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Muscle synergies, i.e., invariant coordinated activations of groups of muscles, have
been proposed as building blocks that the central nervous system (CNS) uses to
construct the patterns of muscle activity utilized for executing movements. Several
efficient dimensionality reduction algorithms that extract putative synergies from
electromyographic (EMG) signals have been developed. Typically, the quality of synergy
decompositions is assessed by computing the Variance Accounted For (VAF). Yet, little
is known about the extent to which the combination of those synergies encodes
task-discriminating variations of muscle activity in individual trials. To address this
question, here we conceive and develop a novel computational framework to evaluate
muscle synergy decompositions in task space. Unlike previous methods considering
the total variance of muscle patterns (VAF based metrics), our approach focuses on
variance discriminating execution of different tasks. The procedure is based on single-trial
task decoding from muscle synergy activation features. The task decoding based metric
evaluates quantitatively the mapping between synergy recruitment and task identification
and automatically determines the minimal number of synergies that captures all the
task-discriminating variability in the synergy activations. In this paper, we first validate
the method on plausibly simulated EMG datasets. We then show that it can be applied to
different types of muscle synergy decomposition and illustrate its applicability to real data
by using it for the analysis of EMG recordings during an arm pointing task. We find that
time-varying and synchronous synergies with similar number of parameters are equally
efficient in task decoding, suggesting that in this experimental paradigm they are equally
valid representations of muscle synergies. Overall, these findings stress the effectiveness
of the decoding metric in systematically assessing muscle synergy decompositions in task
space.
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INTRODUCTION
The question of how the central nervous system (CNS) coor-
dinates muscle activity to produce movements is central to the
understanding of motor control (Tresch et al., 1999). The human
brain has to deal with a redundant musculoskeletal system com-
prising of approximately 600 muscles actuating approximately
200 joints. It has been suggested that the CNS reduces the com-
plexity of this control problem by exploiting various types of
modularity present in the motor system (Bizzi et al., 2002, 2008;
Flash and Hochner, 2005; Berret et al., 2009). A prominent exam-
ple of such modularity is given by muscle synergies (D’Avella
et al., 2003; Ting and McKay, 2007), loosely defined as stereo-
typed patterns of coordinated activations of groups of muscles.
According to this hypothesis, the muscle patterns driving move-
ments originate from linear combinations of a small number of
synergies presumably recruited by a premotor drive generated by

some neuronal population (Delis et al., 2010; Hart and Giszter,
2010).

A relatively standard approach to individuate putative muscle
synergies from EMG recordings of multiple muscles (Figure 1B)
while subjects perform a variety of motor tasks (Figure 1A) is
to first apply dimensionality reduction techniques to decompose
the recorded EMGs into a set of synergies (Figure 1C), and then
to assess validity of the decomposition using measures of good-
ness of approximation such as the Variance Accounted For (VAF)
(D’Avella et al., 2006; Torres-Oviedo et al., 2006). This analyti-
cal approach has held valuable insights and hypotheses about the
structure of modularity in muscle space.

Yet, actions are defined in task space and evaluation of the
functional role of muscle synergies requires relating them explic-
itly to the execution of motor tasks (Todorov et al., 2005;
Nazarpour et al., 2012; Ting et al., 2012). For this reason, the
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FIGURE 1 | Schematic representations of the logics of our procedure.

(A) Sketch of the kinematics of five joints during the execution of a center-out
movement to target P4 (referred to as task T4 in the following). (B) EMG
signals from 9 muscles are recorded in each trial with surface EMG devices

during movement execution. (C) Muscle synergies are extracted from the
whole dataset and the corresponding synergy parameters are computed for
each trial. (D) We finally decode which motor task is performed in each trial
from the extracted synergies and activation coefficients.

analytical framework needed to critically test synergy decompo-
sitions on empirical data should include additional elements that
are currently not considered systematically. First, synergies must
constitute not only a low dimensional but also a functional rep-
resentation of a variety of motor tasks (Overduin et al., 2008).
Thus, to evaluate how well muscle synergy recruitment relates to
differences across motor tasks, we ought to quantify how well the
executed motor tasks can be distinguished on the basis of the syn-
ergy activation coefficients (Brochier et al., 2004; Torres-Oviedo
and Ting, 2010; Chvatal et al., 2011).

Second, the CNS generates appropriate motor behaviors on
single trials, thus synergy recruitment must accurately describe
single-trial muscle activations (Tresch et al., 1999; Torres-Oviedo
and Ting, 2007; Roh et al., 2011; Ranganathan and Krishnan,
2012). Third, to evaluate the extent to which muscle synergies
implement a dimensionality reduction, the number of syner-
gies that discriminate among different task-related movements
must be correctly identified and compared to both the degrees
of freedom of the musculoskeletal system (e.g., number of mus-
cles) and/or the number of tasks (Ting and McKay, 2007). The
estimation of which synergies are needed to fully describe all
the task-discriminating movement variations is therefore crucial.
Moreover, muscle synergies can contribute to motor function
even if their activations do not depend on the task at hand (e.g., if
they relate to body posture or reflect biomechanical constraints).
To understand the function of a putative set of synergies, it is
important to be able to easily tease apart task-dependent and
task-independent synergies.

In practice however, not only the identity of these synergies,
but also their number and their contribution to task discrimi-
nating variations, is unknown a priori. To select the number of
synergies, the most widely used criteria rely on the dependence
of the amount of variance explained upon the number of syner-
gies. However, criteria solely based on VAF depend substantially
also on factors not related to task execution, such as noise (neu-
ral variability, measurement fluctuations etc.) and preprocessing
(filtering, averaging of EMG signals etc.) and cannot distinguish
synergy that describe task-to-task variations from synergies that
do not. We argue that synergy model selection should reflect not

only the reconstruction of the dataset but also include a way
to assess the reliability of the associated mapping from synergy
recruitment to motor task identification.

To address these needs, here we propose, implement and val-
idate on EMG data a method (schematized in Figure 1) for
predicting, on a single-trial basis, the motor task from the syn-
ergy activation parameters. The method is based on quantifying
the task discriminability afforded by one or more synergies, and
then using this for an automated objective selection of the mini-
mal set of synergies containing all information about such salient
task-related differences in synergy activation patterns. We validate
the robustness and applicability of the method using simulated
EMG datasets. We finally apply it to real EMG recordings during
a reaching task to illustrate how this method may be used for indi-
viduating synergy sets relevant for the execution of a given set of
tasks, and for evaluating in task space the effectiveness of different
types of muscle synergy decompositions.

MATERIALS AND METHODS
MUSCLE SYNERGY EXTRACTION
To identify muscle synergies, we used the time course of EMG
activity of all recorded/simulated muscles in all individual trials
for each task. We considered two well-established mathemati-
cal models for the representation of muscle patterns as synergy
combinations: synchronous and time-varying.

Synchronous synergy model
We used the Non-negative Matrix Factorization (NMF) algorithm
(Lee and Seung, 1999) to extract synchronous synergies. In this
model, the EMGs are represented as a linear combination of a
set of time-invariant activation balance profiles across all muscles
activated by a time-dependent activation coefficient:

ms(t) =
N∑

i = 1

cs
i (t)wi + εs(t) (1)

where ms(t) is again the EMG data of all muscles at time t; wi is the
synergy vector for the i-th synergy; cs

i (t) is the scalar coefficient for
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the i-th synergy at time t; N is the total number of synergies com-
posing the dataset; and εs(τ) is the residual (e.g., noise). N is an
input to the NMF algorithm, so we varied the number of extracted
synergies from 1 to 8. In this case, the sample-independent muscle
synergies are time-invariant vectors and the parameters that have
to be modified in each sample s are the time-varying waveforms
cs

i (t) (Cheung et al., 2005)-the superscript s is used to denote
sample-dependent quantities.

Time-varying synergy model
We used the time-varying synergies model first introduced in
(D’Avella and Tresch, 2002). According to it, a muscle pattern
recorded during one sample s is decomposed into N time-varying
muscle synergies combined as follows:

ms(t) =
N∑

i = 1

cs
i wi(t − ts

i ) + εs(t) (2)

where ms(t) is a vector of real numbers, each component of
which represents the activation of a specific muscle at time t;
w(τ) is a vector representing the muscle activations for the i-th
synergy at time τ after the synergy onset; ts

i is the time of syn-
ergy onset; cs

i is a non-negative scaling coefficient; and εs(τ) is
the residual (e.g., noise). This is a linear model providing a very
compact representation of the muscle activity during one sam-
ple, since it has only two free parameters (one amplitude and
one time coefficient) for each synergy (D’Avella et al., 2006).
Note that the synergies wi are sample-independent, whereas the
parameters ts

i and cs
i must be adjusted for each sample (i.e.,

trial or task).
We fed the dataset to the time-varying synergies extraction

algorithm to identify a set of muscle synergies and their activation
coefficients that reconstructed the entire set of muscle patterns
with minimum error. The number of extracted synergies N is a
parameter of the model, and thus we repeated the extraction with
a number of synergies ranging from 1 to 8. In order to minimize
the probability of finding local minima, for each N, we ran the
algorithm 10 times using different random initializations of the
synergies and coefficients and selected the solution with the low-
est reconstruction error. We used a convergence criterion of ten
consecutive iterations for which the average error was decreased
by less than 10−6. After extraction, the synergies (and the corre-
sponding coefficients) were normalized to their maximum muscle
activations.

Synergy similarity
We assessed the robustness of the synergy sets extracted from dif-
ferent experimental datasets as done in (D’Avella et al., 2003).
In brief, we quantified the similarity between pairs of synergies
as their correlation coefficient. For evaluating the similarity of
the whole ensembles of synergies recorded in different datasets,
we started by selecting the pair with the highest similarity, and
then the synergies in that pair were removed from their sets. We
then computed the similarities between the remaining synergies
and repeated this procedure until all synergies in the smallest
set had been matched. In the case of time-varying synergies, we
computed the correlation coefficient of the two synergies over all

possible delays and selected the delay that maximized similarity
(see D’Avella et al., 2003 for details).

CLASSICAL VAF-BASED CRITERIA FOR ASSESSING THE VALIDITY OF
SYNERGY DECOMPOSITIONS AND FOR SELECTING THE SMALLEST
SET OF SYNERGIES
The purpose of this study is to develop a methodology to select, in
a considered dataset, the smallest set of synergies that accounts for
all task-discriminating variability in the recorded EMG dataset.
Before we describe this new methodology, in this Subsection we
briefly summarize the current methodology to choose the set of
synergies used to decompose a dataset.

Synergy selection can be cast as a model selection problem,
because different synergy decompositions are obtained when
varying the number of extracted synergies. In the literature, there
are typically ad-hoc criteria to assess the number of synergies, all
based on the dependence of the amount of explained variance on
the number of synergies extracted (N). This VAF is a measure of
how well the actual muscle patterns can be fitted with a given set
of synergies. The VAF of each synergy decomposition (D’Avella
et al., 2006) is defined as follows:

VAF = 1 −

S∑
s = 1

T∑
t = 1

{
ms(t) − m̂s

(t)
}2

S∑
s = 1

T∑
t = 1

{
ms(t) − m̄

}2
. (3)

where s indexes samples and t indexes time steps; m̂s
(t) =∑N

i = 1 cs
i wi(t − ts

i ) for the time-varying synergies and m̂s
(t) =∑N

i = 1 cs
i (t)wi for the synchronous synergies model and m̄ is the

mean (over samples and time steps) activation vector.
To detect the correct number of synergies from the VAF, there

are four main existing criteria all based on the “VAF curve,” i.e.,
the function quantifying the dependence of the VAF on the num-
ber of synergies extracted (N): (a) the point in the VAF curve at
which a threshold (usually 0.9) is exceeded (“VAF-T” criterion)
(Torres-Oviedo et al., 2006), (b) the point at which the highest
change in slope (the “elbow”) is observed (“VAF-E”) (Tresch et al.,
2006), (c) the point at which the curve “plateaus” to a straight
line (“VAF-P”) (Cheung et al., 2005) and (d) the point at which
any further increase in the number of extracted synergies yields
a VAF increase smaller than 75% of that expected from chance
(“VAF-S”) (Cheung et al., 2009b). VAF-S is implemented by first
shuffling the EMG data across muscles and time steps and then
extracting synergies from this “randomized” dataset. The VAF
curve obtained from this decomposition exhibits an almost lin-
ear increase. Comparison of its slope with the slope of the real
VAF curve at its point gives the selected number of synergies.

NEW TASK-DECODING BASED CRITERION FOR ASSESSING THE
VALIDITY OF THE SYNERGY DECOMPOSITION AND FOR SELECTING
THE SMALLEST SET OF SYNERGIES
In this section, we present an additional method to quantita-
tively evaluate muscle synergies in task space and to automatically
identify the smallest set of synergies that captures all the vari-
ance describing single-trial task-to-task variations in the dataset.
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To this aim, we first used a single-trial decoding analysis to quan-
tify how well the single-trial coefficients of individual synergies
or groups thereof discriminate between different tasks. A simi-
lar analysis has been implemented in the past in the context of
muscle synergies (Brochier et al., 2004; Weiss and Flanders, 2004;
Overduin, 2005) and in studies of modularity in the kinematics
space (Santello and Soechting, 1998; Santello et al., 1998; Jerde
et al., 2003). Intuitively, our reasoning is that VAF includes both
the “interesting variance” (the one related to variations in syn-
ergy recruitment across tasks) and the “less interesting variance”
(the one unrelated to variations in synergy recruitment across
tasks and in some cases reflecting various sources of noise). In
some condition, the presence of the latter variance may make
difficult the selection of the correct number of synergies. Also,
the removal of “noise” variance using VAF requires the exper-
imenter’s intuition and partly arbitrary or ad-hoc criteria (see
section “Classical VAF-Based Criteria for Assessing the Validity
of Synergy Decompositions and for Selecting the Smallest Set
of Synergies” above). Our synergy evaluation method overcomes
this problem by singling out (by single-trial task decoding) only
the task-discriminating variance and then studying the depen-
dence upon the number of synergies of this part of the variance.

Task decoding based metric
For a given set of synergies extracted via classical dimensionality
reduction techniques (e.g., NMF), we defined the new met-
ric as the decoding performance, i.e., the percentage of correct
decoding of individual trials, based on the single-trial measure
of their activation coefficients (or some parameters of them).
To avoid inflating artificially the decoding performance because
of data over-fitting, each trial was decoded based on the dis-
tribution of all other trials (decoding with leave-one-out cross-
validation).

The task-decoding metric for determining the minimal set
of synergies potentially depends on the choice of an algorithm
used to decode the stimuli. Thus, to test the consistency of
the results with respect to the details of the underlying cal-
culations, we evaluated the performance of different decoding
algorithms.

Here we used the following algorithms: (i) A linear discrim-
inant algorithm (LDA), which worked as follows. For each pair
of classes (i.e., motor tasks to be decoded), it first projects the
N-dimensional values onto a hyperplane (i.e., a linear decision
boundary) where the samples of each class are optimally sep-
arated. The direction of this line is the one that maximizes
the ratio of the between-class over the within-class distances.
Then, the trial to be predicted is assigned to one of the two
classes by taking the one that has the minimum Euclidean dis-
tance in the direction of the decision boundary. An example
of the decoding procedure using 2 pairs of synergies to decode
the eight different motor tasks is given in Figure 6E. The LDA
has determined the decision boundaries for classifying the tri-
als to the motor task performed, and as a result, has separated
the 2-dimensional space into eight regions, one for each task.
Each point is assigned to the class represented by the colored
region on which it lies. (ii) The quadratic discriminant (QDA),
i.e., a discriminant algorithm that assumes unequal variances

across classes leading to quadratic decision boundaries. (iii) The
Naive Bayesian classifier (NB) which assumes that data points are
independent with Gaussian in-class distributions and calculate
the most likely class using Bayes theorem. (iv) The k-Nearest-
Neighbors classifier with Euclidean distances (k-NN) (Duda
et al., 2001). We set the number of neighbors k (a free param-
eter) to k = 10 because empirical investigations revealed that
this selection maximized decoding performance for the dataset
examined.

Unless otherwise stated, in this paper we relied on decod-
ing using a LDA, because of its high computational speed and
performance on the datasets considered here.

Automated procedure for selecting the minimal number of
synergies based on task decoding
From the proposed decoding based metric, we developed an auto-
mated procedure to select the minimal number of synergies. This
model selection technique is based upon the progressive eval-
uation of the statistical significance of the task-discriminating
information added when progressively increasing the number of
synergies in the decomposition model. After evaluating decod-
ing performance with N = 1 synergy, the number of synergies in
the decomposition model increases step by step, until the increase
of synergies does not gain any further statistically significant
increase of decoding performance. The procedure is automatic
because of this statistical test of significance. In this way, the
chosen set of N synergies is the smallest decomposition that cap-
tures all available task-discriminating variance within the synergy
space.

Crucial to this selection procedure is the test to determine if
adding one more synergy significantly increases decoding perfor-
mance. We needed to ensure that the different dimensionality of
two models with N and N + 1 synergies does not lead to any arti-
factual difference in the computed percent correct values. Thus,
we designed the statistical test as follows. For a given value N,
we compare the decoding performance of the synergy parame-
ters when using the N synergies with the decoding performance
of the parameters of all subsets consisting of N − 1 synergies plus
the parameters of the N-th synergy pseudo-randomly permuted
(“shuffled”) across conditions. We repeat this shuffling procedure
a number of times (100 in our implementation) to obtain a non-
parametric distribution of decoding performance values in the
null hypothesis that the additional synergy does not add to the
decoding power of the synergy decomposition. In the following
we evaluated this significance at the p < 0.05 threshold. The sta-
tistical threshold for significant increase of decoding performance
was graphically highlighted in the plots of the decoding perfor-
mance (% correct) as a function of the number of synergies as a
shaded area indicating the 95% confidence intervals constructed
using this bootstrap procedure (Figure 2C). In this way, if the
original decoding performance curve enters in the shaded area
at the N-th synergy, the N-th dimension does not increase signif-
icantly the decoding performance and therefore this suggests that
N − 1 synergies should be selected. The selected number of syner-
gies can be simply visualized as the smallest value of N for which
decoding performance lies above the no-significance (shaded)
area.
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FIGURE 2 | Robustness of our method applied to synchronous synergies

when varying the number of “ground-truth” synergies and the sources

and levels of noise. (A) Set of five simulated synchronous synergies used as
the “ground-truth” for testing our method. (B) The five synergies recovered

when the NMF algorithm was applied to the simulated EMG data. In all
cases, the original synergies were accurately reconstructed. (C–E) VAF (black
curves whose scale is indicated in left y-axes) and decoding performance

(Continued)

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Delis et al. Task decoding with muscle synergies

Choice of the synergy coefficients’ parameters
In practice, task decoding is applied in synergy space, thus it
requires working with synergy activation variables. The nature of
such activation coefficients depends on the synergy model con-
sidered. After the decomposition into N synergies, the pattern of
synergy activation in each trial can be described by a set of scalar
parameters, vectors and temporal waveforms. To illustrate the
method clearly, we first restricted our analysis to only one single-
trial parameter per synergy for both models (time-varying and
synchronous synergies), so each trial was represented by N values.
The time-varying synergy model has two single-trial parame-
ters (one scaling coefficient and one time delay) per synergy. We
used the scaling coefficients which were shown to be more task-
informative than the time-delays (see section “Results”). In the
case of the synchronous model, we had to extract the single-
trial parameters from the time-varying activation coefficient. We
decided to use the time integral of the activation coefficient over
the entire task period because preliminary investigations (not
shown) revealed that integral measures largely outperformed the
decoding performance obtained with other measures based on
single points such as timing and amplitude of first or second acti-
vation peak (Karst and Hasan, 1991; Flanders et al., 1996) and
measures based on Principal Component Analysis of the activa-
tion time course (Optican and Richmond, 1987). The use of the
integrated EMG activity is standard and has been extensively used
in biomechanical studies (e.g., Winter, 2009).

Then, we went on to investigate whether taking more single-
trial parameters into account would increase the task identifi-
cation power of each type of synergy decomposition. For the
time-varying model, we evaluated the decoding performance
using both single-trial parameters (scaling coefficients and time
delays). For the synchronous model, the time-varying activa-
tion coefficients of the synergies add a large number of extra
parameters (up to an independent parameter per time point if
activation varied fast enough) that could potentially carry more
task-discriminating information. To test for the possibility that
complex multi-parameter single descriptions of the time course
of activation of synchronous synergies carry more information,
we progressively refined the parameterization of the single-trial
activation coefficients by binning them in smaller bins and we
computed the decoding performance as a function of the number
of bins.

EMG RECORDING PROCEDURES
To validate the analytical methods developed here, we applied
them to a set of EMGs recorded during the execution of a reaching
task, as described in the following.

Four healthy right-handed subjects (AM, AB, AK, and ES)
participated voluntarily in the experiment. The experiment

conformed to the declaration of Helsinki and informed consent
was obtained from all the participants, which was approved by
the local ethical committee ASL-3 (“Azienda Sanitaria Locale,”
local health unit), Genoa. The protocol consisted in executing
reaching multijoint movements (flexions and extensions of the
shoulder and elbow joints) in the horizontal plane (Figure 1A).
The subjects sat in front of a table and were instructed to per-
form fast one-shot point-to-point movements between a central
location (P0) and 4 peripheral locations (P1-P2-P3-P4) evenly
spaced along a circumference of radius 40 cm. Subjects were sup-
porting the weight of their arm by themselves; no device was
used to remove static gravitational effects. The upper trunk was
not restrained, but analysis of the kinematics data showed that
its movement during the investigated tasks was negligible. The
subjects made center-out (fwd) and out-center (bwd) movements
(Figure 1A) to each one of the 4 targets. In total, the experimental
protocol specified 8 distinct motor tasks denoted by T1, . . . ,T8,
each one of which was performed 40 times, thus the entire exper-
iment consisted of 8 tasks × 40 trials = 320 samples. The subjects
were asked to perform such a relatively high number of repetitions
of each task because this was useful for the validation of the single-
trial algorithms and of the impact of trial-to-trial variability on
the generation of muscle activation patterns. This experimental
design can be viewed as a variant of the one proposed in (D’Avella
et al., 2006, 2008) since performance of each one of the 8 motor
tasks requires executing movements to 8 different directions. The
main difference with respect to this previous work is that instead
of considering movements from the center of a circle to 8 points
on its circumference, we analyze forward and backward move-
ments between the center and 4 of these points. The order with
which the movements were performed was randomized.

Electromyographic (EMG) activity was recorded by means of
an Aurion (Milano, Italy) wireless surface EMG system. The EMG
signals were recorded with a sampling rate of 1 kHz from the
following muscles: (1) finger extensors (FE), (2) brachioradialis
(BR), (3) biceps brachii (BI), (4) triceps medial (TM), (5) triceps
lateral (TL), (6) anterior deltoid (AD), (7) posterior deltoid (PD),
(8) pectoralis (PE), (9) latissimus dorsi (LD) (Figure 1B). The
EMGs for each trial were digitally full-wave rectified, low-pass
filtered (Butterworth filter; 20 Hz cutoff; zero-phase distortion),
their duration was normalized to 1000 time steps and then the
signals were integrated over 20 time-step intervals yielding a final
waveform of 50 time steps. This is a standard EMG treatment in
muscle synergy studies (see D’Avella et al., 2006). Body kinematics
was recorded by means of a Vicon (Oxford, UK) motion capture
system with a sampling rate of 100 Hz. Six passive markers were
placed on the fingertip, wrist (over the styloid process of the ulna),
elbow (over the lateral epicondyle), right shoulder (on the lateral
epicondyle of the humerus), back of the neck and left shoulder.
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FIGURE 2 | Continued

curves (red curves whose scale is indicated in right y-axes) for datasets
generated from 3 (D (E

we used the “reference” values (a = 0.1 and v = 0.1). The red shaded areas
represent the 5–95% confidence intervals of the bootstrap test for decoding.
(F–H) VAF and decoding performance curves [plotted with the same

conventions as in panels (C–E)] when generating data from five synergies
and varying the simulated noise parameters as follows: increased
signal-dependent noise (a = 0.3, v = 0.1) (F); increased trial-by-trial variability
of the activation coefficients (a = 0.1, v = 0.3) (G); increased
signal-dependent noise and trial-by-trial variability of the activation
coefficients (a = 0.3, v = 0.3) (H).

(C) ), and 5 ) “ground-truth” synergies. For noise levels,, 4
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The kinematics data were low-pass filtered (Butterworth filter,
cut-off frequency of 20 Hz) and numerically differentiated to
compute tangential velocity and acceleration. Movement onset
and movement end were identified as the times in which the
velocity profile of the fingertip superseded 5% of its maximum.
The mean movement duration varied across subjects from 370
to 560 ms. We verified that for all the subjects included in this
analysis none of the muscles showed a systematic change in sig-
nal amplitude across the recordings sessions, which would be an
indication that the EMG sensors were partially detached from the
skin.

GENERATION OF SIMULATED EMG DATASETS
To demonstrate the validity of our method and investigate its
robustness, we tested it on simulated single-trial EMG responses
in which the “ground truth” about which synergy set actu-
ally generated the data was known by construction, and that
contained physiologically plausible sources of single-trial vari-
ance. We constructed two synthetic datasets by linear summation
of a small number (from 2 to 5, depending on the simula-
tion) of either synchronous or time-varying synergies and cor-
rupted them with different physiologically plausible sources of
single-trial variance: motor noise on the synergy activations and
additive signal-dependent noise. The amount of each type of
noise was parameterized by two separate free parameters: v and
a respectively.

The first EMG dataset (simulation of synchronous synergies)
was generated as a weighted combination of set of synchronous
synergies according to Equation 2. The data simulated the acti-
vation of M = 30 muscles used for executing R = 40 repetitions
of each one of T = 15 motor tasks, i.e., 40 × 15 = 600 sim-
ulated samples in total (Figure 2A). The M-dimensional syn-
ergies were drawn from exponential distributions with mean
10 were then normalized to each synergy’s maximum muscle
activation (Tresch et al., 2006). Their number was varied from
N = 3 to 5 and their corresponding activation coefficients were
assumed time-invariant for simplicity (Tresch et al., 2006). The
use of time-invariant activation coefficients is common in the
synchronous synergy framework (Ting and Macpherson, 2005;
Torres-Oviedo et al., 2006). Typically, such time-invariant acti-
vations result from the preprocessing of the EMG signals to
reduce dimensionality in the time domain (e.g., time-averaging
of the muscle activities). However, the model can readily incor-
porate temporal variability too. In our simulations, we assumed
that, to execute a motor task, each one of the N synergies was
activated by a scalar coefficient drawn from a uniform distri-
bution in the [0,1] interval. So, each task was represented as
an N-dimensional vector of activation coefficients. The vari-
ability in the neural motor command, which in turn leads to
trial-to-trial variations of the synergy coefficients in each task,
was modeled as additive white Gaussian noise with covariance
matrix v2I. Hence, we varied the parameter v to modulate
the trial-to-trial variability of the synergy recruitment for each
task.

To construct the second simulated dataset (simulation of time-
varying synergies), we used the time-varying synergies (from
N = 2 to 4) and the corresponding scaling coefficients extracted

from the single-trial experimental data of the typical subject
(Figures 3A,B). Importantly, this simulated dataset was built
such that, without any source of task-unrelated variability, the
underlying set of synergies is theoretically sufficient to produce
the EMG patterns of 9 muscles for the execution of 8 motor
tasks and such that, even with other sources of noise added,
all task-discriminating variations are described by the scaling
coefficients of the “ground-truth” synergies. We computed the
means of the extracted coefficients for each motor task and fit-
ted their distributions with N-dimensional Gaussians. Based on
these data, we modeled the motor noise that corrupts the coeffi-
cients and delays as a Gaussian whose standard deviation (SD) is
a fraction v of the SDs measured on real EMGs. A value v = 1
corresponds to the amount of variability empirically found on
real data, whereas v > 1 corresponds to trial-to-trial synergy
recruitment variability larger than that of the experimental data.
From the resulting Gaussian distributions, we generated 40 sets
of activation coefficients cs

i per task which scaled the extracted
synergies wi(t) according to Equation 1 to generate the simu-
lated EMG dataset consisting of 9 muscles and 40 trials × 8
tasks = 320 samples. The duration of each sample was 50 time
steps.

For both simulations, the resultant data were then corrupted
by task-unrelated variability during movement execution. This
was done by adding the noise term εs(t) in Equations 1, 2. Muscle
activation patterns have been reported to be corrupted by noise
that scales with the amplitude of the motor signal, termed as
signal-dependent noise (Tresch et al., 2006). Such noise whose SD
is proportional to the amplitude of the noiseless EMG was added
on each muscle’s simulated EMG activity. In summary, the two
types of variability included in the generation of the simulated
data set are:

• Additive noise (i.e., trial-to-trial variability) on the activation
coefficients and delays (free parameter v). This is a motor
noise that affects the synergy recruitment itself. This variabil-
ity corresponds to the one depicted thereafter in Figure 4A
bottom.

• Signal-dependent noise, i.e., additive noise whose SD is pro-
portional to the magnitude of the noiseless activation pattern

of an individual muscle m(σ(m) = a(m)
∑N

i = 1 ciw
(m)
i (t), free

parameter a). This noise affects all the muscles independently
and could typically represent variability arising from motor
neurons activity, but also noise related to signal pre-processing
and measurement. This type of variability will generally affect
dimensionality of the data set and corresponds to the one
depicted thereafter in Figure 4A top (actually, it is even more
general because it is not necessarily orthogonal to the synergy
space).

The above simulation parameters were varied to test the
robustness of the proposed method to all sources and different
levels of noise. In all cases, the maximal values of these param-
eters were chosen as the largest values that allowed accurate
reconstruction of the original synergies by the synergy extraction
algorithms.
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FIGURE 3 | Robustness of our method applied to time-varying synergies

when varying the number of “ground-truth” synergies and the sources

and levels of noise. (A) The four time-varying synergies obtained from
experimental recording during arm reaching as four matrices each

representing the activity of 9 shoulder and elbow muscles over 50 time
steps. This set of synergies was used to generate the simulated
data used to test the method on time-varying synergies. (B) Histograms of the

(Continued)
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Conventions as in Figure 2.

FIGURE 4 | A simple illustration of problems faced in assessing the

quality of muscle synergy models. (A) Top: Identification of 2 muscle
synergies (w1 and w2 ) from the activities of 3 muscles executing 3 motor
tasks. The 3-dimensional muscle space is approximated by a linear
2-dimensional synergy space. Bottom: Distributions of the synergy
activation coefficients across trials for the three tasks. The variability of
these distributions determines how reliably synergy recruitment maps onto

task accomplishment. (B) Illustration of the behavior of VAF (black curves
and left y-axes) and decoding performance (red curves and right y-axes) as
a function of the number of extracted synergies under four cases of
extreme (either high or low) levels of variability. The dataset was
generated by combining five synchronous synergies. These examples
indicate that the two metrics assess the role of two different types of
variance in the dataset.

RESULTS
COMPLEMENTARITY OF VAF AND DECODING METRICS FOR
ASSESSING THE VALIDITY OF SYNERGY DECOMPOSITIONS
Before we proceed to a detailed validation of the newly pro-
posed decoding metric, we begin discussing and exemplifying the
complementarity between our decoding metric and the tradition-
ally used VAF metric (Ting and Chvatal, 2011). This is useful to
both illustrate our methodology and justify the need for comple-
menting the current evaluation of muscle synergy models with a
task-space metric.

For this illustration, we simulated the activity of three mus-
cles executing three different tasks (Figure 4; red, blue, green).
For simplicity, we assume that muscle activation is described by
a time-invariant scalar in this preliminary example. In each trial,
the activation of these three muscles can be represented as a point
in the 3-dimensional muscle space [as done in (Tresch et al.,

2006) in simulations and in (Torres-Oviedo et al., 2006; Torres-
Oviedo and Ting, 2007) with real data]. In Figure 4A (top), we
show a total of 30 sample points (10 for each task). Muscle syn-
ergy identification consists in finding basis vectors spanning a
lower-dimensional linear space in which the original data can be
accurately described: in this case we extracted two synergies with
non-negativity constraints (the arrows w1 and w2) that approx-
imate at best the data by a 2-dimensional hyperplane defined
by the 3-dimensional synergy vectors (Figure 4A top). This rep-
resentation is considered good if the approximation error (i.e.,

the residual error r
(j)
⊥ ), defined as the distance of the data points

from the hyperplane, is low. The currently most exploited met-
ric to determine the set of synergies best describing a dataset is
the VAF measure, which quantifies the proportion of variabil-
ity in the EMG data set that is accounted for by the muscle
synergy decomposition (see Equation 3 in section “Materials and
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FIGURE 3 | Continued

coefficients activating the four synergies across the 8 motor tasks
performed. Histograms are plotted as means ± SDs across all trials to
the given task. (C–E) VAF and decoding performance curves for datasets
generated from 2 (D (E

levels, we used the “reference” values (a = 0.1, = 1). (F–H) VAF and

decoding performance curves when generating data from four synergies
and varying the simulated noise parameters as follows: increased
signal-dependent noise (a = 0.5, v = 1) (F); increased trial-by-trial
variability of the activation coefficients (a = 0.1, v = 5) (G); increased
signal-dependent noise and trial-by-trial variability of the activation
coefficients (a = 0.3, v = 3) (H).

(C) ) ) “ground-truth” synergies. For noise
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Methods” for the exact definition). This metric is defined in mus-
cle space. Thus, a high value of VAF means a high quality of
reconstruction of the original muscle pattern (i.e., a relatively low

r
(j)
⊥ ). In this part of the analysis, unsupervised learning only is

performed and the available knowledge about the task is ignored.
However, as outlined in section “Introduction,” VAF alone

cannot tell if, or how well, activations of these synergies describe
variations of movement across different tasks in individual tri-
als, and if two different synergies describe a different or the same
type of task-discriminating variations. In other words, there is
a second and equally important type of variability in the syn-
ergy decomposition that cannot be addressed by the VAF, which
concerns trial-by-trial differences in the recruitment of muscle
synergies. To analyze this, we move to coordinates in the syn-
ergy space (Figure 4A bottom). This variance reflects the spread
of the synergy activation coefficients c(j) for the execution of
the same task. The extent to which this latter variance affects
task discrimination (and thus likely also task execution) can be
assessed by quantifying the identifiability of the task performed
on every trial in the synergy space. This is because execut-
ing a motor task using muscle synergies requires a well-defined
mapping from synergy recruitment to task identification (i.e.,
one possible outcome associated with a given synergy activa-
tion). To quantify the reliability of this mapping on a single-
trial basis we introduced (see section “Task Decoding Based
Metric”) the decoding metric which measures the percentage of
times the task j is correctly predicted by the single-trial acti-
vation coefficients c(j). This additional metric is necessary for
the evaluation of muscle synergy representations with respect to
task identification.

We further illustrate in Figure 4B the complementarity of the
two metrics (VAF and decoding based) by considering EMG
datasets corrupted with extreme levels (either high or low) of both
types of variability described above. These datasets were gener-
ated from the five synchronous synergies shown in Figure 2A (see
section “Materials and Methods” for details) and in all cases the
noise levels were restricted so that the original synergies could
be recovered from the synergy extraction algorithm (Figure 2B).
Note that with very large noise, the original synergistic structure
can be hidden or lost and therefore the extraction algorithm may
fail to extract the correct synergies. Therefore, our analysis relies
on the assumption that NMF’s algorithms were able to recover the
correct synergies (at least for the correct N, which was checked a
posteriori).

First, we considered low levels of both types of variance for
each task (the variance in muscle space, assumed to lie on a
plane that is orthogonal to the synergy space, which characterizes
how the actual muscle pattern varies across trials and the vari-
ance in synergy space, which characterizes trial-to-trial variations
in the synergy recruitment). Note that the distinction between
these two sources of variability is not unrealistic as it may reflect
actual neural noise acting at different levels of the CNS. With
low variance, the VAF metric reveals that five synergies recon-
struct accurately all the muscle patterns and the decoding metric
validates that all the tasks are perfectly discriminable from the
activation coefficients of these synergies (Figure 4B, top left).

Then, we tested the case of very high variance only in r
(j)
⊥ . Because

such variability cannot be written as synergy decomposition (by
hypothesis), the VAF by the extracted synergy decomposition is
never sufficiently high: the high levels of unstructured noise do
not allow a good approximation of the data in a low-dimensional
space. Nevertheless, decoding performance proves that 5 syner-
gies describe all task-to-task differences; therefore these synergies
constitute the minimal set of synergies that guarantees a reli-
able mapping between their activation and task identification
(Figure 4B, top right). On the other hand, when there is a
very high variability in the synergy activations c(j) then the syn-
ergy decomposition cannot distinguish between different tasks
even though the dimensionality reduction is not affected. This
is shown by the decoding performance curve that never exceeds
significantly chance level. Hence, although all the data points still
lie on a 5-dimensional space (VAF = 1 exactly for N = 5), there
is no way to guarantee what task will be executed at fixed activa-
tion of the synergies (in this extreme case, the mapping is even a
uniform random variable –chance level) (Figure 4B, bottom left).

Finally, we consider high variance for both r
(j)
⊥ and c(j) simultane-

ously. As expected, VAF exhibits no saturation point and decoding
performance is at chance level. So, in this case, the identified
synergy decomposition neither reconstructs well the original
(i.e., recorded) muscle activities nor discriminates between tasks
(Figure 4B, bottom right). This “worst case” scenario would typ-
ically invalidate the synergy decomposition because both metrics
yield low scores.

These extreme but theoretically plausible cases exemplify well
the usefulness of a systematic methodology that evaluates quan-
titatively not only the approximation of the muscle space by
the synergy space (addressed by the VAF) but also the mapping
between synergy activation and task identification (addressed
by single-trial task decoding). Such an approach will allow an
objective and automatic assessment of muscle synergy mod-
els/decompositions and thus, it can serve as a model selection
criterion.

It is useful to consider other possible conceptual cases in which
concurrent evaluation of VAF and task decoding may provide
valuable insights. First, consider a case when VAF individuates a
larger set of synergies than that individuated by decoding. The
extra synergies identified by VAF explain a useful amount EMG
variance but do not add any task-discriminating information.
This may happen either because such extra synergies are acti-
vated always in the same way in all tasks (something that can
be tested by verifying that when considered individually they
lead only to random task decoding) or that they do not add any
task discrimination to that already carried by the minimal set of
synergies determined by the decoding metric. Careful decoding
analysis of the individual extra synergies contributing to VAF but
out of the minimal task-decoding set may be useful to individ-
uate synergies (e.g., postural synergies) that may be important
for generating the appropriate movements even if their activa-
tion is constant across tasks. A second possibility is that decoding
selects a larger set of synergies than VAF. This case indicates that
some synergies (because e.g., they have little signal amplitude) do
not explain a large part of the variance of the dataset, yet they
provide unique information about task-to-task differences not
carried even by other synergies in the set with larger amplitude.
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These considerations suggest the potential value and comple-
mentarity of the insights provided by the joint use of VAF and
decoding metrics.

In the following, we aim to show how our new method is cru-
cial in this respect. We will illustrate how the VAF and decoding
curves behave when muscle synergies are extracted from real data
and verify that the method is reliably applicable to a variety of
realistic EMG datasets with different properties giving robustly
correct results.

SIMULATION STUDIES OF THE ROBUSTNESS OF THE
DECODING-BASED METHOD
To demonstrate and test our novel method for selecting the
set of synergies that describe all task-related differences at best,
we used two types of simulated datasets (one for each type of
muscle synergy model, see section “Materials and Methods” for
details). Importantly, in both simulated datasets, which contain
both task-discriminating and non-discriminating (“noise”) vari-
ance, we know by construction the number of synergies sufficient
to describe the entire task-discriminating part of the EMG vari-
ance. This allows a direct evaluation of the performance of the
method against a ground truth. Moreover, by manipulating the
parameters (such as the level of noise, or the number of true
synergies, or the number of samples recorded), we can investi-
gate how these variables affect the quality of synergy detection.
In the following, we first validate the methodology by imple-
menting various tests on the dataset generated by synchronous
synergies and then show that its application extends naturally to
the time-varying synergy model.

Assessment of the method’s performance when applied to
synchronous synergies
Varying the number of “ground truth” synergies. First, we
checked the extent to which our method could identify the correct
set of synergies that generated the data, by varying the number of
ground-truth synergies from which we generated the simulated
EMG data. More precisely, we simulated three, four or five syn-
chronous synergies (see section “Materials and Methods”) and
corrupted them with both types of noise (a = 0.1 and v = 1).
After extracting muscle synergies from the simulated datasets, we
obtained the VAF and decoding curves reported in Figures 2C–E.
In all three cases, the ground-truth sets of synergies that explain
the task-discriminating variations were correctly individuated,
indicating that our method reliably detects synergy sets indepen-
dently of the precise number of synergies.

Varying the sources and levels of noise. We then estimated the
effect of varying the amount of the two types of physiological
noise. In these further investigations, we generated the data using
all 5 simulated synchronous synergies (plotted in Figure 2A). In
particular, we tested how noise differentially affects the selection
of synergies with our decoding method and with standard VAF
criteria. (The threshold for the VAF-T criterion was set to 0.9 in
all subsequent simulations).

We started by generating an EMG dataset with a set of “ref-
erence” values of the noise parameters (a = 0.1 and v = 0.1) on
which we performed the subsequent synergy-identification and

decoding analysis. Figure 2E shows that the decoding method
correctly identified the number of synergies expressing task-
discriminating variance. This already suggests that the decoding
metric is quite robust to the presence of task-irrelevant variance
in the data set.

In the subsequent simulations, we increased the level of one
noise parameter at a time in order to gain some intuition about
the dependence of the VAF and percent correct metrics on these
different sources of noise and also examine the robustness of our
method to higher levels of noise.

First, we examined the impact of increasing the signal-
dependent noise. We increased the signal dependent noise
parameter to a = 0.3 keeping v unchanged. The VAF drasti-
cally decreased indicating its susceptibility to the unstructured
additive noise (Figure 2F). In fact, in the limit of very large addi-
tive noise (e.g., due to very noisy recordings), the VAF curve
exhibited an almost linear increase with low slope implying that
a large number of synergies would be required to explain the
variance of the dataset (see e.g., Figures 2F,H). These findings
highlight a degree of arbitrariness in selecting synergy sets by
setting thresholds purely based on VAF criteria, as VAF contains
also noise variance and thus choice of a good threshold crucially
depends on the amount of noise in the considered dataset. More
specifically, in the high additive noise case, the VAF-based cri-
teria select a very large number of synergies because the curve
neither reaches the 0.9 threshold nor plateaus. On the other
hand, the percent correct metric exhibited robustness to additive
noise demonstrating only a slight decrease (Figure 2F). Hence,
by attempting to decode the task performed, we can discount
task-unrelated variance and we can still identify the synergies that
account for task-discriminating variability in a general way and
separate them from those explaining unstructured noise in the
data.

Second, increasing signal-dependent noise (v = 0.3) does not
change the VAF curve (Figure 2G)- meaning that the whole
dataset can still be reconstructed with low error- but produces
synergies whose activations are more variable across trials, i.e., the
motor tasks are performed in a less stereotyped way, which causes
the decoding performance of the extracted synergies to decrease.
However, although the decoding ability of the extracted synergies
is decreased, our method is still able to detect the four syner-
gies that explain all the task-relevant variability in the dataset
(Figure 2G). Note that in the limit of very large motor noise,
decoding would tend to chance level while the VAF would still
be near 100% (see e.g., Figure 4C). In such an extreme case,
our decoding algorithm would correctly detect that the synergies
(though they explain the variance of the data) cannot be used for
identifying and selecting the task-discriminating movement fea-
tures. In fact, the mapping between synergy activations and tasks
executed would be completely random, proving the non-usability
of this synergistic structure for accurate motor control.

Finally, we increased both types of noise simultaneously (a =
0.3 and v = 0.3). Consequently, both curves fell to lower values.
However, although the VAF curve did not exhibit any elbow or
saturation point, the decoding curve had a clear peak at N = 5
demonstrating the robustness of our approach to high levels of
any type of variability (Figure 2H).
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Varying the number of samples. Because the datasets that can
be obtained experimentally are composed of a limited num-
ber of trials, we investigated how this limitation may affect
the performance of our method. Our aim was to assess the
smallest number of repetitions of each motor task that can
guarantee reliable selection of the set of muscle synergies that
account for all the task identification power. In these simula-
tions we used the same noise levels as the ones in Figure 2E
(a = 0.1 and v = 0.1). We generated 5 repetitions of each sim-
ulated motor task, i.e., 5 trials × 8 tasks = 40 samples, and
corrupted them with 20 different instances of noise yielding

20 different simulated datasets. On these datasets we imple-
mented our decoding-based method and computed how many
times it gave the correct result (five). We repeated the same
when simulating 10 and 20 repetitions of every motor task.
Figure 5A shows that 10 trials per task were sufficient to deter-
mine the five synergies in the vast majority of the algorithm
runs, while when 20 trials were used the algorithm identi-
fied the number of synergies always correctly. In general, we
found (results not shown) that increasing the number of sam-
ples caused a reduction of both the variance of the decoding
performance at fixed number of synergies and of the confidence

FIGURE 5 | Assessing robustness of results. (A,B) Assessing the
number of repetitions per motor task required to guarantee
robustness of our method. Histogram of the distribution of number of
selected synergies across 20 algorithm runs using 5, 10, 20, and 40
trials per task (plotted from top to bottom) for the synchronous
(A) and the time-varying synergies (B). (C) Robustness of results to

choice of single-trial decoding algorithm. Histogram of the percent
correct values computed using four different decoding algorithms for
the synchronous (left) and the time-varying synergies (right). The
discrimination power of the selected synergy set was preserved
across all decoding algorithms. In all tests, we used the “reference”
noise values (a = 0.1,v = 0.1).
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intervals of the “null hypothesis” (indicated as a shaded red area
in Figures 2, 3), which in turn both contribute to increasing
the stability of the method. In the case of five trials, although
the correct number was found in most cases, sometimes the
algorithm underestimated the number of underlying synergies
because relying on only 5 trials per task rendered our test of
statistical significance not reliable. So, the synergies contributing
the least to describing task-related differences were often falsely
excluded.

Using different decoding algorithms. To validate that our results
do not depend on the specific choice of single-trial decoding
algorithm (LDA) we applied our methodology to the simulated
dataset constructed from the five synergies (Figure 2A) corrupted
with the “reference” noise values (a = 0.1 and v = 0.1) and 40
simulated trials per task using a wider range of classification
algorithms (see section “Materials and Methods” for details).
We used these noise levels and number of trials because they
reflect the corresponding values used/computed in our experi-
ment. We tested other three standard decoding algorithms (QDA,
NB, and 10-NN) and found that all of them identified correctly
the set of (five) synergies describing all information about the
task. Moreover, the discrimination power of the synergy decom-
position was revealed to be robust to the assumptions underlying
the classification procedure as the decoding performance was
almost identical for all algorithms (Figure 5C left) (also when
we varied the number of trials and levels of noise, results not
shown).

Extension of the method’s applicability to time-varying synergies
So far, we validated our method on EMG data described by
synchronous synergies. However, it is readily applicable to any
type of representation of muscle activation patterns. To demon-
strate its robustness independently of the underlying model, we
repeated all the tests performed above with simulated data gen-
erated from four physiologically plausible time-varying synergies
(see section “Materials and Methods”). The reference values of
the noise parameters v = 1 and a = 0.1 used in these simula-
tions were set so that the amount of task-discriminating and
non-discriminating variability in the simulated data matched
those measured in the experimental data based on which we
built the simulations. We note that in all cases adding realistic
amounts of noise—as the ones expressed by the parameter val-
ues used in all subsequent simulations—allowed accurate recon-
struction of the shape of the underlying synergies (shown in
Figure 3A).

First, we validated that the method identifies correctly the set
of synergies that generated all task-to-task differences indepen-
dently of the original synergy set dimensionality (Figures 3C–E).
Then, using all four synergies, we examined the method’s robust-
ness to higher levels of both types of variability. Again, the
number of synergies explaining all task-discriminating variations
was reliably specified (Figures 3F–H). The slightly larger confi-
dence intervals of the “null hypothesis” (shaded red area) result
from the larger variance of the estimates of this decomposition
with respect to the synchronous synergies. This can arise from
the non-guaranteed convergence of the time-varying synergy

extraction algorithm and its sensitivity to the initial guess, two
factors that make the output of time-varying decompositions less
stable across simulations.

Following this, we aimed at estimating the minimal number
of trials required to guarantee reliable synergy set selection. Five
trials appeared to be too few for our proposed test of statistical sig-
nificance (Figure 5B). In this case, the assessment of the number
of synergies was not reliable because the distribution of the shuf-
fled surrogates had a very big variance. As a result, any increase
of dimensionality did not increase significantly (with respect to
the shuffled surrogates) the decoding performance and thus, our
method yielded usually one synergy. Therefore, we suggest a min-
imum of 10 repetitions of each motor task for potential future
studies evaluating the importance of trial-to-trial variability in
time-varying synergy extraction.

We note that the minimum of trials required to individuate
correctly the synergy set may depend upon both the number of
muscles recorded by the EMG setup and the level of noise in
a current session. The number of trials needed to identify the
synergy set is likely to increase with the number of recorded
muscles (because decoding in a higher dimensional space with
small dataset is more difficult) and with the level of noise (due to
the difficulty in detecting patterns in noisy conditions). Whereas
our simulations demonstrate that our method can detect reliably
the synergy set with feasible amounts of data, for the reasons
indicated above it is valuable to evaluate the minimum num-
ber of trials at a preliminary stage using simulated data (such
as those considered here) constructed with statistical proper-
ties as similar as possible to the actual experimental data of
interest.

Finally, we examined whether other decoding algorithms yield
the same results for the time-varying synergies too (Figure 5C
right). Indeed, both the identified number of synergies and
their decoding performance were robust once more indicat-
ing the applicability of our method independently of the
properties of the dataset or the details of the mathematical
implementation.

IDENTIFICATION OF THE SMALLEST SYNERGY SET THAT ACCOUNTS
FOR ALL TASK-DISCRIMINATING VARIABILITY IN SINGLE-TRIAL
SYNERGIES EXTRACTED DURING CENTER-OUT POINTING.
To illustrate the ability of our methodology to identify synergy
sets on real data, we applied it to a dataset of EMG activity
recorded during an experimental protocol (fully described in sec-
tion “Materials and Methods”) comprising of many repetitions
of a variety of point-to-point reaching movements. For each one
of the four subjects tested, we formed an EMG matrix of dimen-
sions 9 muscles × (50 time steps × 320 samples) consisting of
all the movement-related EMG activity (rectified and filtered) of
the 9 muscles for all samples recorded. In order to illustrate our
methodology first, we present extensive results from the analy-
sis of only one (”typical”) subject’s EMG dataset. In such realistic
situation, the correct number of synergies is unknown and the
amount of the different types of noise is not available. Here we
test the extent to which extracted synergies can express single-trial
task-related differences and how many synergies are selected by
our method (compared to the VAF-based criteria). A summary
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of the results of all four datasets is reported at the end of the
following section.

Synchronous synergy identification
We first illustrate the application of our method to recorded
synchronous synergies. We extracted using the NMF algorithm

(see section “Materials and Methods”) single-trial synchronous
synergies from the experimental EMG data, beginning with the
typical subject (Figure 6). These synergies consist of constant
vectors of levels of muscle activations (Figure 6A) recruited by
time-varying activation coefficients. Note that the synergies and
coefficients shown in this figure were obtained using N = 4 in

FIGURE 6 | Application of our decoding method to the synchronous

synergies extracted from the EMG data of a typical subject recorded

during the execution of an arm pointing task. (A) The four synchronous
synergies obtained from the experimental data of the example subject
as four vectors of activation levels of 9 shoulder and elbow muscles.
(B) Histograms of the integral of the activation coefficient (Int) across the
8 motor tasks performed. (C) VAF (black curve whose scale is indicated in left
y-axis) and percent correct curve (red curve whose scale is indicated in right
y-axis). The shaded area represents the 5–95% confidence interval of the
bootstrap test for decoding. (D) Histogram of the number of synergies

selected by each one of the existing criteria (gray bars) and our proposed one
(black bar). (E,F) Decoding the 8 motor tasks using the integral of the 4
synchronous synergies’ activation coefficients. For a given trial to be
decoded, the activation coefficients of 2 synergies are represented as a point
in the 2-dimensional space. The color of each point indicates the actual task
which this trial corresponds to. The linear discriminant algorithm has divided
the space into 8 regions, one for each class (motor task). The trial is assigned
to the class indicated by the color of the region on which the point lies.
(E) Classification using the integral of activation of synergies S2 and S4.
(F) Classification in the S1–S3 space.

Frontiers in Computational Neuroscience www.frontiersin.org February 2013 | Volume 7 | Article 8 | 14

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Delis et al. Task decoding with muscle synergies

the synergy extraction algorithm because we found (see next
sections) that this is the minimal set of synergies explaining
all task-discriminating variations. However, the four most task-
discriminating synergies and their coefficients obtained assuming
more synergies were quantitatively and qualitatively very sim-
ilar to those presented in Figure 3 (results not shown). The
resulting muscle groupings had a straightforward anatomical and
functional interpretation: Synergy1 describes mainly the activa-
tion of two shoulder flexors; Synergy2 has strong activations of
elbow extensors; Synergy3 has strong activations of elbow flex-
ors and Synergy4 is primarily composed of shoulder extensors
(Figure 6A).

In order to assess how synchronous synergies allow decoding
the task on single trials, we computed the time integral of the
synergies’ activation coefficients, which represents the magnitude
of the synergy activation (see section “Materials and Methods”).
The magnitude of each synergy clearly depended upon the task.
More precisely, S1 is primarily activated for out-center move-
ments starting from the left; S2 is recruited for center-out leftward
movements; S3 is recruited for out-center movements start-
ing from the right and S4 for center-out rightward movements
(Figure 6B).

Figure 6C plots the VAF curve as a function of the num-
ber of synergies (black curve) and Figure 6D shows the selected
number of synergies that would be selected according to each
one of these criteria. It is clear that these VAF-based criteria do
not yield a consistent number of synergies for this dataset, and
selecting the correct set of synergies in this way necessarily relies
partly on a somewhat arbitrary choice. We attempted to resolve
this problem by complementing the VAF curve with the decod-
ing performance afforded by the single-trial parameters of the
model. We applied our proposed decoding-based method on the
magnitude of the extracted synchronous synergies. The decoding
performance curve (red curve in Figure 6C) obtained by varying
the number of synergies (N) saturates at N = 4 indicating that
the task discrimination power added by the magnitude parame-
ters of any additional synergy is negligible. Thus, application of
our model selection algorithm gave 4 synergies (last point on the
curve lying above the red shaded area).

To gain more insights on how these 8 motor tasks are decoded
using the magnitude parameters of the extracted four synergies,
we visualized the decoding procedure. In Figures 6E,F, we show
scatter plots of the parameters on a 2-dimensional space that has
been split by the LDA into 8 different classes, one for each task.
Each point is colored according to the actual class which this trial
corresponds to and is assigned by the decoding algorithm to the
class represented by the colored region on which it lies. Thus,
the trial is decoded correctly only if these two colors coincide.
From Figure 6E, it is clear that activations of synergies S2 and
S4 can discriminate well the forward tasks (T1-T2-T3-T4), but
the backward ones(T5-T6-T7-T8) are much less discriminable
(larger overlap of the data points). This is why only two syner-
gies are not sufficient to distinguish all the simulated tasks. We
may expect that adding the other two synergies will resolve this
problem. Indeed, Figure 6F shows that in the S1-S3 space, even
though tasks T1-T2-T3-T4 are poorly classified, there is a clear
improvement in the classification of tasks T5-T6-T7-T8. So, to

get maximal discrimination of the 8 motor tasks four synergies
are required, two of them encoding the forward movements and
the other two the backward ones.

We then examined the results from the single-trial analysis of
the synchronous synergies extracted from all four recorded sub-
jects. The overall decoding performance afforded by synchronous
synergies ranged from 63% to 73% for the LDA decoding algo-
rithm across subjects. The set of synergies needed to explain
all task-discriminating variability consisted of four synergies in
two subjects and three in two other subjects. In general, the
synchronous synergies extracted from different subjects were
qualitatively and quantitatively similar. The average similarity
between the synchronous synergies extracted from different sub-
jects is shown in Figure 8 (lower left part). In the two subjects
that needed four synergies to capture all task-discriminating vari-
ations, muscle groupings were similar to the ones shown in
Figure 6A. In the two subjects that needed only three synergies,
the elbow extensors (S2 in Figure 6A) were either grouped with
the shoulder extensors (S4 in Figure 6A) to form one synergy or
activated by all three remaining synergies at lower levels (results
not shown). Hence, S1, S3, and S4 were identified in all sub-
jects, whereas S2 was present only in the two subjects that used
four synergies to perform the tasks. In all subjects the decoding
performance of the selected synergies was significantly higher-
than-random for all tasks (p < 0.05, bootstrap test). We also
tested the decoding performance of each one of the four syn-
chronous synergies separately and found higher than random
decoding for all of them (ranging from 31% to 46%). This implies
that each synergy in the set exhibits a degree of tuning to all task
directions.

Time-varying synergy identification
To characterize the spatiotemporal organization of the recorded
muscle patterns, we fed the EMG matrix to the time-varying
synergy extraction algorithm and extracted sets of time-varying
synergies (see section “Materials and Methods”). Each EMG
pattern in each sample was then described by the coefficients
specifying the amplitude (scaling coefficient) and time delays of
the activation of each synergy. The extracted synergies, the mean
activation coefficients and delays across tasks are shown for the
typical subject in Figure 3.

We then examined how these single-trial parameters were
modulated by the task (Figure 3B). We considered the distri-
bution across tasks of the scaling coefficient and found that it
exhibited a clear task-dependence (Figure 3B) (D’Avella et al.,
2008) similar to the one found for the integral of the synchronous
synergies model. The corresponding delays are dependent on
the task performed but their relationship with motor tasks is
less apparent than that of the coefficients (results not shown).
Then, we implemented the decoding-based method opting for the
set of time-varying synergies that explain all task-discriminating
variability. Our method yielded four synergies (Figure 7A) also
for this model. We further asked if we could reach the same
result using the VAF-based criteria. Figure 7B shows that each
one indicated a different number of synergies rendering such an
assessment inconclusive and pointing out the arbitrariness of any
selection made using these criteria.
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FIGURE 7 | Application of our method to the time-varying synergies of

the typical subject. (A) VAF (black curve whose scale is indicated in left
y-axis) and decoding performance curve (red curve whose scale is indicated
in right y-axis) for the example subject. The red curve represents the percent
correct values using the scaling coefficients of the time-varying synergy
model. The shaded area represents the 5–95% confidence interval of the

bootstrap test for decoding. (B) Histogram of the number of synergies
selected by each one of the existing criteria (gray bars) and our proposed one
(black bar). (C,D) Decoding the 8 motor tasks using the 4 time-varying
synergies’ scaling coefficients. (C) Classification using the coefficients of
synergies S1 and S2. (D) Classification in the S3–S4 space. Region and
marker color conventions as in Figures 6E,F.

As we did for the synchronous synergies, we examined the dis-
criminability of the motor tasks also in the time-varying synergy
activations space (Figures 7C,D). Again, we found the activations
of two synergies (S1-S2) describing the differences across the for-
ward tasks (T1-T2-T3-T4) and the other two (S3-S4) were used
to distinguish the backward ones (T5-T6-T7-T8).

We note that with respect to previous studies of the role of syn-
ergies upon goal-directed reaching movements (D’Avella et al.,
2006, 2008), our method individuated in this subject synergies
spanning all four cardinal directions in planar reaching space.
This may be due to specific subject-to-subject or task setup differ-
ences between our experiments and those previously published.
Another possibility is that some synergies encoding specific direc-
tions carry relatively little EMG variance (such as those pointing
right in right-handed movements, e.g., synergy S4 in Figure 3A,
which expresses out-center movements starting from the right)
and may thus be discarded according to VAF-based criteria.
However, our method picks these synergies because they express
degrees of freedom of movement relevant for the task and not
expressed by other synergies and so must necessarily be included
in a task-decoding analysis.

Similar results held for all four recorded subjects. The over-
all decoding performance afforded by the scaling coefficients
of time-varying synergies ranged from 64% to 74% (for the
LDA algorithm) across subjects (for comparison, chance level is
12.5%). The number of time-varying synergies needed to explain
all task-discriminating variability was the same as the number of
synchronous synergies for all four subjects. The shape of synergies
(i.e., the time course and the relative levels of muscle activations)
was similar for each subject, as indicated by the high similarity
index obtained for all pairs of subjects (Figure 8 upper right part).
The main difference across subjects was that in the two subjects
that needed only three synergies the muscle activations that con-
stitute the fourth (non-significant) synergy was either included
in one of the other three synergies or distributed across all of
them (results not shown). The resulting scaling coefficients were
modulated accordingly so as to produce movements to all task
directions and describe identifiably all motor tasks. Indeed, in all
subjects the scaling coefficients of the selected synergies had sig-
nificantly higher-than-random decoding performance (p < 0.05,
bootstrap test) for all reaching directions. Furthermore, we found
that all time-varying synergies too exhibit some degree of tuning
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to all task directions (individual decoding performance ranged
from 33,75% to 38,75 %).

In sum, a small set of time-varying or synchronous syner-
gies described all task-related differences in the examined EMG
datasets. This set of synergies would have been hard to select rely-
ing on VAF-based criteria, because some of the standard criteria
would exclude synergies that express task-discriminating muscle
activations and contribute to the generation of each task, while
others would include synergies that explain only task-irrelevant
variations reflecting different sources of noise in the recorded
data.

FIGURE 8 | Synergy similarity matrix across all tested subjects. The
synergy sets extracted from all subjects that were selected by our method
exhibited a high similarity either when the synchronous (bottom left) or
when the time-varying synergy (top right) model was used.

USING THE DECODING FORMALISM FOR COMPARING THE ABILITY OF
MUSCLE SYNERGY MODELS TO ENCODE TASK-DISCRIMINATING
INFORMATION
We further note that the overall decoding performance of a syn-
ergy model may be used as a criterion to decide which type of
synergy decomposition is most suitable to describe a set of tasks
and which (and how many) parameters of such a representation
carry information about the task effected at hand. To illustrate
this point, we compared the decoding performance of both time-
varying and synchronous synergies with comparable number of
parameters per synergy for all subjects tested.

We first examined decoding performance when using one
parameter per synergy. We started by assessing the discrimina-
tion power of the two single-trial parameters of the time-varying
synergies (i.e., scaling coefficients and time delays). Although
decoding with the time delays is significantly above chance level
(1/8 = 12.5%) for all subjects, the scaling coefficients afford
a significantly higher decoding performance (37.3 ± 4.3% vs.
70.5 ± 2.2% respectively, Figure 9A) (p < 0.05, paired t-test).
Comparing the scaling coefficients of the time-varying synergies
with the integral of the activation coefficients of the synchronous
synergies (Figures 9A,B), we found that the time-varying and
the synchronous model had comparable performance (70.5 ±
2.2% vs. 69 ± 1.9% respectively). The corresponding VAF val-
ues for these synergy decompositions were 81 ± 2.1% vs. 89 ±
1.4% respectively. Consistent with previous findings (D’Avella
and Bizzi, 2005), the synchronous synergy decomposition cap-
tures a significantly higher percentage of the variability of the data
(p < 0.05, paired t-test).

Then, we evaluated the decoding performance gain obtained
when combining two parameters per synergy. For the time-
varying synergies, using both parameters yielded a signifi-
cantly better decoding than with the scaling coefficients alone

FIGURE 9 | Comparison of the decoding performance of synchronous

and time-varying synergies. (A) Percent correct values of the time-varying
synergy decomposition for all four subjects tested using only the scaling
coefficients (left), only the delays (middle) and both single-trial parameters per

synergy (right). The last column (black) is the mean across subjects.
(B) Decoding performance as a function of the number of bins in which the
integral of the activation coefficient is split for all subjects. The black curve
and shaded area represents the mean ± SEM across subjects.
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(72 ± 2.7% vs. 70.5 ± 2.2% respectively, Figure 9A) (p < 0.05,
paired t-test). For the synchronous synergies, we divided the
movement duration in two phases; we computed the integral of
the synchronous synergy activation coefficients for each one of
them and used these values as the decoding parameters. Also
for this model, decoding using two parameters was significantly
higher than with one (72 ± 2.6% vs. 69 ± 1.9% respectively)
(p < 0.05, paired t-test). Then, we compared the task discrim-
ination power of the two models. We found that, when using
two parameters per synergy (scaling and delay coefficients for the
time-varying model and the integral in two equal bins for the
synchronous), the decoding performance of both types of syn-
ergy decomposition was 72 ± 2.7% vs. 72 ± 2.6% respectively
(Figure 9B). Thus, for this particular set of tasks and muscles,
both synergy decompositions seem equally adequate and equally
compact in describing the task-discriminating variations in mus-
cle activation signals. Indeed, equal decoding performance is
obtained when using the same number of parameters in both
approaches (p < 0.05, paired t-test).

Finally, we tested whether adding more single-trial param-
eters per synergy adds more information about the task. As
the time-varying synergies have only two single-trial parame-
ters, we had to restrict the analysis to the synchronous syn-
ergy model. By binning the activation coefficients in gradually
shorter time bins and computing the corresponding integrals,
we progressively increased the number of parameters used for
decoding. Figure 9B depicts the decoding performance for all
subjects as a function of the number of bins. Decoding perfor-
mance saturated quickly for all subjects at approximately three
bins, meaning that all task-discriminating information can be
described by considering three basic phases of one-shot rapid
movements. This is reminiscent of the well-known triphasic
pattern observed during the control of ballistic single joint rota-
tions but also during whole-body actions (a first agonist burst
followed by an antagonist burst followed by a second ago-
nist burst) (Berardelli et al., 1996; Chiovetto et al., 2010). This
result points out that despite the potentially high number of
free parameters describing the activation time course of syn-
chronous synergies, the task being performed may be encoded
by a much more compressed set of parameters without loss
of information about task-discriminating variations in synergy
recruitment.

In sum, in this particular dataset the synchronous syn-
ergy model was slightly more effective at describing task-
discriminating variability than the time-varying one when the
time course of synchronous synergies was modeled by three
or more parameters. This corresponds to a slight increase in
model complexity with respect to the use of time-varying syner-
gies whose single-trial activation is described by two parameters
per synergy. However, when using the same number of parame-
ters, time-varying and synchronous synergies explained the same
amount of task-discriminating variability.

DISCUSSION
In this article we proposed and implemented an automated
method, based on single-trial task decoding, to evaluate the extent
to which muscle synergy recruitment can be mapped onto motor

task identification. We showed how this new metric complements
the VAF metric commonly used to test the validity of muscle
synergy decompositions and can be used to address questions
related to movement execution in task space. Quantifying the
degree of validity of muscle synergies in task space is fundamen-
tal since synergies (as extracted from dimensionality reduction
techniques) are assumed to be the building blocks of movement
production that can be reused across tasks, while the synergy
combination coefficients represent the task-dependent motor fea-
tures. This study presents a systematic procedure to measure the
degree of feasibility of such a modular and hierarchical control
scheme by means of a single-trial task decoding technique. The
significance of our conceptual and computational developments
is discussed in the following.

CONCEPTUAL FOUNDATIONS OF THE METHOD
Fundamental to the method is the fact that motor behaviors
are produced on single trials and therefore should be analyzed
on such a basis (Ranganathan and Krishnan, 2012; Ting et al.,
2012). Even though single-trial analysis is not new in the study
of muscle synergies (Tresch et al., 1999; Torres-Oviedo and
Ting, 2007, 2010; Kutch et al., 2008; Valero-Cuevas et al., 2009;
Chvatal et al., 2011), it appears to be a necessary and ratio-
nal component in our methodology (otherwise task-decoding
would be trivial with data averaged per task). Thus, exploit-
ing single-trial analysis tools, we came up with a computational
procedure that quantifies the task identification power afforded
by different synergy decompositions. Our method uses this for-
malism to separate out trial-to-trial variations in synergy space
that reflect task-discriminating variability (and hence increase
decoding performance) from those that do not account for task-
related differences. The latter can be regarded as “noise” as far
as task discrimination is concerned, even if they reflect neuro-
physiological processes. This conceptualization mirrors the one
often used in single-trial neural literature to separate signal from
noise and identify the most informative components of neural
responses (Quian Quiroga and Panzeri, 2009). The advantage of
this method is that it allows the user to focus on task-discriminant
aspects of variability using an objective and useful scale in a user-
defined “task space” rather than measuring variability on a scale
related only to the amplitude of the EMG signals (Quian Quiroga
and Panzeri, 2009; Tolambiya et al., 2011).

As exemplified by our application to real data, one poten-
tial advantage of the decoding metric is that it can identify
muscle activation components of relatively low amplitude (and
accounting for a small amount of the VAF) but reflecting unique
information about the task. Furthermore, a comparison of syn-
ergy sets determined by VAF or by decoding metrics may be useful
to tease apart synergies that provide unique information about
task-to-task differences (such as the synergy set individuated by
decoding) from synergies that are task invariant but contribute an
important part of variance because they e.g., implement muscle
activation for maintaining posture. Such important task invariant
synergies are likely to appear as “extra” synergies selected by VAF
method (because they carry variance) but not from the decod-
ing method (because they do not add much task discriminating
power).
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Interestingly, in the experimental data we found that our
method revealed relatively high decoding scores for relatively
small synergy sets, supporting the idea that a small set of syner-
gies are recruited in different ways during the execution of a larger
number of different motor tasks. This finding is compatible with
the idea of muscle synergies as intermediate low-dimensional rep-
resentations of the mapping between motor commands and task
goals and the associated theory of hierarchical motor control
(Ting and McKay, 2007; Todorov, 2009).

The hierarchical view of motor control implies that a desired
motor behavior can be mapped onto specific recruitment of mus-
cle synergies whose activation leads to the expected behavior
(Bizzi et al., 2000; Tresch and Jarc, 2009). Due to the non-
linearities of the musculoskeletal plant, even small variations
in the muscle pattern could lead to very different behaviors
at the end-effector level and thus could affect task achieve-
ment. Therefore, evaluating the effectiveness of synergies in terms
of motor task performance is crucial. Ultimately biomechan-
ical modeling/simulation is needed to achieve this (Neptune
et al., 2009; Kargo et al., 2010). Task-decoding is a useful
additional metric to validate (or invalidate) a certain cho-
sen synergy decomposition before or simply without this step.
High task-decoding scores lend credit to a synergy decom-
position. In contrast, low task-decoding scores (e.g., decoding
performance that is robustly around chance level for differ-
ent decoding algorithms) may falsify a given synergy decom-
position, even if VAF is close to 100%. Generally speaking,
the decomposition/model yielding concurrently the highest VAF
and the highest decoding score could be viewed as the most
likely representation of neural synergies implemented in the
CNS. In practice, the decoding metric was shown to be more
robust to various sources of noise than the VAF. As such,
it provides a more stable reference to inter-subject or inter-
study comparisons. Concretely, this approach can be useful
to reduce side effects on VAF values related to the different
material, subjects or signal pre-processing used by different
researchers.

Previous studies have proposed to separate task-
discriminating from non-discriminating variations by evaluating
VAF within each task separately (Torres-Oviedo and Ting, 2010;
Chvatal et al., 2011; Roh et al., 2011) or identifying task-specific
muscle synergies (Cheung et al., 2009a). These methods are very
effective when some tasks in the examined set are executed using
synergies that are not shared with other tasks. On the contrary,
our method is more effective when muscle activations in different
tasks differ not because of the highly specific activation of
synergies only in particular tasks, but rather because of different
activation coefficients of the same group of synergies. In this
latter case, application of synergy decompositions separately
in each individual task would lead to the identification of a
larger set of synergies than those actually generating the task-
discriminating muscle activations (we verified this intuition also
by extracting synergies in one task at a time in our simulated
datasets, which invariably led to incorrect identification of a
larger set of synergies with lower task-discrimination power
than the synergy set determined by our method; data not
shown).

Our findings parallel results recently obtained in frogs’ exper-
imental and modeling studies (Kargo and Giszter, 2000, 2008;
Kargo et al., 2010). In these studies, the authors varied the
initial configurations as well as the level of muscle vibrations
applied to the frog’s hindlimb and showed that flexible com-
binations of a small set of invariant muscle patterns can pro-
duce successful accurate targeting of the frog’s hindlimb from
a large range of starting positions. It would be of interest to
apply our method to this dataset in order to assess quantita-
tively the reliability of the correspondence between such task
variables or feedback stimuli and muscle pattern activations.
We believe that our method could serve to determine the func-
tional role of the identified muscle patterns and further evaluate
the significance of their coupling under different experimental
conditions.

ON THE COMPUTATIONAL METHOD AND ITS USE
Critical comparison of the validity of different synergy models
An advantage of the derived decoding metric is that it allows a
direct comparison of performance of different synergy decompo-
sitions in terms of task execution when using the same number
of parameters in all decompositions. This is useful for testing
the validity of various hierarchical motor control schemes or
various mathematical representations of muscle synergies. For
example, the synchronous synergy model may account for more
variance than the time-varying synergy one (as happens in the
EMG dataset considered here) but this may be due to the fact that
synchronous synergies are potentially characterized by a larger
number of parameters than time-varying synergies (because the
former report the full time course of activation, whereas the
single-trial activation of the latter is described by two param-
eters per synergy) (D’Avella and Bizzi, 2005; D’Avella et al.,
2006). Specifically, by applying this metric to our dataset we
found that the two decompositions decode tasks equally well
when using the same number of parameters. Moreover, our for-
malism can be used to evaluate the loss of task-discriminating
information due to simplification of the time course of syn-
ergy activation. In our example dataset, our analysis suggested
that a full representation of the temporal pattern of activation
patterns of synchronous synergies is not crucial to encode the
goal of the task. Only the average activation during two or three
temporal phases seems sufficient to know what target will be
reached.

To shed more light onto the effectiveness of synergies as low-
dimensional structures for motor control, future research could
aim at extending our formalism to quantify the predictability of
kinematic movement features in continuous time (Corbett et al.,
2010) rather than just decoding which task (out of many) was
performed. This would enable a proper comparison between the
dimensionality of the instantaneous kinematics needed to per-
form tasks and the dimensionality of the muscle representations
that explain all the kinematic range elicited by task execution.
Furthermore, it would be of interest to apply our methods to
experimental datasets containing a wider range of complex move-
ments to determine which synergy decomposition is more effec-
tive in general and particularly in more “daily-life” situations.
For example, in an entire reach-and-grasp motor task, we could
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expect that the time-shifts of the time-varying synergy model
or a more detailed consideration of the temporal profile of the
synchronous synergy activations would be more relevant to task
discrimination.

Automated selection of the minimal number of synergies
Since our framework allows critically evaluating any muscle syn-
ergy model, it can be used in particular to select the minimal
number of synergies at fixed synergy representation. Assuming,
for example, time-varying synergies as the model from which
movements are generated, the simple question of how many
synergies are required to describe distinctly the entire set of
motor tasks under consideration is usually difficult to answer.
The empirical and intuitive VAF-based methods are not auto-
matic or lack objective rationale. Even more problematic is the
fact that a synergy accounting for a large or small amount of
the total VAF might have no implication with respect to the task
goal. We proposed a recursive and automated method to compare
synergy set of N elements with synergy set of N − 1 elements.
The basic argument is that if adding a synergy improves signifi-
cantly task decoding performance then increasing the dimensions
by one is worthwhile. We showed that this procedure is effec-
tive on simulated data sets for various levels of noise. However,
examining decoding alone might be insufficient in some cases:
for some data sets, one synergy could allow perfect decoding even
though the muscle pattern cannot be reconstructed accurately
(very low VAF). To cope with such cases, a potential variation
of our method may imply choosing first a lower bound for
N based on an inspection of the VAF graph, and then running
our automated procedure from this N to refine the selection of
the number of synergies. More generally, considering both VAF
and decoding seems important to fully understand he function of
the computed synergies, as a consequence of the above discussed
complementarity of the two metrics.

POSSIBLE APPLICATIONS AND EXTENSIONS
There is evidence that the activity of motor cortical neu-
rons in the monkey (Holdefer and Miller, 2002) and the cat
(Yakovenko et al., 2010) during reaching movements as well
as spinal interneurons in the frog during reflex motions (Hart
and Giszter, 2010) correlates with muscle synergies and/or their

recruitment. These studies suggest that the physiological basis
of muscle synergy structures, which is observed in the motor
output and assumed to simplify motor control, may rely on a
focused selection of a set of neurons. We note that our decod-
ing approach could be in principle applied to decode from
single-trial neural population patterns activating synergies, to
determine which patterns encode the task and which patterns
carry additional or independent information to that carried
by other patterns. Application of our method to simultaneous
recordings of neural activity and EMGs during the execution
of different movements could therefore lead to the determina-
tion at the same time of the minimal set of synergies and the
minimal set of neural activity patterns that explain all task-
discriminating neural and muscle activity, and to the specification
of an explicit link between these two sets. These considerations
suggest that the work presented here lays down the founda-
tions for a deeper understanding of the relationships between
single-trial neural activity and the resulting recruitment of muscle
synergies.

More generally, this investigation could reveal itself useful
for human-machine interfaces and neuroprosthetics (Nazarpour
et al., 2012; Ting et al., 2012). Assuming it is possible to decrypt
movement intention (e.g., what target a subject wants to reach
to), a set of synergies could be recruited in accordance and, if our
metric showed good task-decoding performance of the synergy
decomposition considered, we could ensure that a coordinated
multijoint arm movement would be generated to the expected
target. Recent works aimed at exploiting synergies to control arm
and hand motion (Jackson et al., 2006; Radhakrishnan et al., 2008;
Vinjamuri et al., 2011) and assessing the validity of muscle syn-
ergies in task space appears to be a basic prerequisite for the
effectiveness of such techniques.
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