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Abstract
Lower muscle mass in populations with obesity is associated obesity-related diseases like hypertension and type 2 diabetes
mellitus. Bariatric surgery leads to sustained weight loss. During the weight reduction, loss of muscle should be minimized. Thus
reliable quantification of muscle mass is much needed and therefore the also the need for validated methods. Imaging methods,
magnetic resonance imaging and computed tomography scan, have been the gold standard for many years. However, these
methods are costly and have limitations such as the maximum weight. Dual-energy X-ray absorptiometry is currently the most
used alternative. Other, less expensive methods are very limited in their validation in populations with morbid obesity. This
narrative review summarizes the current knowledge regarding measuring muscle mass and strength in obesity.
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Abbreviations
ADP Air displacement plethysmography
BIA Bioelectrical impedance analysis
BMI Body mass index
CT Computed tomography
DXA Dual-energy X-ray absorptiometry
FFM Fat-free mass
FM Fat mass
L3 Third lumbar
MF Multi-frequency
MRI Magnetic resonance imaging
SFT Skinfold thickness

TD2 Type 2 diabetes mellitus
US Ultrasonography

Background/Introduction

Bariatric surgery is able to achieve sustained significant
weight loss providing major health benefits [1, 2]. The focus
of bariatric surgery is on reduction of fat mass (FM), as FM is
an important determinant of co-morbidity, e.g., type 2 diabetes
(TD2) and hypertension [3, 4]. However, muscle mass is
equally important. The health risks of low muscle mass have
been well documented in populations of older adults [5, 6] but
awareness of lowmuscle mass and its health risks in obesity are
lagging behind. In obesity, low muscle mass and function are
associated with lower psychological health, quality of life and
increased all-cause mortality [7, 8]. Furthermore, TD2 and hy-
pertension are more common with lower muscle mass [9].
Accordingly, preservation of muscle mass during weight loss
after bariatric surgery is clinically relevant. A recent study
showed that after gastric sleeve surgery patients lost an average
10% lean bodymass in the first month and 17% loss after 1 year
[10, 11]. In preparing for surgery, patients on a very-low caloric
diet lost more lean mass than FM [12]. These data underscore
the need to decrease the loss of muscle mass both before and
after the surgery. This implicates the need for validated
methods to estimate muscle mass, which have already been
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established in healthy and elderly populations [13–15].
Validated methods for measuring muscle strength in popula-
tions with obesity might also be helpful, as muscle strength is
positively related to muscle mass [16] and quality of life [17,
18]. In this paper, we review the methods of quantifying
muscle mass and muscle strength, and their validation in
populations with obesity.

Methods

In July 2019, the review started with a systematic literature
search on validating methods to measure muscle mass in pop-
ulations with obesity (Fig. 1). The search was performed in
Pubmed, Embase, and Web of Science. Search terms used
were: “muscle*, lean mass, lean body mass, fat free body
weight, muscular mass or lean body weight” and “obesit*,
obese or adipos* and (“dual energy x ray absorptiometry,
dexa, dxa, densiometr*” or “MRI, magnetic resonance imag-
ing” or computed tomography, CT, tomography”). Selection
was performed independently by two reviewers and consen-
sus was obtained on the results. Of the 6267 articles found,
6117 were excluded based on title and abstract. After
assessing the full test of the remaining 50 articles, 11 articles

remained (Table 1). The articles finally selected contained
mostly small numbers of subjects, usually less than 100, were
very heterogeneous in characteristics of the population, gold
standards and methods of measurement. We therefore con-
cluded that a narrative review would be more appropriate for
this topic. Articles found with the systematic search are in-
cluded in the narrative review.

Results

The results are divided into three topics: definitions of muscle
mass, methods to measure muscle mass and measurement of
muscle strength.

Definitions of Muscle Mass

Many different terms are used in studies about muscle mass, e.g.,
lean mass or lean tissue mass, fat-free mass (FFM) and muscle
mass. The muscle mass contains the weight of the muscles, in-
cluding skeletal and smooth muscles. The term appendicular
skeletal muscle mass only includes the skeletal muscles from
the limbs [30]. The term lean tissue mass and FFM are not
interchangeable. The lean tissue mass is the FFM together with

Fig. 1 Flow-chart of systematic search
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essential fat (e.g., in bone marrow or in organs). This amount of
essential fat is in non-obese individuals approximately 2–17% of
the total FFM [31]. In adults, changes in lean tissuemass or FFM
are generally due to changes in muscle mass, as the other com-
ponents are known to be quite constant.

Methods of Measuring Muscle Mass

Imaging Methods

Magnetic Resonance Imaging

MRI has replaced the computed tomography (CT) scan as the
gold standard [32]. MRI creates images from emission of ra-
diofrequency energy from the nuclei of hydrogen atoms gen-
erated by magnetic fields and the signal will differ depending
on the type of tissue [32]. MRI protocols can be optimized to
assess the contrast among muscle tissue and fat tissue [33]. It
also allows for quantification of FFM components, e.g., skel-
etal muscle mass, specific organ mass and bone marrow adi-
pose tissue [14, 32]. MRI can also separate the muscle tissue
into two different components, muscle with intramuscular fat
and fat-free muscle. New methods to separate extracellular
and intracellular muscle compartments can be used to show
the expansion of extracellular space in aging and development
of sarcopenia [34]. MRI is the most valuable tool for clinical
research studies, due to the ability to quantify body compart-
ments, which cannot be measured by other techniques.
Furthermore, it can be used to assess relatively small changes
over timewhich is useful in both intervention and observational
studies [15]. Additionally, MRI can be used for body compo-
sition profiling, which is mainly used to compartmentalize the
fat tissue but also to assess the weight muscle ratio [35].
General limitations of MRI are the costs, need for technicians,
space requirements and infeasibility for patients with claustro-
phobia or with MRI incompatible implanted devices (e.g., car-
diac pacemaker) [14]. The main drawbacks in a population
with class II/III obesity are weight limitation (approx. 200 kg)
and radial size limit (approx. 60 cm) [36]. MRI has been vali-
dated in healthy populations by post mortem cadaver studies in
which subjects with obesity were also included, but with a
maximum body mass index (BMI) of 31 kg/m2 (r = 0.97;
Table 2). The results of test-retest and inter-observer reliability
were highly correlated (respectively: 2.9%, r = 0.99 and 2.6%,
r = 0.99) [33, 38]. There areMRI machines available with open
configuration, eliminating the radial size limitations, and with
higher maximal weight (approx. 290 kg) [39]. With these MRI
machines, it might be possible to validate measurements of
muscle mass in patients with morbid obesity. Finally, MRI
canmeasure a single abdominal cross-sectional slice at the third
lumbar vertebra (L3) level, which has been validated in indi-
viduals with obesity against total MRI imaging of the abdomenT
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and allows for estimation of both visceral adiposity and skeletal
muscle mass [19].

Computed Tomography Scan

In 1971, the CT scan was the first clinically accepted body
composition measurement tool and was used as a gold stan-
dard [34]. The CT scan uses an X-ray beam to make cross-
sectional images of the body, which can estimate total body
fat, visceral fat and skeletal muscle mass [40, 41]. A single
cross-sectional image of the abdominal area at the level of the
L3 has shown a high correlation with total body skeletal mus-
cle mass and body adipose tissue, comparable to whole-body
MRI results [42]. However, these studies have mainly been
done in healthy populations and populations prone to wasting
and thus might not be applicable in patients with obesity [43].
General limitations of CT are the costs, need for technicians
and radiation exposure [14]. Obesity-related limitations are
similar to MRI, as CT also has a weight limit (approx.
230 kg) and radial size limit (approx. 60 cm) [15]. The CT
validity was also tested with cadaver dissection in non-obese
individuals (r = 0.97; Table 2) [33]. The test-retest reliability
showed a high correlation (1.4%, r = 0.999) [33, 44].
Currently, CT is rarely used to measure muscle mass.

Dual-Energy X-ray Absorptiometry

DXA is the best alternative to the gold standard. Originally
invented to assess bone mineral content, DXA is now fre-
quently used to examine body composition and muscle mass.
It uses two X-ray beams to separate fat, bone and lean tissue
based on the tissue X-ray absorption [45]. DXA highly corre-
lates to both MRI and CT measures of skeletal muscle mass
[22, 46, 47]. The main limitation is that muscle is not quanti-
fied directly. Several assumptions are made to calculate the
lean soft tissuemass or FFM, based on the different gray-tones
in the DXA scan. There can also be interference from both
dehydration and edema, which are not unusual in populations
with obesity [48, 49]. The validity of the muscle measure-
ments of the DXA compared to CT has been examined in
non-obese volunteers (r = 0.96; Table 2) [50]. The test-retest
reliability between measures of FFM, also showed a high
correlation (r = 0.99) [47]. However, these studies excluded
individuals who did not fit within the DXA field-of-view or
exceeded the CT radial size [50]. A recent study has shown
that half-body analysis is comparable to the whole-body anal-
ysis for FM, non-bone leanmass and fat percentage. This half-
body analysis uses a symmetry assumption, in which the left
part of the body should have the same fat and muscle distri-
bution as the right part of the body. It can be used if patients do
not fit in the DXA field-of-view [51, 52]. In short, the DXA
can accurately predict the FFM, in both healthy individuals
and individuals with obesity.

Ultrasonography

In ultrasonography (US), high-frequency sound waves travel
through the skin and are reflected by the underlying tissues.
The reflection is called the acoustic impedance and each tissue
type has a unique impedance. The reflection, received by the
transducer, is converted into electrical signals and then visu-
alized on a monitor [53]. The ultrasound is a non-invasive, fast
and inexpensive tool [53, 54]. Alterations in the muscle mass
can also be measured with US [55]. The ultrasound is portable
and therefore especially useful in critically ill patients at bed-
side [53]. There have been studies in healthy and older adults
validating US in quantifying body composition, e.g., FM, es-
pecially visceral fat, and skeletal muscle thickness [55–57].
FM measurements with US have been validated with DXA in
non-obese individuals (r = 0.98; Table 2) [58]. Estimation of
lean tissuemass with US has not been validated in populations
with obesity. The most commonly used sonographic devices
have a maximum measuring depth of approximately 12 cm
[59]. This limits the use in persons with morbid obesity, in
whom subcutaneous fat thickness of more than 12 cm is not
uncommon. Using an ultrasound with a lower frequency can
solve this problem, as the penetration increases, however this
will decrease the resolution of the image [60]. Future research
on US to measure lean tissue in populations with obesity is
underway. Finally, it might also be possible to look at muscle
quality, which has already been validated in healthy athletes
and critically ill patients [61, 62].

Summary of Imaging Methods of Measuring Muscle Mass
in Obesity

MRI and CT have been the gold standard inmeasuringmuscle
mass for years. Both have a weight and radial size limit.
Newer models have bigger radial size limits and there is even
an open configuration MRI [34]. However, both MRI and CT
are expensive and require trained personnel. Currently, the CT
is rarely used for measuring muscle mass.

The DXA results (lean tissue mass and FFM) highly cor-
relate with both MRI and CT measures of muscle mass and
DXA is relatively cheap compared to MRI or CT [63]. DXA
also has some limitations, e.g., need for trained personnel and
(low levels of) radiation. DXA is already established and fre-
quently used as an alternative toMRI tomeasuremusclemass.
US to measure muscle is quite new and has not been tested in
populations with obesity yet.

Bioelectrical Impedance Analysis

Bioelectrical impedance analysis (BIA) measures the electri-
cal impedance (or flow) of an electric current through the
body. Due to differences in electrical conductance, the total
body water, FFM and body fat can be estimated [48]. The
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FFM is estimated based on a constant hydration of FFM of
73%. The hydration of the FFM is higher in obesity (approx.
77.5%) [48, 64]. Consequently, most prediction equations
give an underestimation of the FM and an overestimation of
the FFMwhen used in participants with obesity [65]. BIA has
been validated against MRI in healthy subjects, but has not
been done in a population with obesity (r = 0.87; Table 2)
[66]. BIA is unreliable when compared to DXA results in a
population with morbid obesity, overestimating the FFM with
increasing errors as the BMI increases [21, 26, 27, 29, 48].

Furthermore, factors that can influence the outcome of the
BIAmeasurement are food, alcohol, physical exercise, time of
day, skin condition (perspiration), body shape, and some dis-
ease conditions or treatments [67].

Air Displacement Plethysmography

Air displacement plethysmography (ADP) is currently mostly
performed in a BOD POD (Bod Pod Body Composition
System, Concord, CA, USA), which calculates body volume.
The difference in volume of the chamber, with versus without
the patient, is the total body volume. The body volume can
then be used to estimate the percentage of body fat [68, 69].
The relative body fat is calculated using the following equa-
tion: percent fat = 495/density − 450 [68, 70]. Similar to the
BIA, the ADP uses assumptions for calculating the FFM. This
can give an underestimation of the FM and an overestimation
of the FFM in persons with obesity [14]. ADP has been com-
pared to hydrostatic weighing for its validity in measuring
percentage body fat (r = 0.93; Table 2) [68]. Hydrostatic
weighing also uses total body volume together with the same
assumptions to calculate FM and FFM [71]. A validation
study with ADP against DXA showed an overestimation of
body fat in participants with a lower BMI and an underesti-
mation of body fat in participants with a high BMI [72].

Anthropometric Methods

Circumference and Skinfold Thickness

Circumference measurements are done with a flexible quilting
tape, making the measurements safe, easy and at low-cost
[73]. The accuracy of circumference measurements depends
on the skills and training of the person taking the mea-
surements and can differ between observers [74]. Arm,
thigh, and calf circumference together with skinfold
thickness (SFT) can be used to estimate skeletal muscle
mass. A prediction equation was developed to estimate
the skeletal muscle mass: skeletal muscle mass = height
× [0.00744 × corrected arm girth2 + 0.00088 × corrected
thigh girth2 + 0.0041 x corrected calf girth2] + 2.4 × sex
− 0.048 x age + race × 7.8. The correction of the cir-
cumferences is done by subtracting π x SFT from the

measured circumference [75]. The equation was validat-
ed with MRI in patients with class I and II obesity [76].

Biochemical Measurements

Creatinine

Creatinine is a breakdown product of creatinine phosphate and is
released frommuscle cells with a usually fairly constant rate in to
the blood. The classic method for the estimation of total skeletal
muscle mass is 24-h urinary creatinine excretion, with the equa-
tion of 17–20 kg of muscle mass per gram of creatinine [77, 78].
This equation has been validated in patients with advanced renal
failure, children, adolescents, elderly people and patients with
wasting conditions, but not in populations with obesity
[78–80]. One study also highlighted the relatively high day-to-
day variability of creatinine excretion (approx. 4–8%) and some
influential factors on the secretion of creatinine (e.g., diet, exer-
cise, menstrual cycle). It shows a high validity compared to an-
thropometric methods [78]. Serum creatinine can estimate mus-
cle mass when serum cystatin C is added to the equation.50 The
equation has been developed and validated in a diverse popula-
tion, only excluding patients with chronic kidney disease (r=
0.93) [81]. However, it has not been specifically validated in
populations with obesity. Another relatively new tool is the D3-
creatine dilution method. This method measures D3-creatine and
D3-creatinine excretion in morning urine [82]. Creatine is needed
for energy supply in the muscle and approximately 2% is con-
verted into creatinine and excreted.With the D3-creatinemethod,
subjects will ingest a single dose of stable isotope-labeled D3-
creatine. D3-creatine will be taken up into muscle tissue and the
excreted D3-creatinine will give an estimation of skeletal muscle
creatine enrichment and thus total body creatine and total mus-
cular mass [82–84]. There is less variability compared to 24-h
urinary creatinine excretion and less dependence on subject com-
pliance [83]. This specific method of measuring D3-creatine has
yet to be validated in a population with obesity.

Muscle Strength

Isokinetic Testing

Isokinetic testing is the gold standard method to measure muscle
strength. There are two main methods to measure isokinetic
strength. The first method is the peak torque, which is the max-
imum amount of force that can be used to extend or flex the
muscles around the knee [85, 86]. Both strength and speed can
be controlled during the measurement, leading to a more detailed
assessment [87]. Studies in healthy men and elderly populations
have found a correlation between isokinetic torque values and
muscle mass and total muscle strength [88–90]. The second
method is the one repetition maximum, in which the maximum
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weight that can be pushed once is measured [86]. It is usually
measured with extension measures with a weight and pulley
system. This method is less appropriate for vulnerable groups
(e.g., elderly, cardiac and hypertensive patients), due to the
chance of over bearing [91]. Neither one of these two methods
has been studied in patients with obesity.

Grip Strength

A simple method to evaluate muscle strength is the hand-dy-
namometer, which measures the grip strength. Compared to
isokinetic testing, the grip strength has shown to be a good
alternative for measuring muscle strength [92]. It is associated
with total body strength and total body muscle mass [93, 94].
Studies in assisted-living and community-dwelling older
adults have shown that grip strength is associated with muscle
mass and can help predict the FFM index (kg FFM/length) [5,
6]. These studies have only been performed in sarcopenia
prone populations, without including individuals with obesity.
Studies in populations with obesity mostly look at the mea-
surement of physical fitness and are not related tomusclemass
[95].

Discussion

MRI has replaced the CT scan as the gold standard for mea-
surement of body composition, and the DXA scan is a good
alternative. Limitations of these measurements are not uncom-
mon when evaluating muscle mass in obesity. Most limita-
tions regard to weight per se or difference in body composi-
tion compared to non-obese subjects and dealing with these
limitations should be part of methodology. Unless the weight
threshold is identified prior to the patient attending, there is
potential for people with obesity to face a stigmatized situation
in a routine clinical encounter. This needs to be avoided, with
a clear need to make these diagnostic procedures more acces-
sible to people with obesity. Furthermore, only a few methods
have been validated in populations with obesity, especially in
the higher classes of obesity. Further research should look at
different methods to measure muscle mass in obesity, to find
cheaper methods with less limitations regarding weight and
size which can be made widely available for clinical practice.
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