plasma. Non-
blood body fluids are a viable alternative to blood samples 
as a source of DNA for tumor diagnosis and monitoring.

Sources of non-blood tumor DNA

There are 2 types of non-blood tumor DNA: 
genomic DNA from local tumor cells that shed into the 
body fluid (cellular tumor DNA) and cell-free tumor DNA 
(cfDNA) from plasma cell-free DNA or from neighboring 
tumor cells due to necrosis or apoptosis (Figure 2). 

Urinary cfDNA mainly originates from plasma 
cfDNA that pass the kidney barrier [15]. Circulating 
tumor cfDNA is highly fragmented and primarily present 
in the blood as part of super molecule complexes, such 
as nucleosomes. During circulation, cfDNA was filtrated 
from the blood into the primary urine through the 
kidney barrier, which has been proved to be permeable 
to DNA molecules [16]. However, it is not known of the 
mechanism of DNA translocation from the bloodstream 
into the urine. Limited by the basal membrane and slit 
membranes between podocytes pedicles, only complexes 

smaller than 6.4 nm in diameter and with a molecular 
weight no greater than 70 kDa can pass through the 
kidney barrier and enter the nephron. It corresponds 
to DNA of about 100 bp in size, which is smaller than 
mononucleosome [15]. Moreover, the negatively charged 
cfDNA might face an additional barrier because of the 
negative charge of the glomerular basement membrane. 
It might be due to the non-globular shape or by the 
deformability of the DNA complexes. Another explanation 
is that cfDNA may be covered by liposomes, which make 
their penetration through the kidney barrier theoretically 
possible [17, 18]. Besides, renal permeability might 
increase for some physical and pathological conditions, 
such as pregnancy, cancer, and inflammation.

Ying et al. reported two size categories of urinary 
DNA: low molecular weight (MW) urine DNA and high 
MW urine DNA. Low MW class of urine DNA is between 
150 to 250 bp and derived from the circulation, while 
the high MW urine DNA is greater than 1 kb and mostly 
from the cells shed into the urinary tract [13]. Similar 
findings were also reported in CSF. Size distribution of 
CSF cfDNA peaks at 160 and 340bp indicates an apoptotic 
source. CSF cellular DNA is of larger size and may origin 
from blood cells and tumor cells in CSF [19]. Saliva DNA 

Figure 1: Tumor DNA can be detected in various kinds of non-blood body fluids.



Oncotarget69164www.impactjournals.com/oncotarget

can also be locally generated by cell necrosis, apoptosis, 
and exfoliation, or by active transport, passive diffusion or 
ultrafiltration from the plasma cfDNA [20]. The possible 
origins of pleural DNA also include ultrafiltration from 
the plasma (cfDNA) and local dying or apoptotic cells 
(cellular DNA) [21].

Non-blood tumor DNA and cancer

Urinary tumor DNA

Urinary cellular DNA origins from urological 
cancer cells shed into urine [22, 23]. In 1991, Sidransky 
et al. first identified p53 gene mutations in the urine 
sediment of bladder cancer patients [24]. In 2001, Carsten 
et al. demonstrated the presence of GSTP1 promoter 
hypermethylation in the urine sediments of prostate cancer 
patients [25]. Since then, gene mutations such as p53 
[26], TERT [27, 28], FGFR3 [29, 30] mutations and gene 
hypermethylation changes such as GSTP1 [31], RARβ 
[31, 32] were reported in the urine of urothelial carcinomas 
patients (Table 1). In a 2-year follow-up of patients with 
superficial bladder transitional cell carcinoma after 
transurethral resection, Camille and colleagues assessed 
the diagnostic and prognostic performance of urinary 
cellular FGFR3 mutation analysis. Urinary cellular FGFR3 
mutation has a sensitivity of 73% (95% CI, 0.58–0.89) and 
a specificity of 87% (95% CI, 0.82–0.93) in the diagnosis 
of cancer recurrence after transurethral resection, and a 
sensitivity of 70% (95% CI, 0.54–0.86) and specificity of 
87% (95% CI, 0.76–0.98) in the prediction of recurrence 
within 2 years after surgery [38]. 

Urinary cfDNA can be detected in non-urothelial 
carcinoma patients. The p53 mutation was found by 
Selena et al. in the urine of hepatocellular carcinoma 
patients and most of the p53 mutation was detected in the 
low MW urine DNA fraction [57]. Chen et al. detected 
EGFR mutations in urinary cfDNA in non-small cell lung 
cancer (NSCLC) patients with a concordance of 88% to 
their primary tumors [55]. 

Su et al. demonstrated that DNA methylation in 
urine is better in predicting recurrence than cytology 
and cystoscopy in bladder cancer patients after 
transurethral resection. By using a three-marker panel 
(SOX1, IRAK3, and L1-MET), they could predict 
tumor recurrence in 80% of patients, which is superior 
to cytology (35%) and cystoscopy (15%) [58]. Reckamp 
et al. detected the EGFR activating mutations and the 
T790M resistance mutation in urine and plasma of 
NSCLC patients by short footprint mutation enrichment 
next generation sequencing assays. They found that 
with a recommended specimen volume (90–100 mL), 
the sensitivity of urine and plasma are comparable [54]. 
Chen et al. conducted a serial monitoring trial to detect 
urinary cfDNA of EFGR mutation in NSCLC patients 
receiving EGFR-TKIs. They found a concordance in 
the quantity of urinary cfDNA and plasma cfDNA at 
baseline. During the treatment, a concordance in the 
decline of the quantity of cfDNA was also observed. 
Nevertheless, a more significant decrease in urinary 
cfDNA than plasma cfDNA was found during the early 
phase of monitoring as a result of treatment, which 
indicated that urinary cfDNA might potentially be of 
higher sensitivity [55]. 

Figure 2: There are 2 types of tumor DNA in non-blood body fluid: cellular tumor DNA from local tumor cells that 
shed into the body fluid and cell-free tumor DNA from plasma cell-free DNA or from local tumor cells due to necrosis 
or apoptosis.
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Saliva tumor DNA
Saliva provides good-quality genomic DNA, which 

is comparable to blood as a template for genotyping 
[59, 60]. Salivary DNA has been used in germline 
mutations detection for various cancer screening, such as 
breast cancer [61] and braintumor [62].

In 2000, Liao et al. detected p53 gene mutation 
in the saliva of oral squamous cell carcinomas patients 
[63]. In 2001, El-Naggar et al. performed microsatellite 
analysis at chromosomal regions frequently altered 
in head and neck squamous cell carcinoma (HNSCC) 
on matched saliva and tumor samples. Their results 

Table 1: Urinary tumor DNA detection in cancer
Tumor Sample Author Type Gene Method Patients/ Control Sensitivity/ Specificity

UTUC cellular Monteiro et al. [33] Methylation GDF15/TMEFF2/VIM QMSP 22/20 91%/100%

PC cellular Noel et al. [26] Mutation TP53/FGFR3 FASAY and SNaPshot 
system 103/NA 46%/81%

PC cellular Minciu et al. [34] Methylation GSTP1 MSP 31/34 98%/87%
PC cellular Daniunaite et al. [31] Methylation RASSF1/RARB/GSTP1 Real time-MSP 34/ NA 82%/NA
PC cfDNA Salvi et al. [35] DNA Integrity c-MYC/HER2/AR Real time-PCR 67/64 58%/44%
PC cfDNA Casadio et al. [36] DNA Integrity c-Myc/BCAS1/HER2 Real time-PCR 29/25 79%/84%
PC cellular Zhu et al. [37] Gene fusion TTTY15-USP9Y Real time-PCR 75/151 84%/77.5%

BC cellular Couffignal et al. [38] Mutation FGFR3 allele-specific PCR 191/ NA 73%/87%
(recurrence)

BC cellular Chihara et al. [39] Methylation

SOX1/TJP2/MYOD/
HOXA9VAMP8/CASP8/

SPP1/IFNG/CAPG/
HLADPA1/RIPK3

Pyrosequencing 73/18 100%/100%

BC cellular Beukers et al. [40] Methylation OSR1/SIM2/OTX1/MEIS1/
ONECUT2 bisulfite-specific PCR 54/115 82%/82%

BC cellular Kandimalla et al. [41] Methylation OTX1/ONECUT2/OSR1 quantitative 
assessment 101/70 68%/90%

(recurrence)

BC cellular Baquero et al. [42] Methylation 18 tumor suppressor genes MS-MLPA 100/28 7–42%/
64.3–92.9%

BC cellular Scher et al. [43] Methylation BCL2/CDKN2A/NID2 Nested MSP 42/21 81%/86%

BC cellular Reinert et al. [44] Methylation EOMES/HOXA9/POU4F2/
TWIST1/VIM/ZNF154 MethyLight 184/35 88–94%/43–67%

BC cellular Berrada et al. [45] Methylation APC/RARβ/survivin MSP 32/NA 93.7%/NA
BC cellular Eissa et al. [32] Methylation RARβ(2)/APC MSP 210/110 87.3%/97.6%

BC cellular Chung et al. [46] Methylation MYO3A/CA10/SOX11/ 
NKX6-2/PENK/DBC1 QMSP 128/110 81–85%/95–97%

BC cellular Costa et al. [47] Methylation GDF15/TMEFF2/VIM Real time-QMSP 51/59 94%/90%

BC Total 
DNA Karnes et al. [48] Mutation 

Methylation

Mutation:FGFR3
Hypermethylation: 
TWIST1/NID2*

Real time-PCR and 
MSP 58/690 87.9%/56.2%

(recurrence)

BC Total 
DNA Shore et al. [30] Mutation 

Methylation

Mutation:FGFR3
Hypermethylation: NID2/

VIM*

PCR-clamping
and MSP 63/670 90.5%/34.5%

(recurrence)

BC cellular Dahmcke et al. [49] Mutation 
methylation

Mutation:TERT/FGFR3
Methylation:SALL3/

ONECUT2/CCNA1/BCL2/
EOMES/VIM

ddPCR
and MethyLight 99/376 97.0%/76.9%

BC cfDNA Brisuda et al. [50] Quantity - Real time-PCR 66/34 42.4%/91.2%
BC cfDNA Casadio et al. [51] DNA integrity c-Myc/BCAS1/HER2 Real time-PCR 51/46(BUD),32(HI) 73%/83%(BUD),84%(HI)
BC cellular van Tilborg et al. [52] AI, LOH 12 microsatellites markers MA 102/NA 58%/NA
BC cellular Traczyk et al. [53] LOH TP53/RB1/CDKN2A/ARF PCR 125/NA 34.3%/NA

NSCLC cfDNA Reckamp et al. [54] Mutation EGFR NGS 60/ NA

T790M:
72%/96%
L858R:

75%/100%
Exon 19 Del: 67%/94%

NSCLC cfDNA Chen et al. [55] Mutation EGFR ddPCR 150/NA 88%/NA

CRC Total 
DNA Song et al. [56] Methylation VIM MethyLight 20/NA 75%/NA

CRC Total 
DNA Su et al. [13] Mutation p53 Restriction-Enriched 

PCR 20/NA 83%/NA

BC = bladder cancer; BUD = benign urogenital diseases; CRC = colorectal cancer; HI = healthy individuals; NSCLC = non-small cell lung cancer; PC = prostate cancer; UTUC = 
upper tract urothelial carcinoma; ddPCR = droplet digital polymerase chain reaction; MSP = methylation-specific PCR; NGS = next generation sequencing; QMSP = quantitative 
MSP; FASAY = functional analysis of separated allele in yeast; MS-MLPA = methylation-specific multiplex ligation-dependent probe amplification; MA = microsatellite analysis; 
AI = allelic imbalance; LOH = loss-of-heterozygosity; NA = not available.
*Panel includs a protein biomarker matrix metalloproteinase(MMP)-2.
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showed a statistically significant correlation in loss of 
heterozygosity (LOH) between saliva and tumor with 
some sets of markers [64]. Salivary DNA promoter 
hypermethylation analysis has also been found to be an 
efficient tool for diagnosis of HNSCC [65–67] (Table 2). 
In 2014, Wei et al. developed a novel core technology, 
called electric field-induced release and measurement 
(EFIRM) to detect EGFR mutations directly in body 
fluids with a multiplexable electrochemical sensor. They 
demonstrated that EFIRM could detect EGFR mutations 
in the saliva of NSCLC patients, with an area under the 
curve (AUC) of 0.94 in the detection of exon 19 deletion 
and an AUC of 0.90 in the detection of L858R mutation 
[75]. Using EFIRM, Pu et al. detected the EFGR exon 
19 deletion and p.L858 mutations in saliva and plasma 
samples of 17 lung adenocarcinoma patients. They found 
a perfect concordance between saliva and tumor samples, 
with an AUC of 1.0 [14]. It is therefore suggested that 
there is a link between the peripheral circulatory system 
and the salivary glands that translocate cfDNA from the 
bloodstream into saliva [14].

Sputum tumor DNA

Sputum contains cells from the lungs and lower 
respiratory tract and provides sufficient tumor DNA for 
detection. Numerous studies have shown that sputum 
tumor DNA could be a promising tool for early detection 
of lung cancer (Table 3). In 1994, Mao et al. detected 
the K-ras mutation and p53 mutation in sputum samples 
of lung cancer patients. Using a PCR-based assay, they 
detected mutant DNA in the sputum of 8 of 10 patients 
with oncogene mutations in their primary tumor prior to 
clinical diagnosis [88]. DNA hypermethylation in sputum 
also helps the diagnosis of lung cancer [89]. Wang et al. 
carried out a meta-analysis to comprehensively review the 
evidence for using sputum aberrant methylation DNA to 
detect NSCLC. They found that the combined sensitivity 
was 62% (95% CI: 0.59–0.65), and specificity was 73% 
(95% CI: 0.70–0.75) [90]. Miglio et al. demonstrated 
that MGMT promoter methylation was present in small 
cell lung cancer and cytological samples were perfectly 
adequate for methylation analysis [91]. Flow cytometric 
DNA analysis of sputum cells also showed good sensitivity 
in the diagnosis of lung cancer. Compared with cytologic 
morphology of sputum cells, sensitivity of sputum DNA 
heteroploidy analysis was significantly higher (82.8% vs 
27.6%, P < 0.005) [92]. 

DNA analysis from sputum was consistent with 
that from plasma in patients with lung cancer. By using 
a fluorescent PCR-based approach, Castagnaro et al. 
were able to assess the consistency of DNA microsatellite 
analysis of induced sputum. They demonstrated a 
significant trend in the percentage of the genetic 
alterations, found both in induced sputum and in blood 
samples, from healthy subjects to heavy smokers and lung 
cancer patients [93]. LOH and microsatellite instability 

(MSI) in at least one locus was observed in 55% of 
patients, in 18% of smokers, and in 4.5% of healthy 
subjects. These results showed that sputum DNA provided 
data that were consistent with those from plasma [93].

Stool tumor DNA

Stool is the fecal discharge from the bowels. It is 
biologically rational to use stool as a non-invasive sample 
for colorectal cancer (CRC). Stool DNA detection has a 
marked improvement of the sensitivity when compared 
to fecal blood tests. Compared to colonoscopy, which is 
currently the dominant screening test, stool DNA detection 
is patient-friendly and free from unpleasant cathartic 
bowel preparations and diet or medication restrictions. 
Furthermore, colonoscopy is operator dependent and 
has been shown to be not as effective detecting proximal 
lesions [94]. Stool DNA testing detects proximal and distal 
colorectal neoplasms equally well. 

According to a meta-analysis involving 7524 patients, 
the pool sensitivities of stool DNA testing for CRC were 
48% for single-gene and 77.8% for multiple-gene assays, 
and the specificities were 97% and 92.7%, respectively 
[95]. In a cross-sectional study including 9989 participants, 
Thomas et al. evaluated the effectiveness of multitarget stool 
DNA (mt-sDNA) test in colorectal-cancer screening. The 
mt-sDNA test included quantitative molecular assays for 
K-ras mutations, aberrant NDRG4, and BMP3 methylation, 
and β-actin, plus a hemoglobin immunoassay. The 
sensitivity for detecting colorectal cancer was significantly 
higher with mt-sDNA test than immunochemical test (FIT) 
(92.3% vs. 73.8%, p = 0.002) [96]. 

Besides CRC, stool tumor DNA can also be 
detected in other digestive system neoplasms. In 1994, 
Caldas demonstrated the presence of K-ras mutation in 
the stool of pancreatic cancer patients [97]. In a more 
recent work, Kisiel et al found a sensitivity of 67% and 
a specificity of 90% in detecting pancreatic cancer with 
a combination of stool mutated K-ras and methylated 
BMP3 detection [98]. 

Plasma based DNA tests, especially marking the 
aberrant methylation of SEPT9 gene, have been evaluated 
as a potential screening tool for CRC and advanced 
adenomas [99]. Ahlquist et al. conducted a case-control 
study to compare the sensitivities of multimarker stool 
DNA test and plasma methylated SEPT9 test in identifying 
patients with large adenomas or CRC. Their results 
demonstrated that mt-sDNA test had a significantly greater 
level of sensitivity than the plasma methylated SEPT9 
test for detection of both CRC and large adenomas (87% 
vs. 60% CRC sensitivity and 82% vs. 14% adenoma 
sensitivity) [100]. The high sensitivity of stool DNA test 
may be related to disproportionately copious exfoliation 
of cancer cells, remarkably large functional surface area of 
neoplasms, enhanced survival of shed dysplastic cells, and 
relative stability and informativeness of tumor-associated 
DNA changes [100]. 
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Pleural tumor DNA
Pleural effusions arise from a variety of systemic, 

inflammatory, infectious and malignant conditions. 
Malignant pleural effusion (MPE) is a devastating 
complication caused by a series of cancers, including 
lung cancer and mesotheliomas. Positive cytologic or 
tissue confirmation of malignant cells is necessary to 

establish a diagnosis. However, the sensitivity of pleural 
fluid cytological analysis is relatively low. Molecular 
biology techniques, such as analyses of DNA mutation 
and methylation status, have provided novel diagnostic 
tools for MPEs.

In 2006, Kimura et al. assessed the pleural effusion 
of 43 known NSCLC patients and found mutated EGFR 

Table 2: Saliva tumor DNA detection in HNSCC

Author Type Gene Method Patients/Controls Sensitivity/
Specificity

Sun et al. [68] Methylation TIMP3 QMSP 197/NA NA/NA
Gaykalova et al. [69] Methylation ZNF14/ZNF160/ZND420 QMSP 59/ NA 57.6%/100%

Ovchinnikov et al. [70] Methylation MED15/PCQAP MSP 46/49(5′-CpGs)
44/45(3′-CpGs)

70%/63%  
(5′-CpGs)
68%/58%  
(3′-CpGs)

Rettori et al. [71] Methylation CCNA1/DAPK/DCC/MGMT/
TIMP3 QMSP 146/60 55%/76%

Demokan et al. [72] Methylation KIF1A/EDNRB QMSP 71/61 77.4%/93.1%

Righini et al. [67] Methylation TIMP3/ECAD/p16INK4a/MGMT/
DAPK/RASSF1 QMSP 60/ NA 78.3%/ NA

Ovchinnikov et al. [73] Methylation RASSF1A/DAPK1/ p16INK4a MSP 143/31 80%/87%
Schussel et al. [74] Methylation EDNRB/DCC QMSP 48/113 46%/72%

MSP = Methylation-Specific PCR; QMSP = Quantitative MSP; NA = not available.

Table 3: Sputum tumor DNA detection in lung cancer

Author Type Gene Method Patients/
Control

Sensitivity/
Specificity

Konno et al. [76] Methylation p16INK4a/APC/RARβ MSP 78/95 78%/79%
Wang et al. [77] Methylation p16INK4a PCR 34/21 32%/100%

Belinsky et al. [78] Methylation
p16INK4a /DAPK/H-cadherin/

PAX5α/PAX5β/MGMT/
RASSF1A

MSP 53/118 85%/35%

Olaussen et al. [79] Methylation HOX/p16INK4a/MAGE/MAGE MSP 22/56 96%/79%
Cirincione et al. [80] Methylation RARβ2/p16INK4a/RASSF1A MSP 18/112 50%/38%
Georgiou et al. [81] Methylation p16INK4a MSP 80/40 69%/76%

Shivapurkar et al. [82] Methylation 3-OST-2/RASSF1A/ p16INK4a /
APC

Quantitative 
Real time-PCR 13/23 62%/100%

van der Drift et al. [83] Methylation RASSF1A RT-globin PCR 28/68 46%/99%
Hwang et al. [84] Methylation HOXA9 MSP 76/109 71%/55%
Zhang et al. [85] Methylation p16INK4a MSP 44/20 61%

Destro et al. [86] Mutation 
methylation

Mutation: K-ras
Methylation: p16INK4a

PCR-RFLP and 
MSP 50/100 75%/96%

Wang et al. [87] Methylation, 
LOH, MSI

methylation: p16INK4a/RARβ
LOH: D9S286/D9S942/
GATA49D12/D13S170

MSI: D9S942

MSP
LOH analyses 79/22 81%/72%

MSP = Methylation-Specific PCR; PCR-RFLP = PCR Restriction Fragment Length Polymorphism; MSI = microsatellite 
instability; LOH = loss of heterozygosity.
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in 11 of 43 cases [101]. Using peptide nucleic acid (PNA)-
mediated real-time PCR clamping, Yeo et al. detected the 
EGFR mutation in pleural effusion of NSCLC patients 
with a sensitivity of 89% and a specificity of 100% [102]. 
Benlloch et al. examined the promoter methylation status 
of 4 genes (DAPK, RASSF1A, RARβ, p16INK4a) in patients 
with pleural effusion. Abnormal DNA methylation was 
detected in 58.5% of malignant pleural effusions, while 
in 0% of patients with benign pleural effusions [103]. 
Fujii et al. detected hypermethylated RASSF1A, p16INK4a, 
RARβ in both malignant pleural mesothelioma (MPM) 
and lung cancer. They found that the methylation ratios 
for the three genes were significantly higher in lung cancer 
than in MPM, which suggested that pleural fluid DNA 
could be a possible marker for differentiating MPM from 
lung cancer [104].

Using high resolution melting (HRM) analysis, 
Lin et al. assessed the pleural cfDNA and pleural cellular 
DNA of 13 known NSCLC cancer patients with EGFR 
mutation in matched biopsy tumor tissues, and found 
mutated EGFR in 12 and 9 of 13 cases, respectively [105]. 
Similar results were reported by Liu et al. using 
amplification refractory mutation system. Higher 
sensitivity of pleural cfDNA might be due to the tumor 
cells damaged under high speed of centrifugation, and 
DNA fragments were released from the nucleus, making 
up the dominant components of the supernatant [106]. 
CSF tumor DNA

Circulating tumor DNA has been detected in a 
variety of cancers. However, it is rarely found in patients 
with isolated brain tumors, presumably owing to the 
blood-brain barrier [107]. CSF is a clear, colorless body 
fluid that bathes the brain and spinal cord. It circulates 
nutrients and chemicals filtered from the blood and 
removes waste products from the brain. Examining the 
fluid can be useful in diagnosing many diseases of the 
nervous system, including brain tumors. 

CSF tumor DNA provides a minimally invasive 
method to assess the genomic alterations of the tumor and 
monitor the therapy effect that helps both diagnosis and 
treatment. Using next generation sequencing approach, 
Pentsova et al. sequenced 341 cancer-associated genes in 
CSF of 53 patients with suspected or known CNS cancers. 
They detected high-confidence somatic alterations in 63% 
(20 of 32) of patients with CNS metastases of solid tumors, 
50% (6 of 12) of patients with primary brain tumors, and 
0% (0 of 9) of patients without CNS involvement by 
cancer [108]. Wang et al. found that all medulloblastomas, 
ependymomas, and high-grade gliomas that abutted a CSF 
space or cortical surface were detectable (100% of 21 
cases; 95% CI = 88–100%), whereas no CSF tumor DNA 
was detected in patients whose tumors were not directly 
adjacent to a CSF reservoir [109]. 

In De Mattos-Arruda et al.’s seminal work, CSF 
ctDNA was identified in brain primary and metastatic 
tumors and represented private mutations from CNS 

lesions. Furthermore, sensitivity of ctDNA for somatic 
mutations of the CNS was higher than plasma DNA in 
patients with a CNS-restricted disease (58% vs. 0%, 
p = 0.0006). While in patients with the abundant visceral 
disease, the sensitivity of CNS DNA and plasma DNA was 
comparable (60.5% vs. 55.5%). The investigators further 
monitored the change of mutant allelic frequency (MAF) 
of CSF DNA and plasma DNA in a serial study. MAFs 
of CSF DNA decreased with surgical resection and/or 
responses to systemic therapy and increased with tumor 
progression [7]. Similar findings were also presented by 
Pan et al. The median concentration of cfDNA in CSF 
is lower than that in plasma (2.1 ng/mL vs. 7.7 ng/mL).  
However, the ability to detect mutations in CSF is stronger 
than in plasma in brain tumor patients with low systemic 
metastatic burden [19]. EGFR mutation in CSF was 
also detected in a case with suspected leptomeningeal 
metastasis from EGFR mutant lung adenocarcinoma, 
which indicates the characterization of brain tumor 
genomic aberrations through CSF DNA analysis is 
possible. Very few cells are present in CSF under routine 
conditions (0–5 cells/L). The scarcity of cells in CSF may 
reduce the background noise from normal DNA when 
detecting mutations [19].

CONCLUSIONS

Non-blood circulating tumor DNA has an enormous 
potential for large-scale screening of local neoplasms 
because of its non-invasive nature, close proximity to 
the tumors, easiness and it is an economically viable 
option. It permits longitudinal assessments and allows 
sequential monitoring of response and progression [110]. 
The direct contact of cancerous cells and body fluid may 
facilitate the detection of tumor DNA, while vascular 
invasion likely happens at a later stage in tumorigenesis, 
which may explain the low sensitivity of plasma-based 
tests [111]. Furthermore, normal DNA always dilutes 
the ctDNA, which may be aggravated by inflammation 
and injury when very high amounts of normal DNA are 
released into the circulation [112]. Altogether, our review 
indicate that non-blood circulating tumor DNA presents 
an option where the disease can be tracked in a simple 
and less-invasive manner, allowing for serial sampling 
informing of the tumor heterogeneity and response to 
treatment.
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