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Abstract

Background: Phenomena of instability are widely observed in many dissimilar systems, with punctuated equilibrium in
biological evolution and economic crises being noticeable examples. Recent studies suggested that such instabilities,
quantified by the abrupt changes of the composition of individuals, could result within the framework of a collection of
individuals interacting through the prisoner’s dilemma and incorporating three mechanisms: (i) imitation and mutation, (ii)
preferred selection on successful individuals, and (iii) networking effects.

Methodology/Principal Findings: We study the importance of each mechanism using simplified models. The models are
studied numerically and analytically via rate equations and mean-field approximation. It is shown that imitation and
mutation alone can lead to the instability on the number of cooperators, and preferred selection modifies the instability in
an asymmetric way. The co-evolution of network topology and game dynamics is not necessary to the occurrence of
instability and the network topology is found to have almost no impact on instability if new links are added in a global
manner. The results are valid in both the contexts of the snowdrift game and prisoner’s dilemma.

Conclusions/Significance: The imitation and mutation mechanism, which gives a heterogeneous rate of change in the
system’s composition, is the dominating reason of the instability on the number of cooperators. The effects of payoffs and
network topology are relatively insignificant. Our work refines the understanding on the driving forces of system instability.

Citation: Yang Z, Zhou T, Hui PM, Ke J-H (2012) Instability in Evolutionary Games. PLoS ONE 7(11): e49663. doi:10.1371/journal.pone.0049663

Editor: Attila Szolnoki, Hungarian Academy of Sciences, Hungary

Received November 30, 2011; Accepted October 15, 2012; Published November 29, 2012

Copyright: � 2012 Yang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: PMH acknowledges the support from the Research Grants Council of the Hong Kong SAR Government under Grant No. CUHK-401109. TZ and ZMY
acknowledge the Fundamental Research Funds for the Central Universities. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: zhutou@ustc.edu (TZ); pmhui@phy.cuhk.edu.hk (PMH)

Introduction

Instabilities are widely observed in diversified fields such as

sociology, psychology, economics, and biology [1–19]. For

example, biological evolutions exhibit themselves as intermittent

bursts of activities separating relatively long periods of quiescence,

with extinctions happening at all scales [5,6]. This dynamical

instability, referred to as punctuated equilibrium, may result from

strong interactions among different species [7,8]. Economic crises,

an instability phenomenon in economic systems, are caused not

only by the economic and financial policies of individual country,

but also the interdependent relations among countries, known as

the world trade network and other economic and financial

networks [14–17].

These systems typically consist of many interacting individuals,

each reacting to the environment and other individuals’ actions to

enhance its own benefit. The relationship among individuals can

be described by a network, with nodes and links representing the

individuals and their relations, respectively [20,21]. The reacting

strategies are usually modeled by competing games, which were

introduced for biological problems [22,23] and subsequently

applied to many other disciplines [24–28]. Therefore, a combi-

nation of evolutionary games and networks provides an effective

approach of research on these systems [29]. To get closer to

reality, the mechanisms of ‘‘network evolution’’ [30,31] and

‘‘inheritance and variation’’ [32], which can also be called

imitation or copying mechanisms, were incorporated into subse-

quent research.

Understanding the underlying mechanisms for system instability

has been the focus of recent research. Kim et al. [33] pointed out

that an opinion leader could affect a considerable fraction of

population yet ordinary people can rarely influence the leader, and

this kind of asymmetric influence could result in dynamic

instability in prisoners’ dilemma game. Schweitzer et al. [15]

showed that a single tiny disturbance may lead to the system-level

instability through the cascading process on economic networks.

Rendell et al. argued that the copying and learning mechanisms

would result in instability [34]. Cavaliere et al. [35] proposed a

game-theoretic model of dynamic network formation for studying

prosperity and instability in which newcomers are more likely to

select prosperous individuals as role-models and imitate their

strategies and connections. Their model incorporates three

mechanisms: (i) imitation and mutation, (ii) preferred selection

on successful individuals, and (iii) networking effects, and can

exhibit instabilities on both the composition of individuals and the

interacting patterns of individuals.

While these mechanisms combined could lead to the system

instability, the effects of each individual mechanism are not fully

understood. In particular, is there a dominating mechanism for the

instability on the composition of individuals? Here, we propose
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and study simplified models to distinguish the contributions of

each mechanism. It is found that imitation and mutation alone can

lead to the instability on the composition of individuals in a

symmetric way, and the preferred selection mechanism modifies

the instability and makes the system exhibit asymmetry. Surpris-

ingly, the co-evolution of network topology and game dynamics is

not necessary to the occurrence of instability, in particular, if the

new links are added in a global manner, the network topology

exerts almost no impact on such instability. The results are further

supported by analyzes based on mean-field approximation. This

work, therefore, enhances our understanding on the driving forces

of system instability.

Results

Our models are constructed under the framework of the

snowdrift game, yet qualitatively the same phenomena result also in

corresponding models using the prisoner’s dilemma (see the

Supporting Information for results on prisoner’s dilemma).

The snowdrift game [36–39] is best illustrated by a situation where

two drivers are caught in a blizzard and blocked by a snowdrift.

Each driver has two choices: either removing the snowdrift by

shoveling or staying in the car. If the road is cleared, both drivers

get a benefit b of getting home. There is a cost c for the labor of

shoveling, with bwcw0. If the drivers cooperate in clearing the

block, they share the labor and each gets a net benefit of b{ c
2
. If

both choose to stay in the car, they both get zero benefit. If one of

the drivers shovels, then both can go home, but the non-

cooperative driver (defector) avoids the labor and gains a benefit b,

whereas the cooperator’s benefit is b{c. Writing r~c=(2b{c),
the model can be described by the payoff matrix [40]:

C D

C

D

1 1{r

1zr 0

� �
,

ð1Þ

where C and D denote the strategies, say cooperate or defect, of

the drivers. In a networked environment, the payoff to an

individual in a time step is the sum of payoffs from pair-wise

interactions with all her neighbors.

Imitation and Mutation
Considering a system of N individuals, each of which takes on

one of two strategies: cooperate or defect. In every time step, a new

individual enters the system, chooses a role-model randomly, and

imitates the role-model’s strategy with a probability 1{a or adopts

the opposite strategy with probability a. The parameter a is thus

called the mutation rate and aw0 is needed to avoid the system

from being frozen into a state with all the individuals using the

same strategy. To keep N constant, a randomly chosen individual

is removed from the system at the same time. This process is very

similar to the well-known Moran process [41] and thus can be

considered as a variant of the Moran process (the Moran process

does not take into account the mutation rate, corresponding to the

case of a~0). In the supplementary information of [35], Cavaliere

et al. provided detailed analysis about the differences between

birth-death updating and death-birth updating rules. Comparing

with the model of Cavaliere et al. [35], we isolated the effects of

imitation and mutation, as the details of the game and thus the

payoff and performance of individuals as well as networking effects

are all irrelevant. As the statistics are independent of initial

configurations, we set the initial condition to be 50% cooperators

and 50% defectors.

Figure 1 shows how the number NC of cooperators varies in

time. It is observed that for a majority of time steps, most

individuals in the system take on the same strategy, but instability

sets in to swing the system to the opposite strategy. A state between

the two extremes does not stay long. Excluding the time in uniform

states where all individuals take on the same strategy, figure 2 gives

the probability density function p(NC) of having NC cooperators

in the system. The distribution is symmetrical around NC~50,

and the system spends much more time when there are many

cooperators or defectors than when there are comparable numbers

of them. Analytically, a rate equation approach (see Analysis for

details) gives

p(NC)*
1

NC(N{NC)
ð2Þ

for 1ƒNCƒN{1, and it gives good agreement with simulation

results. This result does not depend on the mutation rate a as long

as a%1. The value of a does determine the relative abundance of

the two extreme uniform states, with a smaller value giving a larger

p(0)zp(N), as depicted by the simulation and analytic results in

figure 3 (see Analysis for analytic treatment). The results in

figure 1 to figure 3 show that the imitation and mutation

mechanism alone would lead to instabilities on the composition of

individuals (quantified by the number of cooperators NC ). As the

selection is made randomly, there is no preference on cooperators

or defectors, resulting in a symmetric p(NC) around NC~N=2.

Selection Mechanism
To study the effects of preferential selections, we incorporate the

snowdrift game into the model. At every time step, each individual

plays the snowdrift game with all her connected neighbors and gets

a total payoff according to the payoff matrix (1). Individuals will

get different payoffs depending on their strategies and their

competing neighborhoods. A newcomer then enters the system

and selects an individual i as the role-model with a probability

proportional to the total payoff of individual i. To allow

individuals with vanishing payoffs to have a chance to be chosen,

we add a small amount e~10{5 to every individual’s total payoff

(see Analysis and Supporting Information about the effects of

e on analytical treatment and numerical results, basically speaking,

it has almost no impact if e&0). The newcomer will follow the

role-model’s strategy with probability 1{a or adopts the opposite

strategy with probability a, where a is the mutation rate. After

deciding on the strategy, the newcomer establishes m links

randomly with existing individuals. The time step ends with the

removal of one individual randomly from the N old individuals.

Here, we focus on a typical case of r~0:2 (b=c~3), which favors

cooperation. Other values of r will lead to similar results if b=cw1.

Figure 4 shows the simulation results of NC as a function of

time. The preferred selection of more successful individuals leads

to a dominance of cooperators. However, the system does not stay

in a state full of cooperators all the time. There are instabilities

resulting in the sudden occurrence of many defectors that last only

for a short duration. As a result, the total payoff of all individuals

over time is still high. The situation is similar to the coexistence of

prosperity and instability in the model of Cavaliere et al. [35] (later

we will show quantitatively the changes of system profile and

strength of instability versus r, which provide nice evidence on

their similarity). Despite the similarity, we stress that the

coexistence does not rely on network evolution in the present

model, as the m links are established randomly and the network

grows independently of the game dynamics, which is different

from that in Ref. [35].

Instability in Evolutionary Games
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Network Evolution Mechanism
The independence on network evolution is further illustrated by

considering the distributions p(NC) for different values of m.

Figure 5 shows that the distributions p(NC) for m~N{1
corresponding to a fully connected network, m~1 corresponding

to a network fragmented into small pieces and m~5 as an

intermediate case are almost the same. Analytic result of p(NC)
also shows that m is irrelevant (see Analysis). The preferential

selection mechanism makes p(NC) asymmetric and shifts it to the

side of larger NC , when compared with figure 2. In contrast, the

model of Cavaliere et al. [35] gives a network that undergoes

continual fragmentation and coalescence, which in turn affect the

fraction of cooperators in the system. The insensitivity to network

topology is further illustrated in figure 6, in which we show time

variations of the average degree and the number of disjoint

components in the system at short times. These quantities vary in a

random fashion, with no observable correlation with NC . Figure 7

reports how the average number of cooperators SNCT and the

average system payoff (i.e., the total payoff of all individuals) SPCT
change with parameters m and r. Again, m has almost no impact

on either SNCT or SPCT and we display two examples m~3 and

m~99 in figure 7.

To further demonstrate that the network evolution mechanism

is not a necessary factor leading to the features in figure 5, we

study some other mechanisms like good-get-richer [42–44], where the

newcomer has a probability q (qw0) to connect to the role-model,

in addition to a higher probability of selecting the individuals with

higher payoffs as role-model, and a probability w (ww0) to

connect to other individuals. Under such good-get-richer mech-

anism, the network evolution is related to the game dynamics, but

it still gives almost the same distribution p(NC). Typical simulation

results are presented in Fig. S1. Notice that, in the present model,

the links are always added in a global manner, while in the model

of Cavaliere et al. [35], the links are added in a localized manner.

Therefore, one could infer that the different ways of network

construction indeed matter, but the constructing rule is not

necessary to be one of the origins of instability.

Effects of Payoff Matrix
In accordance with the mechanism of the snowdrift game, as the

increasing of r, defectors are encouraged and the number of

cooperators decreases, leading to the decrease of the system payoff

PT . This monotonous changes are illustrated in figure 7.

As shown in figure 8, with preferential selections, insensitive to

different values of r, the system is dominated by cooperators in

most time with short-duration instabilities. The number of

defectors in the instabilities increases with r, resulting in the

quantitatively different p(NC) as shown in figure 7(c). Analytically,

p(NC) can be obtained using the mean-field approximation.

Results are also shown in figure 7(c). The result indicates that (i)

Figure 1. Transitions between extreme states consisting of all cooperators and all defectors. The system size is N~100 and the mutation
rate is a~10{4 . The simulation was carried out for 107 time steps. Each data point is an average over 103 time steps.
doi:10.1371/journal.pone.0049663.g001

Figure 2. Simulation and analytic results of the distribution
p(NC ) of the number of cooperators. Results are obtained in a
simulation of 108 time steps (violet open circles). Considering time steps
with 1ƒNCƒN{1, the value of p(NC) are found as the fraction of
steps with exactly NC cooperators. The parameters are the same as
those in Figure 11. The red solid line represents the the analytic results
as given by Eq.(2).
doi:10.1371/journal.pone.0049663.g002

Figure 3. Relative abundance of the system being in states of
all cooperators and all defectors as a function of the mutation
rate a. The system size is N~100 and each data point is obtained by a
simulation of 108 time steps. The purple dash line represents the
analytic solution given in Eq.(10).
doi:10.1371/journal.pone.0049663.g003

Instability in Evolutionary Games
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p(NC) does not depend on the network topology and (ii) the

distribution p(NC) depends on r, in agreement with simulation

results. More detailed simulation results on the effects of r are

given in Fig. S2. Analytic treatment is presented in Analysis.

For the present dynamical process, we quantify the strength of

instability on the composition of individuals by counting the total

number T of transitions between all-cooperator state and all-

defector state, sharp drops from all-cooperator state and raises

from all-defector state (see Methods for precise definition). As

shown in figure 9, m again has almost no impact on the strength of

instability, while when r exceeds about 0.3, the strength of

instability decreases as the increasing of r for a wide range of the

threshold L. Recalling figure 7, when r exceeds about 0.3, the

average system payoff SPTT starts to decrease. Though this paper

concentrates on the analysis of the instability about the compo-

sition of individuals, the observation about how SPTT and T

change with r is to some extent similar to the coexistence of

prosperity and instability reported in [35].

Furthermore, dynamic instability on the number of cooperators

is also observed for the prisoner’s dilemma, which is associated

with different payoff matrix and different selection mechanism (an

individual’s payoff can be negative and thus we cannot simply

apply the linear selecting probability). See simulation results in

figure S3. In accordance with the well-known conclusion, in the

well-mixed case (i.e., large m), the defectors get dominant.

Analysis

For the simplest model involving only imitation and mutation,

let Q(NC ,t) be the probability of having NC cooperators at the

time step t. The averaged probability p(NC) of having NC

cooperators can be obtained by averaging Q(NC ,t) over a

sufficiently long time window T after the transient, i.e.,

p(NC)~
1

T

ðTzT0

T0

Q(NC ,t)dt, ð3Þ

where T0 is some time after the transient behavior, which is

dependent on the initial condition, ends. A newcomer has a

probability
NC
N

of choosing a cooperator and a probability
N{NC

N
of choosing a defector as the role-model. Therefore, the newcomer

has a probability (1{a)
NC

N
za

N{NC

N
of taking on the

cooperative strategy. In removing an individual, the probability

of eliminating a cooperator is
NC

N
, and that for a defector is

N{NC

N
. In one time step, the rates Ak and Bk at which a system

with exactly k cooperators would evolve into one with kz1 and

k{1 cooperators are given, respectively, by

Figure 4. Number of cooperators as a function of time with preferential selection. The parameters are N~100, m~5, a~10{4 and r~0:2.
The simulation was carried out for 107 time steps. Each data point is an average over 103 time steps. The system spends most of the time in a state of
all cooperators, interrupted by instabilities that last for a short duration when defectors suddenly appear. This is analogous to the coexistence of
prosperity and instability as observed in the model of Cavaliere et al. [35].
doi:10.1371/journal.pone.0049663.g004

Figure 5. The distributions p(NC ) for different m. With N~100 and a~10{4, subgraphs (a) and (b) respectively show the time distributions for
r~0:1 and r~0:2. The simulations last for 108 time steps. Distributions for different m overlap each other, implying that the number of links in the
network has no influence on the prosperity of cooperation and the system instability.
doi:10.1371/journal.pone.0049663.g005
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Ak~ (1{a)
k

N
za

N{k

N

� �
N{k

N
,

Bk~ (1{a)
N{k

N
za

k

N

� �
k

N
:

ð4Þ

In the steady state, the rates at which p(k) increases are balanced

by those at which p(k) decreases. This results in the following set of

equations:

Ak{1p(k{1)zBkz1p(kz1){(AkzBk)p(k)~0 (0ƒkƒN), ð5Þ

with the first two terms accounting for an increase in p(k) and the

last term accounting a decrease in p(k). Since 0ƒkƒN , this set of

equations can be solved with the supplementary (boundary)

conditions p({1)~p(Nz1):0. Applying Eq.(5) repeatedly to

different values of k, we have in general Akp(k)~Bkz1p(kz1).
Therefore, Eq.(5) can be solved exactly to yield

p(i)~p(N) P
N

j~iz1

Bj

Aj{1

(0ƒiƒN{1): ð6Þ

The normalization condition
XN

k~0
p(k)~1 serves to fix p(N) as

Figure 6. Number of cooperators shown together with (a) the instantaneous average degree of the network and (b) the number of
disjoint components in the network. The parameters are N~100, m~5, a~10{4 and r~0:2. Results are shown for the early stage. Each data
point represents an average over 100 time steps.
doi:10.1371/journal.pone.0049663.g006

Figure 7. The changes of (a) the average number of cooperators SNCT and (b) the average system payoff SPTT versus parameters r

and m. Other parameters are fixed as N~100 and a~10{4 . The simulation lasts for 107 time steps. The black squares and red circles represent the
cases of m~3 and m~99, respectively.
doi:10.1371/journal.pone.0049663.g007
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p(N)~ 1z
XN{1

i~0

P
N

j~iz1

Bj

Aj{1

 !{1

: ð7Þ

It follows from Eq.(4) p(i) that

p(i)~p(N) P
N

j~iz1

½(1{a)(N{j)zaj)�j
½(1{a)(j{1)za(N{jz1)�(N{jz1)

(0ƒiƒN{1),

p(N)~ 1z
PN{1

i~0

P
N

j~iz1

½(1{a)(N{j)zaj)�j
½(1{a)(j{1)za(N{jz1)�(N{jz1)

 !{1

:

ð8Þ

This exact solution exhibits several interesting features. In general,

p(NC)~p(N{NC) (0ƒNCƒN). Thus p(NC) is symmetric

around NC~N=2, in agreement with that observed in figure 2.

For values of a with av1=(Nz2), p(0) and p(N) corresponding

to the all-D and all-C states are more probable. For small values of

a, i.e., a%1, Eq.(8) gives approximately

p(NC)^p(N)
N2a

NC(N{NC)
(0vNCvN),

p(N)~p(0)^
1

2
1z

XN{1

i~1

aN

i

 !{1

:

ð9Þ

Figure 8. Effects of payoff parameter r on p(NC). Number of cooperators as a function of time for (a) r~0:1 and (b) r~0:01. The data are obtained
from simulations and the lines come from numerical solutions. The parameters are N~100, m~5 and a~10{4 . Each data point represents an average
over 1000 time steps. (c) Distributions p(NC ) for different values of r. The data points are simulation results and the lines are analytic results.
doi:10.1371/journal.pone.0049663.g008

Figure 9. How the strength of instability T changes with the threshold L for different m and r. The parameter m has almost no impact on
the strength of instability and the plot (a) compares two examples m~3 and m~99, meanwhile N~100, a~10{4 and r~0:1 are fixed. Inset of the
plot (a) displays the same curves in log-linear scale. The plot (b) shows the considerable effects of r on the strength of instability. In fact, r~0:3 is a
borderline: when rv0:3 the tails of T{L curves will decay quickly for large L, namely the change of the composition of individuals is less drastic,
while if rw0:3, the strength of instability decreases as the increase of r, which is of the similar varying tendency to the system payoff. Other
parameters are N~100, a~10{4 and m~3. All simulations lasts for 107 time steps.
doi:10.1371/journal.pone.0049663.g009

Instability in Evolutionary Games
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Equation (9) gives the function form of p(NC) (0vNCvN) in

figure 2. Equations (8) also gives p(0)zp(N) as a function of a, as

studied in figure 3. In particular, for a%1, Eq.(9) gives

p(0)zp(N)~ 1z
XN{1

i~1

aN

i

 !{1

, a%1, ð10Þ

which gives the correct behavior as shown in figure 3. In addition,

Eq.(8) indicates that for the particular value of a~1=(Nz2),
p(NC)~1=(Nz1) for all NC . For aw1=(Nz2), a bump starts to

appear around NC~N=2 and behaves asymptotically as a

gaussian distribution.

Next, we consider the model in which a newcomer selects a

role-model preferentially and establishes m connections randomly.

Within a mean-field approximation, we assume that all the

cooperators have the same competing environment and all the

defectors have the same competing environment. For a cooperator

in the system with k cooperators, there are on average

nCC~
m(k{1)

N{1
(kw0) ð11Þ

neighbors who are cooperators and (m{nCC) neighbors who are

defectors. Similarly, for a defector, there are on average

nDC~
mk

N{1
ð12Þ

neighbors who are cooperators and (m{nDC) neighbors who are

defectors. Therefore, the payoff to a cooperator is

PC~nCCz(m{nCC)(1{r) and that to a defector is

PD~nDC(1zr). The probability of choosing a cooperator as the

role-model is k(PCz[)=PT and the probability of choosing a

defector is (N{k)(PDz[)=PT , where

PT~k(PCz[)z(N{k)(PDz[) is the total payoff in the system.

Here, e is a small parameter so that every individual would have a

finite probability of being chosen as a role-model (as shown in

figure S4, the parameter e has almost no impact on p(NC) if it is

close to zero). Including the effect of the mutation rate a into the

case of preferential selection, the rates A’k and B’k at which a

system has exactly k cooperators would evolve into one with kz1
and k{1 cooperators are given by

A’k~ (1{a)
k(PCz[)

PT
za

(N{k)(PDz[)

PT

h i
N{k

N
,

B’k~ (1{a)
(N{k)(PDz[)

PT
za

k(PCz[)

PT

h i
k
N
:

ð13Þ

Note that A’k and B’k depend on the payoff parameter r. In the

steady state, we have in general A’kp(k)~B’kz1p(kz1), where

p(k) is the averaged probability of having k cooperators in the

system. Applying the relation recursively to different values of k,

we arrive at

p(i)~p(N) P
N

j~iz1

B’j
A’j{1

(0ƒiƒN{1), ð14Þ

with

p(N)~ 1z
XN{1

i~0

P
N

j~iz1

B’j
A’j{1

 !{1

: ð15Þ

Equations (14) and (15) have exactly the same form as Eqs.(6) and

(7), only with Ak and Bk replaced by A’k and B’k. Substituting

Eq.(13) into Eqs.(14) and (15) gives p(k) for the case of preferential

selection, as that given figure 8(c).

Discussion

Many complex systems display instabilities during their

evolutions, yet the driven force of instabilities may not be as

complex as being indicated in the literature. By studying on a

series of simplified models, we show that imitation and mutation

alone can lead to system instability, while the selection strategy and

network structure are relatively insignificant. In particular, the co-

evolution of network topology and game dynamics is not necessary

for the occurrence of instabilities.

In the extremal situation with most of individuals being in the

same state, thanks to the imitation mechanism, the new comer and

the removed one are very probably of the same state and the

composition hardly changes. Therefore, the system tends to stay

long in the extremal situation. Given a game where the

cooperators are preponderant in profits and individuals prefer to

choose successful ones as their role-models, the imitation

mechanism makes the system stay long with cooperators in the

dominant position. This is known as prosperity in the literature

[35]. At the same time, the mutation rate causes to the instability.

Notice that, the prosperity and instability coexists only when a is

very small – this is also reasonable otherwise a can not be named

as mutation rate. In fact, when a gets larger, the extremal situation

will not be preponderant. According to Eq. (8), when

a~1=(Nz2), p(NC) will become fully uniform, say

p(NC)~1=(Nz1) for all NC . For even larger a, a peak appears

at NC~N=2 and the distribution behaves like a gaussian function.

The results for large a are shown in Figure 10. For an infinite

population (i.e., in the thermodynamic limit), p(NC) will show a

gaussian form for any finite value of a. In a word, the instabilities

can only be observed for finite-size systems and the critical value

a~1=(Nz2) indeed separate two different behavior.

In the present model, no matter the network evolution is

independent on (rules presented in the main body) or related to

(the good-get-richer mechanism in Fig. S1), links associated with

Figure 10. Simulation and analytic results of the distribution
p(NC) of the number of cooperators for large values of a. The
system size is N~100 and the mutation rates are a~1=102 and
a~1=10, respectively. Simulation lasts for 108 time steps while the
analytical solution is presented in Eq. (8).
doi:10.1371/journal.pone.0049663.g010
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the newcomer are added in a global manner. Therefore, even for

far different values of m, the networks can be all considered as

random samplings with different densities from well-mixed

population, which is also indicated in the domination of defectors

in the prisoner’s dilemma game in Fig. S3. In comparison, the new

links of the model in [35] are added in a localized way. So one

could infer that the way of the addition of links (e.g., globally vs.

locally) indeed matters. At least, we arrive to a clear conclusion

that the co-evolution of network topology and game dynamics is

not a necessary condition to the occurrence of dynamic instability.

There are still unsolved issues about the precise understanding of

networking effects waiting for further study.

Methods

For the present models, we quantify the dynamic instability of

the composition of individuals via counting the number of

transitions, sharp drops and sharp raises. These three cases are

respectively defined as follows: (i) Transition.—A transition is a

period where the system goes from all-defector state to all-

cooperator state but never return to all-defector state during this

period or a period where the system goes from all-cooperator state

to all-defector state but never return to all-cooperator state during

this period. (ii) Drop.—A drop is a period where the system goes

from all-cooperator state to a state with less than N{L
cooperators and then return to the all-cooperator state, during

which, it does not reach the all-defector state. Here LvN is a

threshold. (iii) Raise.—A raise is a period where the system goes

from all-defector state to a state with more than L cooperators and

then return to the all-defector state, during which, it does not

reach the all-cooperator state. Figure 11 illustrates a simple

example where N~100 and L~30. In this example, one could

find 5 transition, 3 drops and 5 raises. We use the total number of

transitions, drops and raises, T~13, to quantify the strength of

dynamic instability. The readers are warned that this definition is

suitable for the current case but cannot be directly applied in

characterizing instability of a generally dynamical process.

Supporting Information

Figure S1 The distributions p(NC) for different param-
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Figure S3 Dynamic instability in prisoner’s dilemma
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