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Natural scene sampling reveals reliable
coarse-scale orientation tuning in human V1

Zvi N. Roth 1 , Kendrick Kay2,3 & Elisha P. Merriam 1,3

Orientation selectivity in primate visual cortex is organized into cortical col-
umns. Since cortical columns are at a finer spatial scale than the sampling
resolution of standard BOLD fMRI measurements, analysis approaches have
been proposed to peer past these spatial resolution limitations. It was recently
found that thesemethods are predominantly sensitive to stimulus vignetting -
a form of selectivity arising from an interaction of the oriented stimulus with
the aperture edge. Beyond vignetting, it is not clear whether orientation-
selective neural responses are detectable in BOLD measurements. Here, we
leverage a dataset of visual cortical responses measured using high-field 7T
fMRI. Fitting these responses using image-computable models, we compen-
sate for vignetting and nonetheless find reliable tuning for orientation. Results
further reveal a coarse-scalemapof orientationpreference thatmay constitute
the neural basis for known perceptual anisotropies. These findings settle a
long-standing debate in human neuroscience, and provide insights into
functional organization principles of visual cortex.

Neurons in human visual cortex are organized according to their
functional selectivity. A number of stimulus features are organized in
coarse-scale cortical maps. For example, retinotopic visual cortex is
organized as a log-transform of the visual field, with the polar dimen-
sions of visual space (angle and eccentricity) corresponding to the
Cartesian dimensions of the cortical surface1–3. Additionally, receptive
field size4,5 and preferred spatial frequency6 increase monotonically
with visual eccentricity. Selectivity to other visual features, such
as ocular dominance and temporal frequency, are organized at a
fine spatial scale, often forming columns through the cortical depth7–10.
As in primates and carnivores11, orientation selectivity in humans has
been shown to also be organized at a fine spatial scale, in cortical
columns that are approximately 0.7–0.8mm in width across the cor-
tical surface of primary visual cortex12.

In addition to the fine-scale columnar architecture, fMRI studies
have offered evidence for a coarse-scale organization of orientation
preference13–16. Because of the relatively low spatial resolution of
standard fMRI measurements (typically around 2mm× 2mm× 2mm),
these studies do not reveal the fine-scale columnar architecture.
Rather, these studies have leveraged the broad spatial coverage

afforded by fMRI to reveal a radial bias of orientation preference:
voxels respond more strongly to orientations that point from the
receptive field center toward fixation. This radial bias was originally
assumed to reflect a physiological map of orientation selectivity13,
analogous to maps of receptive field location and spatial frequency
selectivity. However, this radial bias map, it turns out, does not
necessarily reflect solely a physiological map. Instead, it was shown to
likely be, in large part, the result of stimulus vignetting, an interaction
between the edges of the stimulus aperture and the spatial frequency
envelope of the stimulus17,18. The principle underlying stimulus vig-
netting is that the Fourier spectrum changes in the vicinity of a change
in contrast, such as an edge. In typical orientation mapping experi-
ments, the assumption is that each condition contains a single orien-
tation. But because of vignetting, this assumption isn’t valid: different
regions in the image contain different orientations and different
Fourier power. Specifically, at the stimulus edge there is more power
for the radial orientation than for other orientations. These observa-
tions challenge the interpretation of a large body of studies over the
past 20 years that were presumed to measure orientation-selective
responses in humans19.
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If previous fMRI studies do not provide clear evidence regarding a
physiologicalmapoforientation selectivity, how is orientation actually
represented in human visual cortex? Does the human brain contain a
map for orientation selectivity at a coarse spatial scale, distinct from
columnar architecture? Alternatively, is the presumed fine-scale
columnar map the sole organizational principle for orientation in
visual cortex? The answer to these questions has been obfuscated by
stimulus vignetting: if there is indeed a coarse-scale map for orienta-
tion, it may be entirely eclipsed by stimulus vignetting.

To overcome these challenges, we apply a computational frame-
work for studying orientation selectivity that explicitly models the
effects of stimulus vignetting in order to access orientation-selective
signals that would be otherwise obscured. To this end, we leverage a
massive 7T fMRI dataset, the Natural Scenes Dataset (NSD), consisting
of an extensive sampling of responses to natural scene stimuli in a
small number of intensively-studied participants20,21. A large number of
measurements and unique stimuli, combined with the high signal-to-
noise ratio (SNR) of the fMRI measurements, enables us to robustly fit
models that include dozens of parameters per voxel.

Image-computable models have been used to study a wide range
of questions in visual neuroscience17,22–24. To assess orientation selec-
tivity, our modeling approach exploits two image-computable models
based on the steerable pyramid25. The constrained model, which
includes both visual field position tuning and spatial frequency tuning,
but pools equally across orientation-selective filters, is sensitive to
the effects of stimulus vignetting17. This model is based on the model
used previously to demonstrate stimulus vignetting17, and it can fully
explain responses modulated by total Fourier power. However,
because the orientation filters at each level are pooled before the filter
responses are computed, the model cannot capture any information
about orientation. In other words, any apparent orientation selectivity
in the model output is entirely due to stimulus vignetting. The full
model, on the other hand, which allows unequal contributions from
orientation-selective filters, is sensitive to orientation selectivity
beyond the effects of stimulus vignetting (Fig. 1). Combined, thepair of
models enables us to assess voxel-wise orientation selectivity while
simultaneously accounting for the impact of stimulus vignetting.
The modeling results reveal the existence of physiological maps for
orientation preference.

Results
Both constrained and full models explain roughly similar
amounts of variance
The NSD dataset contains measurements of 7T BOLD fMRI responses
from 8 participants who each viewed 9000–10,000 distinct color
natural scenes (22,000–30,000 trials) over the course of 30–40 scan
sessions26. We fit two models characterizing V1 voxel responses to the
natural scene stimuli. Both models fit voxel responses as a weighted
sum of steerable pyramid filters. The constrained model pools across
orientation, and is, therefore effectively composedof a range of spatial
frequency filters across the visual field. In contrast, the full model
includes flexible weights for both spatial frequency and orientation-
tuned filters (Fig. 1). In order to evaluate how well each model fits the
data, we cross-validated both models and measured the variance
explained by each model on out-of-sample data.

The constrained and the full models explained a similar portionof
the variance in the BOLD measurements (mean R2: full 0.0311, con-
strained 0.0310) (Fig. 2A). If BOLD activity reflects orientation selec-
tivity, wewould expect the constrainedmodel to be unable to account
for modulations driven by local orientation differences between
images. The full model, however, includes orientation tuning, and,
therefore should be able to account for this additional response
variability, assuming that the parameters that characterize orientation
tuning can be reliably estimated. But we found that both models per-
formed comparably, explaining similar amounts of variance, with the

constrained model slightly but significantly outperforming the full
model (median R2: full 0.0204, constrained 0.0212; two-sided
Wilcoxon signed-rank test p value < 10−10). Moreover, cross-validated
R2 was highly correlated between the twomodels (r =0.9835,p < 10−30),
likely reflecting gross differences in signal-to-noise ratio across vox-
els (Fig. 2B).

At first glance, these results suggest that there is no reliable
orientation tuning to be modeled. However, since the full model has
many more free parameters than the constrained model (57 vs. 8
parameters), we expect that, for voxels with low SNR, the full model
would likely result inoverfitting. For voxelswith high SNR, on the other
hand, the full model may be able to capture orientation tuning and
lead to higher cross-validated R2 values. Therefore, inspecting model
performance only using summary statistics (e.g., median or mean)
does not provide a complete picture, and it is necessary to analyze how
model performance varies across voxels.

Model performance depends on voxel SNR
For each individual voxel, model filter outputs were sampled using a
population receptive field (pRF) estimated for that voxel from an
independent pRF-mapping experiment that was conducted as part of
the NSD dataset. In both the constrained and full models, the esti-
mated pRF determined the portion of stimulus from which the model
output is sampled (see Methods: pRF sampling). Hence, any error in
estimating the size or location of the pRF would propagate forward,
adversely affecting the model fits. Specifically, if the pRF estimate is
inaccurate, the model would attempt to explain BOLD activity
based on the portion of the natural scene image dictated by the pRF
estimate, while the voxel would, in fact, be driven by another portion
of the image. Therefore, it is likely that model performance depends
on the quality of the pRF estimate.

Sorting voxels according to pRF R2, we found that this was indeed
the case. R2 of both models were correlated with pRF R2 (Constrained:
r =0.5859,p < 10−30; Full: r =0.5728,p < 10−30). Our interpretation is that
pRF R2 is a good proxy for voxel-wise SNR, and that voxels with high
SNRwill tend to have both high-quality pRF estimates and goodmodel
performance on the natural scene responses (Fig. 2C, D). We further-
more found that the amount of additional variance that the full model
explained beyond the constrained model was also correlated with
voxel pRF R2 (r =0.2418, p < 10−30) (Fig. 2E). This result implies that in
cases of low SNR, including orientation tuning in an encoding model
will likely result in overfitting, and that doing so is unlikely to reveal
reliable orientation selectivity. However, for high SNR voxels in the
NSD dataset used here, we are able to estimate reliable orientation
selectivity that improves generalization on out-of-sample data. Addi-
tional analyses (Fig. 2G) indicate that voxels with high SNR tend to lie
away from the fovea, and it is for thesemore peripheral voxels that we
can reliably estimate orientation selectivity.

Coarse-scale map of orientation selectivity
Explicitly modeling voxel responses enabled us to capture robust
orientation selectivity that is not due to stimulus vignetting.
What is the source of this orientation tuning? Although the voxel
size in the NSD dataset (1.8mm× 1.8mm× 1.8mm) is much larger than
the size of orientation columns, fMRI studies using multivariate
decoding methods have suggested that even with large fMRI voxels
(3mm×3mm×3mm), V1 voxel responses might exhibit robust
orientation biases originating from a random sampling of cortical
columns27–29. Therefore, we ask: is orientation preference scattered in a
salt-and-pepper fashion, suggesting a random bias from orientation
column sampling, or is orientation preference organized in a sys-
tematic map across the cortical surface?

To assess the potential organization of orientation selectivity,
we plotted voxel orientation preference in visual space (Fig. 3A). We
observe a clear coarse-scale map of orientation: preferred orientation
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varies smoothly across the visual angle. This observation implies that
voxels with nearby pRF locations have similar orientation preference,
unlike the expectation based on the salt-and-pepper organization.
Indeed, when we visualize cortical maps of estimated orientation
preference, we see in V1 a clear progression of orientation thatmimics
the well-known organization of visual field angle (Fig. 3B).

The gradual progression of orientation preference across the
visual field and the cortical surface provides evidence against a
random-sampling bias of orientation columns. Instead, this observa-
tion reveals an organizational principle for visual cortex, namely, a
coarse-scale spatial map for orientation preference.

Radial map of orientation selectivity
The orientation map appears to resemble a radial map (Fig. 3A), but
quantitative analysis is necessary to test the hypothesis that themap is
indeed radial. We quantified the similarity of the orientation map to a
radial map by computing the angular deviation of each voxel’s orien-
tation preference from the preference predicted by a perfectly radial
map (Fig. 4, right). Deviation from radial as a function of pRF eccen-
tricity resembled an inverted U (Fig. 5A): deviation wasmaximal at the
fovea and at high (>5 deg) eccentricities, and lowest at intermediate
(2–4 deg) eccentricities. We also compared the measured orientation
map to two alternative possibilities: a vertical map and a cardinal map

Fig. 1 | Analysis pipeline for a single voxel. Top, full model. Bottom, constrained
model. Natural scene images were converted to grayscale and passed as input to a
steerable pyramid (shown here with only four orientations and three spatial fre-
quencies for visualization purposes). Each filter yielded an energy response that
was sampled by the voxel pRF, resulting in a scalar output for each filter. Linear
regression was performed on the response amplitudes observed for each voxel
with filter output values as predictors. This procedure yielded a set of model

weights, whichwere subsequently used to simulate responses to a range of gratings
in order to determine the voxel’s preferred orientation and spatial frequency. The
constrainedmodel (bottom)was identical to the fullmodel except for an additional
step of summing model outputs across orientations. As a result, the constrained
model yielded a weight for each spatial frequency filter but enforced equal con-
tribution across orientations. Example images shown here were created by the
authors for illustration only and were not used in the study.
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(Figs. 4, 5A). Deviation from the ideal radial map was lower than for
either the ideal vertical or the ideal cardinal maps (Fig. 5B, C), indi-
cating that orientation selectivity in V1 is approximately organized in a
radial map.

Deviation from radial was not uniform across pRF polar angle
(Fig. 5A, right), but was lowest at the horizontal and vertical meridians
(Fig. 5A, orange), similar to the deviation from cardinal (Fig. 5A, green).
Confirming this observation, deviation from radial was linearly corre-
lated with angular distance from the closest meridian (r = 0.141,
p < 10−38). However, voxel-wise SNR is a potential limiting factor in this
analysis, since voxel-wise SNR (as indexedbypRFR2) correlates slightly
negatively with distance from the meridians (r = −0.055, p < 10−6).
Nevertheless, when controlling for the effect of pRF R2, the partial
correlation between radial deviation and distance from the meridian
remained strong (r =0.133, p < 10−34). We interpret this to mean that
modulation of the radial bias by distance from themeridian is a feature
of the coarse-scale orientation map, rather than a trivial result of ani-
sotropies in pRF SNR across the visual field.

Ideal radial and verticalmaps are identical at the verticalmeridian,
and differ maximally at the horizontal meridian (Fig. 4). Therefore,
comparing the empirical orientationmapwith radial and verticalmaps
around the vertical meridian will not be particularly informative.
Around the horizontal meridian, however, radial and vertical maps
differmaximally.We, therefore, expected deviation from vertical to be
roughly equal to deviation from radial around the vertical meridian.
Around the horizontal meridian, on the other hand, we expected
deviation from radial to differ maximally from deviation from vertical.
Consistent with this expectation, deviation from radial was sig-
nificantly lower than the deviation from vertical around the horizontal
meridian, but not at the vertical meridian (Fig. 5B, right).

We found that radial and cardinal maps are identical at the hor-
izontal and vertical meridians, and differ maximally at oblique (diag-
onal) angles (Fig. 4). Therefore, deviation from radial and cardinal
should differ maximally around oblique angles and minimally around
the meridians. Again, this was indeed the case: deviation from radial

was significantly lower than from cardinal only at oblique angles of the
visual field (Fig. 5C, right).

Deviation from radial was significantly lower than the deviation
from cardinal at intermediate eccentricities (Fig. 5C, left). This may be
related to lower pRF R2 around the fovea (Fig. 2G). Therefore, we
cannot determine whether the radial bias is weakest at low eccentri-
cities, or whether the larger deviation is entirely due to less accurate
pRF estimates, while the strength of the radial map is, in fact, constant
across eccentricities.

We conclude that the radial map is strongest around the mer-
idians (i.e., at cardinal angles), and is weakest around oblique angles.

Controlling for analysis pipeline
We have assumed thus far that orientation selectivity in the full model
reflects variance that cannot be explained by the constrained model.
We wondered if this result could somehow be an artifact of our
modeling procedures, given the complexity of the model fitting
pipeline. For example, it is conceivable that orientation selectivity in
the full model (i.e., the weights the model assigns to different orien-
tation filters), in fact, reflects variance that can be explained by the
constrained model as well, but with other combinations of regressors.
One example of this type of confound is stimulus vignetting17, where
apparent orientation selectivity, in fact, reflects spatial frequency
tuning and not orientation tuning. Perhaps stimulus vignetting or
other sources of response variance that do not genuinely reflect
orientation tuning effectively masquerade as the orientation selectiv-
ity observed in the full model.

To test this possibility directly, we first regressed out all variance
that was explained by the constrained model from the experimental
data.We then fit the fullmodel to these residual data. If the orientation
selectivity of the full model reflects variance that can be explained by a
combination of parameters in the constrainedmodel, wewould expect
that regressing out that variance would leave the full model with no
orientation-selective variance left to fit. If, on the other hand, orien-
tation selectivity in the full model reflects only variance that cannot be
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explained by the constrainedmodel (i.e., true orientation tuning), then
regressing out variance explained by the constrained model should
have no effect on the full model orientation selectivity.

Consistent with the second scenario, the map derived from ana-
lyzing the residuals (Fig. 6A, B, left) was nearly identical to the original
map (Fig. 3). Complementarily, fitting the full model to the variance

explained by the constrained model (i.e., the output predicted by the
constrained model) resulted in a random map of orientation pre-
ference (Fig. 6A, B, right). This indicates that the orientation selectivity
in the full model cannot be explained by the constrained model.

Discussion
Summary
By analyzing a unique, extensive visual fMRI dataset using a model-
based framework, we obtained robust estimates of orientation selec-
tivity in human visual cortex. Unlike previous fMRI studies in which
measurements of orientation selectivity were potentially confounded
by interactions between the oriented stimuli and the stimulus aper-
ture, the orientation selectivity that we report here cannot be attrib-
uted to stimulus vignetting. We uncovered a radial bias of orientation
selectivity that is coarse-scale and widespread throughout the extent
of V1. The radial bias that we describe here is distinct from the spatial
pattern expected by the sampling of cortical columns. This coarse-
scale orientation biasmaybe a fundamental organizational principle of
human V1, providing a physiological basis for well-documented
behavioral biases in orientation judgements.
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Multiple scales of stimulus representation in the human visual
cortex
The human brain likely contains multiple representations of stimulus
orientation at different spatial scales, co-existing within the same
cortical visual area but arising from distinct neural computations.
The first, and most familiar, is the fine-scale, columnar organization.
The orientations of visual features are represented in an orderly
pinwheel-like progression within each hypercolumn across the cor-
tical surface30–32. While orientation columns have not beenmeasured
directly in humans using electrophysiological methods, based

on postmortem measurements of ocular dominance columns in
humans33,34, orientation columns are likely to be less than a milli-
meter wide along the cortical surface. In addition to this fine-scale
columnar structure, a number of fMRI studies have also reported a
second, coarse-scalemap-like organization for orientation selectivity
that is at the scale of the retinotopic organization of V113,14, spanning
tens of centimeters, orders of magnitude larger than cortical col-
umns. For the purposes of this discussion, we define a pattern of
cortical activity to be “fine-scale” if it has features that are smaller
than the point-spread function of a conventional fMRI voxel
(~2mm× 2mm× 2mm). According to this definition, the radial bias
that we report here is clearly coarse-scale.

The presence of both fine- and coarse-scale patterns of orienta-
tion selectivity raises two fundamental questions. The first regards the
scale of information leveraged by multi-voxel pattern analysis (MVPA)
methods to decode orientation. In a landmark study, ref. 27 demon-
strated that it is possible to use a linear classifier to decode the
orientation of a grating presented to the subject on an individual trial.
Cortical columns are irregularly organized with respect to the recti-
linear voxel grid, which, it was posited, could lead to small biases in
voxel responses that are decodable with MVPA. The conjecture that
MVPA methods are sensitive to fine-scale signals had a profound
impact on fMRI research, well beyond visual neuroscience, because it
implied the feasibility of studying neural representations in the human
brain that are instantiated at a spatial scale smaller than an fMRI
voxel28. However, it has been surprisingly difficult to fully support or
fully refute this claim, especially in light of an alternative account
suggesting that MVPA is primarily sensitive to the coarse-scale orien-
tation bias13. This uncertainty has engendered ongoing and unresolved
debate35–44. The current study does not directly bear on this debate.
Here, we quantified orientation information in fMRI BOLD responses
using a neurally-inspired image-computable model. While our results
reaffirm the existence of a prominent coarse-scale organization for
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orientation (i.e., a radial bias), we did not use MVPA, nor did we
explicitly model the scale of orientation information with a spatial
model of the cortical surface. One fruitful approach may be to build
spatial models of V13,45,46, which could provide a computational plat-
form for testing hypotheses regarding the spatial scale of information
and explicitly test the sensitivity of MVPAmethods to different spatial
scales of orientation information.

The second question concerns the neural response properties
that give rise to the coarse-scale orientation bias. While the cortical
architecture giving rise to fine-scale orientation columns is relatively
well understood47–49, much less is known about the origin of the
coarse-scale bias. It was initially presumed that the coarse-scale bias
stems from a pattern of cortical organization in which neurons with
similar patterns of orientation selectivity form gradients over large
swaths of cortex13. This idea was challenged by the insightful work of
Carlson18, who demonstrated through simulation that the radial bias
could arise from properties of the stimulus aperture or “vignette”,
rather than from the pattern of orientation selectivity in the brain. This
proposal suggested that stimuli with the same underlying orientation
could be shown through different vignettes and this could reverse the
observed orientation selectivity. These predictions have been con-
firmed empirically17, suggesting that orientation selectivity measured
with fMRI is indeed influenced to some degree by stimulus vignetting.

Is stimulus vignetting the primary driver of the coarse-scale
orientation biases reported in previous fMRI studies? The magnitude
of stimulus vignetting reported in ref. 17 was roughly commensurate
with the magnitude of the radial bias reported in previous studies of
orientation selectivity13, suggesting that the radial bias could, in theory,
be due to stimulus vignetting. fMRI studies have reported a radial bias
using a wide range of stimulus parameters, i.e., different spatial fre-
quencies and aperture sizes. Further theoretical simulations (Supple-
mentary Fig. 4) suggest that eachof these configurations could produce
stimulus vignetting, depending on the location of the edge in the reti-
notopicmap, the spatial frequency channels that contributemost to the
voxel’s response, and the form of response normalization assumed. On
the other hand, there have been reports of orientation decoding away
from the stimulus edge, suggesting orientation information in fMRI
measurements that are not due to vignetting (ref. 27, Supplementary
Fig. 3; ref. 41). These considerations have, up to now, left the field at an
impasse, with no clear way to characterize true coarse-scale orientation
selectivity in the face of a potential stimulus confound. Here, we turned
to natural scene stimuli and an image-computable modeling approach
to overcome these challenges. By explicitly modeling the spatial fre-
quency and orientation content of each image, we account for the
presence of a stimulus aperture, enabling the accurate characterization
of orientation selectivity in the human visual cortex.

The characterization of a coarse-scale orientation bias does not
preclude a contribution from cortical columns. It is likely the case that
orientation-selective signals measured with fMRI are multi-scale38,42,
reflecting a contribution of both fine- and coarse-scale orientation sig-
nals, with the relative contribution dependent on critical experimental
parameters, such as fMRI voxel size, acquisitionmethod (gradient echo,
spin echo, or VASO50), proximity of a voxel to veins51,52, as well the
stimulus protocol itself53. These considerations imply that various
reports of orientation selectivity over the years may have differentially
emphasized fine- and/or coarse-scale components of the signal
depending on which combination of these parameters were used. Fur-
ther work, perhaps using an extension of the image-computable model
that we have developed here, may be able to tease apart the relative
contribution of each of these orientation-selective signals.

Multiple coarse-scale biases
Here we report a radial bias of orientation preference in visual cortex,
extending a number of prior BOLD fMRI studies13–16,54. But while the
radial bias in previous fMRI studies may have been entirely a result of

stimulus vignetting, the radial bias we report here is not explainable by
the constrained model (Fig. 6), and therefore reflects a coarse-scale
orientation map distinct from stimulus vignetting. In addition to a
radial bias that was most pronounced in the periphery, a previous
study identified a vertical bias at mid-eccentricities, closer to the
fovea16. We tested for such a vertical bias, but found no evidence to
support this possibility. At intermediate eccentricities, orientation
preference was significantly closer to radial than to vertical, although
close tofixation, the radial preferencewas not significant (Fig. 5B). This
may be a result of lower SNR around fixation, as reflected in the lower
pRF R2 values (Fig. 2G). Therefore, we cannot definitively rule out a
vertical bias at fixation, as reported by ref. 16.

A cardinal bias has been identified previously in the human visual
cortex55, in other primates56–58, and in carnivores such as ferrets59–61 and
cats62–65. The cardinal bias is typically described as a stronger response
to vertical and horizontal orientations compared to oblique orienta-
tions. To enable a comparison to the radial map, we defined a cardinal
map as a stronger response to the meridian closest to the pRF center,
which is radial only for pRFs along the meridian (Fig. 4, center). This
definition describes an orientation map, relating orientation pre-
ference to retinotopic preference. The cardinal map, as we defined it,
entails a cardinal bias, since, when averaging across all of V155, cardinal
orientations evoke the strongest responses.

Although the orientation map was closer to a radial map than to
the cardinal map, we did find that the radial bias was strongest around
the vertical and horizontal meridians. This pattern can be described as
cardinal modulation of a radial map, and is consistent with previous
fMRI findings15.

What physiological factors underly the cardinalmodulation of the
radial map? It is possible that the radial bias is stronger around the
meridians because of stronger SNR in those regions, or because of
small artifacts away from the meridians caused by cortical unfolding
and veins66,67. However, we believe such artifacts and SNR differences
should manifest similarly in the pRF data, yet we found that the lower
pRFR2 (Fig. 5E) could not fully explain theweaker radial bias away from
the meridians. Similarly, a fine-scale columnar bias could potentially
cause voxel preference to deviate from the radial orientation, but we
would expect such an effect to take place uniformly across all polar
angles. Instead,webelieve it ismore likely that the cardinalmodulation
reflects the true nature of the radial bias: it is possible there are two co-
existing biases, a cardinal and a radial, or that neurons around the
meridians show a stronger preference for the radial orientation.

Source of coarse-scale orientation bias
How does the coarse-scale orientation map form? The mechanism is
likely related to the source of orientation selectivity itself, which is still
debated. When orientation-selective neurons were first discovered in
the cat visual cortex, their tuning properties were proposed to arise
from the convergence of center-surround neurons in the lateral geni-
culate nucleus (LGN) that were themselves not orientation-selective68.
Local interactions between V1 neurons have also been shown to
amplify orientation selectivity69, suggesting that orientation selectivity
arises from both the convergence of feedforward input and local cir-
cuit interactions. But it has also been suggested that orientation
selectivity is computed earlier in the visual pathway, and that it is to
some degree inherited by V1 neurons. Multiple lines of evidence point
towards orientation selectivity being present already in some LGN
neurons70–75 and even in retinal ganglion cells76–80, raising the possibi-
lity that orientation selectivity in V1 reflects computations at earlier
processing stages. Consistent with this possibility, the retinal size
relative to V1 size predicts across species whether orientation pre-
ference will be arranged in cortical columns or scattered in a salt-and-
pepper fashion81. The coarse-scale orientation map may be the result
of the same mechanisms that form orientation selectivity, or it may
involve other unique factors. Determining the source of the coarse-
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scale orientation bias, and whether it differs from sources of fine-scale
selectivity, will require additional research involving measurements at
a range of spatial scales.

A number of distinct neurophysiological mechanisms could, in
theory, give rise to the coarse-scale bias uncovered here. For example,
the radial bias could reflect a higher number of neurons preferring the
radial orientation. Alternatively, the radial bias could reflect a higher
firing rate for neurons preferring the radial orientation. A third possi-
bility is that neurons preferring the radial orientation could have a
narrower tuning bandwidth. All three of these scenarios presume a
higher mean population firing rate in response to radial stimulus
orientations, which would presumably translate to larger BOLD fMRI
responses82–85. Since BOLD fMRI measures a hemodynamic signal and
is an indirect measure of neural activity, it is also possible that the
orientation tuning we measured here reflects synaptic inputs from
either feedforward or feedback projections, or local field
potentials86,87. Future electrophysiology studies in humans and non-
human primates may shedmore light on the relationship between the
coarse-scale orientation bias and the underlying neurophysiology.

An alternate possibility is that coarse-scale orientation biases are
an emergent property of visual cortex. When the visual system is
modeled with large, unconstrained models, certain anisotropies and
biases emerge, including a cardinal bias88 and a radial bias89,90. These
biases are due to statistics of the images used to train the models.
Image statistics may underlie orientation biases in the human visual
cortex as well91,92, although it is unclear whether biases evident in
neural networks account for similar biases we have observed in the
human visual cortex.

Natural scenes vs. oriented gratings
Most prior fMRI studies of orientation selectivity have relied on
oriented gratings. This approach stems from a long and successful
history in visual neurophysiology dating back to ref. 93. Such “syn-
thetic” grating stimuli are optimal for driving individual V1 neurons
because they can be presented in full-contrast and because the para-
meters of the stimuli (size, position, and spatial frequency) can be
carefully tailored to the individual neuron being recorded. However,
such gratings may be less appropriate when studying large neural
populations, as with fMRI, since a single voxel reflects the pooled
activity of many neurons with a wide range of selectivities, and
therefore no single grating will be optimal for every neuron con-
tributing to the voxel’s response19. Natural scene stimuli are inherently
broadband along multiple dimensions, and hence may be more
appropriate for studying population responses. However, natural
scene stimuli do have, on average, lower contrast than gratings, and
will not drive individual V1 neurons at their maximal firing rates. Thus,
natural scenes might not be the most efficient set of stimuli for esti-
mating the voxel-wise encoding models used in the current study.
Nonetheless, this loss of efficiency is counteracted by the massive
number of trials in the dataset.

Image-computable models and V1
A previous study94 decoded natural images from BOLD responses in
visual cortex by fitting encoding models to individual voxels. One
finding was that including orientation tuning did not improve decod-
ing beyond the accuracy obtained with only spatial frequency tuning
(ref. 94, Supplemental Fig. 8). This result seems to be at odds with our
findings here. However, a direct comparison between these studies is
somewhat complicated. First, in a decoding approach, performance is
sensitive to responses across multiple voxels and how they jointly
encode stimuli. Such an approach yields results that are more difficult
to interpret compared to a more straightforward approach in which
the properties of individual voxels are examined. Second, although
modeling orientation tuning in addition to spatial frequency tuning
did not lead to improved decoding accuracy, when the spatial

frequency was absent or assumed to be identical across the entire
region of interest, including orientation tuning did improve decoding.
Thus, the results of the present study are not necessarily inconsistent
with the previous study. Finally, it is important to note that the esti-
mation of model parameters for the Gabor wavelet encoding model
used in the previous study was performed using gradient descent with
early stopping. This type of regularization (early stopping) reduces
variance at the expense of introducing bias, and the exact nature of
this bias is dependent, in a complex way, on the statistics of themodel
inputs (e.g., orientation statistics in natural images). Amajor advantage
of the approach used in the present study is the use of unregularized
ordinary least-squares for parameter estimation, which was made
possible by the combination of the sheer size of the NSD dataset and
the pRF constraints incorporated into our models. This approach
avoids complications associated with regularization and facilitates
accurate interpretation of voxel selectivity.

The image-computablemodel that we used herewas based on the
steerable pyramid25, a sub-band image transform that decomposes an
image into orientation and spatial frequency channels (see Methods:
Steerable Pyramid). In our previous study of stimulus vignetting17, we
made two simplifying assumptions. First, becausemost of the power in
the stimulus was at a single spatial frequency, we only analyzed the
response of themodel at a single spatial frequency channel centered at
the spatial frequency of the stimulus (Fig. S4). This approach provided
good qualitativefits to the fMRI data, andwe further confirmed that an
alternative approach of averaging across all the channels did not
change the model predictions (Fig. S4). In the present study, such an
approach is not feasible since the naturalistic images are broadband in
spatial frequency. Instead, our modeling approach enabled fitting
weights to all model channels, essentially estimating a spatial fre-
quency tuning curve for each voxel. An alternative approach would be
to weigh the different channels according to independentmeasures of
spatial frequency tuning for each voxel6,95. The Natural Scenes Dataset
could then be used to fit only the weights on orientation channels,
whichmay result inmore accurate estimates of orientation preference
because of the smaller number of free parameters.

The second simplifying assumption involves scaling the channel
outputs. For each orientation and spatial frequency, the pyramid
includes a quadrature pair: two RFs with different phases. The sum of
the squaresof the responsesof the twoRFs is typically taken, yielding an
“energy” response, which uniformly tiles all orientations and spatial
frequencies96,97. This energy response is often nonlinearly scaled in
order to better match the contrast-response function of V1 neurons.
However, determining the model architecture and normalization pool
appropriate for an fMRI voxel is not trivial and is very much an area of
active investigation98–101.We acknowledge that the formof scaling could
have an impact on the size and spatial extent of vignetting. Determining
the most appropriate scaling is an important issue that remains unre-
solved. In the context of the current study, we think it unlikely that the
main results are sensitive to the particular regime of scaling employed.

Behavioral correlates of the coarse-scale bias
Understanding the stimulus selectivity of neurons and their organi-
zation is fundamental for understanding how neural computations
lead to visual perception. In particular, coarse-scale organizations are
likely critical elements of neural accounts of behavior, since large
populations of neurons are likely to contribute to the final behavioral
readout.

A behavioral radial bias has been reported by several psycho-
physics studies: sensitivity is higher to radial orientations than to other
orientations14,102–104. Another well-known bias is the oblique effect:
across the visual field, sensitivity is higher to cardinal orientations
(vertical or horizontal) than to oblique orientations (diagonal)103–107.
The physiological orientation selectivity measured here may underlie
both behavioral effects. The radial map may be the source of the
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behavioral radial bias, while the cardinal modulation may underlie the
behavioral oblique effect. It has been suggested that fMRI response
amplitudes reflect the neural SNR, which in turn determines the per-
ceptual performance108. In that case, a stronger fMRI response to the
radial orientation should correspond to higher perceptual perfor-
mance for stimuli with radial orientations.

A major endeavor in neuroscience is to link brain properties with
behavioral readout, and visual neuroscience has made significant
progress toward this goal. Recently it has been shown that V1 size and
cortical magnification in individual subjects is correlated with contrast
sensitivity109. Similarly, the extent of cortical magnification in V1 cor-
responds to orientation discrimination performance in individual
participants110. If the coarse-scale map revealed here constitutes the
neural basis for behavioral anisotropies, we hypothesize that indivi-
dual differences in the orientationmap that we report here are related
to individual differences in perception. Successfully demonstrating
such a correspondence would provide a crucial link between brain and
behavior.

Methods
Natural scenes dataset
The fMRI data analyzed here is from the Natural Scenes Dataset (NSD;
http://naturalscenesdataset.org)20. The NSD dataset contains measure-
ments of fMRI responses from eight participants who each viewed
9000–10,000distinct color natural scenes (22,000–30,000 trials) over
the course of 30–40 scan sessions. Scanningwas conducted at 7 Tusing
whole-brain gradient-echo EPI at 1.8-mm resolution and 1.6-s repetition
time. Images were taken from the Microsoft Common Objects in Con-
text (COCO) database111, square cropped, and presented at a size of
8.4° × 8.4°. A special set of 1000 imageswere sharedacross subjects; the
remaining imagesweremutually exclusive across subjects. Imageswere
presented for 3 s with 1-s gaps in between images. Subjects fixated
centrally andperformeda long-termcontinuous recognition taskon the
images. The fMRI data were pre-processed by performing one temporal
interpolation (to correct for slice time differences) and one spatial
interpolation (to correct for head motion). A general linear model was
then used to estimate single-trial beta weights. Cortical surface recon-
structions were generated using FreeSurfer, and both volume- and
surface-based versions of the beta weights were created.

In this study, we used the 1.8-mm volume preparation of the NSD
data and version 3of theNSD single-trial betas in percent signal change
units (betas_fithrf_GLMdenoise_RR). The results in this study are based
on data from all NSD scan sessions, from all eight subjects who parti-
cipated in the NSD study.

Stimuli
NSD imageswere originally 425 × 425 pixels, andwere then upsampled
for display purposes to 714 × 714 pixels. We reproduced this upsam-
pling in our stimulus preparation, and padded the images with a
gray border on all four sides (mimicking the scanner display environ-
ment), resulting in a final image dimension of 1024 × 1024 pixels
(12.05° × 12.05°). A semitransparent red fixationpointwas added at the
center to simulate the actual stimulation experienced by the subjects
during the experiment. Images were converted to grayscale by aver-
aging across the three color channels. To speed up subsequent com-
putations, the images were then downsampled to 512 × 512 pixels. To
enable cross-validation, the set of 10,000 images assigned to each
subjectwas randomly divided into twopartitions of 5000 images each.
For subjects who completed fewer than 40 sessions, only the viewed
images were used, which resulted in a slightly different number of
images included in each partition.

Steerable pyramid
Webuilt twomodels basedon the steerable pyramid25: a fullmodel and
a constrainedmodel. The full model simulates eachneuron inV1with a

receptive field that is tuned for both spatial frequency and orientation,
and then allows for variable weighting of these model neurons. The
constrained model also simulates populations of V1 neurons, but
enforces equal weighting of model neurons across orientation by
summing across orientation subbands of the pyramid. It is possible to
create steerable pyramidmodelswith awide rangeof parameters, each
instantiating different hypotheses regarding the tuning properties of
individual neurons.

We used a steerable pyramidwith eight orientations, seven spatial
frequency levels, and a spatial frequency bandwidth of one octave,
resulting in tuning profiles that resemble those of individual V1
neurons112. The pyramid, and the full model, had a total of 56 filters.
After summing across the eight orientation filters, the constrained
model consisted of seven filters. The number of spatial frequency
levels was determined by the size of the image (512 × 512) and the
spatial frequency tuning bandwidth (1 octave). This results in seven
filters, with preferred spatial frequencies of 128, 64, 32, 16, 8, 4, and 2
cycles per image. These values were then converted to cycles per
degree given the size of the image in degrees (12.05°): 21.85, 10.93,
5.46, 2.73, 1.37, 0.68, and 0.34 cycles/degree (cpd) (Fig. S3). In our
previous work with the steerable pyramid, we used only the level
corresponding to the stimulus spatial frequency. In this study, all levels
were fit to the data. We chose to have eight orientations, two more
than in our previous study, in order to increase the accuracy of the
estimated orientation preference, while maintaining tuning width that
was comparable to those measured in primate electrophysiological
recordings112. For each orientation and spatial frequency, the pyramid
includes a quadrature pair: two RFs with different phases. We take the
sum of the squares of the responses of the two RFs, yielding an
“energy” response, which uniformly tiles all orientations and spatial
frequencies96,97.

pRF modeling
pRF estimates are included in the NSD, where full details are found20.
Briefly, pRFs were estimated based on a single session (six runs, 300 s
each) of a pRF-mapping experiment. Stimuli consisted of slowly
moving apertures (bars, wedges, and rings) filled with a dynamic col-
orful texture, that appeared within a circular region of 8.4 deg dia-
meter. Subjects performed a color change detection task at fixation.
pRFs were estimated using the Compressive Spatial Summation (CSS)
model100.

Regions of interest
Regions of interest V1, V2, V3, and hV4were defined in the NSD dataset
based on the pRF maps. In this study, we analyzed all four regions but
focused on V1, where orientation selectivity has been studied exten-
sively. Results are presented for V1 only, except for the surface maps
(Fig. 3 and Supplemental Fig. 2), which show all regions.

pRF sampling
The output of each filter in the steerable pyramidwas sampled by each
voxel’s pRF by multiplying the 2D pRF with the filter output. The
pRF wasmodeled as a 2D isotropic (circular) Gaussian, using the “size”
parameter as the Gaussian’s standard deviation. (Note that the
“size” parameter, as estimated as part of NSD, reflects the response of
themodeled pRF to point stimuli and takes into account the exponent
used in theCSSmodel.) For filter k of image j (Fj,k), the sampled output
for voxel iwith a pRF centered at xi,yi

� �
and standard deviation of σi, is

computed as the dot product between the pRF and the filter:

f j,ki =
X
x,y

Fj,kx,y�e
� xi�xð Þ2 + yi�yð Þ2

2σi
2 ð1Þ

The full model had 56 sampled outputs per image, for each voxel.
For the constrained model, sampled outputs were summed across
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orientations. Thus, the constrained model had seven sampled outputs
per image, for each voxel.

Multiple regression
Wemodeled the responses of voxel i, yi, as a linear combination of the
sampled filter outputs plus noise:

yi = fi�βi + εi ð2Þ

Here f i is a matrix consisting of voxel i’s sampled outputs for all
filters of all images and a constant term (images × filters + 1). βi is a
vector of beta weights (filters + 1 × 1), and εi is a set of residuals
(images × 1).

Beta weights were estimated using ordinary least-squares:

β̂i = ðfiTfiÞ
�1
fi
Tyi ð3Þ

Note that each voxel not only had different beta weights but also
different predictors due to the incorporation of each voxel’s unique
pRF, thus distinguishing this regression from a general linear model
analysis of the voxel responses.

To assess model accuracy, we performed cross-validation. After
estimating model parameters on one-half of the data, the regression
prediction was calculated as:

eyipred = fi�eβi ð4Þ

where fi is constructed for the other half of the data, and eβi are the
betas weights estimated using the other partition. The residual of this
prediction is given by

eyiresid = yi � eyipred = yi � fi�eβi ð5Þ

Cross-validated R2 is then computed as

R2
i = 1�

SSðeyiresidÞ
SSðyi � �yiÞ

ð6Þ

where �yi is the mean response across images, and SS denotes the sum
of squares.

Regression was performed separately for the full model and for
the constrained model on each of the two partitions. Regression
coefficients and R2 values were then averaged across partitions.

Inferring preferred orientation and spatial frequency
After estimating the optimal weights for each voxel, we simulated an
electrophysiology experiment for quantifying neural tuning, by prob-
ing the model with gratings at different orientations and spatial fre-
quencies and measuring its predicted response. Full contrast gratings
were 512 × 512 pixels at 30 spatial frequencies ranging from a single
(horizontal) cycle in the image (0.083) to the Nyquist frequency (21.25
cpd), spaced exponentially. For each spatial frequency, gratings were
oriented at 30 different angles, spaced uniformly between 0 and pi. All
gratings were then passed through the steerable pyramid, and each
filter’s outputs were summed. Voxel responses to the gratings were
simulated by multiplying the model outputs for each grating with the
voxel’s filter weights. The preferred spatial frequency of a voxel was
estimated by first averaging simulated responses across orientations
and then computing the mean frequency, weighted by response
amplitudes. Similarly, the preferred orientation of a voxel (for the full
model) was estimated by averaging across frequencies and then
computing the circular mean, weighted by response amplitudes. For
all weighted means, the minimal weight was first subtracted from all
weights to eliminate any negative weights.

Cortical surface maps
In order to create a group map on the cortical surface, each subject’s
data in volume space was transformed to surface space using nearest-
neighbor interpolation, using the mrTools toolbox in Matlab113: each
vertex was assigned the value of a single voxel, and multiple vertices
could inherit values from the same voxel. Next, all subjects’ surface
data were transformed to a single cortical space, FreeSurfer’s “fsaver-
age” space. For the groupmap, we computed the circular mean across
subjects for each vertex in V1–V4, weighted by the fullmodelR2 values.
The resulting map of mean orientation preference was displayed on
the “fsaverage” inflated cortical surface (Fig. 3B).

Quantifying coarse-scale biases
We quantified the strength of the coarse-scale orientation map by
comparing it to an ideal, perfectly radialmap, aswell as ideal vertical and
cardinal maps (see Fig. 4). For each voxel, we computed the circular
angular distance from the preferred orientation to the predicted
orientation. For the radial map, the predicted orientation was the radial
orientation, according to the voxel’s pRF angle (Fig. 4, right). For the
cardinal map, the predicted orientation was vertical for pRF angles
closer to the vertical meridian than to the horizontal meridian, and
horizontal for pRF angles closer to the horizontal meridian than to the
vertical meridian (Fig. 4, center). For the vertical map, the predicted
orientation was vertical for all voxels (Fig. 4, left). To average across
voxels, we divided voxels into 20 bins according to voxel pRF eccen-
tricity, pRF angle, and pRF R2. For eccentricity binning, bin width
increased exponentially with eccentricity. Voxels with pRF R2 values
belowzerowere excluded frombinning. To compare the strengthof the
radial bias andother alternativebiases,weaveragedacross voxelswithin
each bin separately for each subject, and subject means were then
submitted to a paired-sample t-test, with seven degrees of freedom.

Control analysis: analyzing regression residuals
For this analysis, after performing multiple regression with the con-
strained model as predictors, we took the residuals from the same
partition used to estimate the beta weights. We then performed
regression on the residuals, this time using the full model.

Control analysis: analyzing regression prediction
For this analysis, after performing multiple regression with the con-
strainedmodel as predictors, wemultiplied the regression coefficients
of the same partition with the predictors to get the regression pre-
diction.We thenperformed regression on the prediction, using the full
model as predictors.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The NSD dataset is freely available at http://naturalscenesdataset.org.
Images used forNSDwere taken from the CommonObjects in Context
database (https://cocodataset.org). Source data are provided with
this paper.

Code availability
Code for analyzing the data and generating the figures is available at:
https://github.com/elimerriam/nsdOtopy114.
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