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Abstract

Loss of alveolar type 2 cells (AEC2s) and ectopic appearance of basal cells in the alveoli 

characterize severe lung injuries such as idiopathic pulmonary fibrosis (IPF). Here we demonstrate 

that human alveolar type 2 cells (hAEC2s), unlike murine AEC2s, transdifferentiate into 

basal cells in response to fibrotic signaling in the lung mesenchyme in vitro and in vivo. 

Single cell analysis of normal hAEC2s and mesenchymal cells in organoid co-cultures 

revealed the emergence of pathologic fibroblasts and basloid cells previously described in IPF. 

TGFβ1 and anti-BMP signaling in the organoids promoted transdifferentiation. Trajectory and 

histologic analyses of both hAEC2-derived organoids and IPF epithelium indicated hAEC2s 

transdifferentiate into basal cells through alveolar-basal intermediates (ABIs) that accumulate in 

proximity to pathologic CTHRC1high/TGFB1high fibroblasts. Our study indicates that hAEC2-loss 

and expansion of alveolar metaplastic basal cells in severe human lung injuries are causally 

connected through a hAEC2-basal cell lineage trajectory driven by aberrant mesenchyme.

Prior studies in mice have shown that mouse alveolar type 2 cells (mAEC2s) are the 

resident stem cell population in the alveoli that constitute the entire gas exchange surface 
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of the lung1, 2. In idiopathic pulmonary fibrosis (IPF), the most deadly and prevalent 

form of diffuse parenchymal lung disease, hAEC2s are lost from the alveoli concurrent 

with the appearance of metaplastic alveolar KRT5+ basal cells that normally appear in 

the conducting airways3–9. Rigorous genetic lineage tracing has shown that metaplastic 

KRT5+ cells in the murine alveoli are not derived from mAEC2s, but rather from KRT5−/

SOX2+ progenitors in the mouse airway after severe alveolar injury from fibrosis or 

viral infections5, 6, 10–12. However, it is not clear whether a similar population in the 

human airway exists that contributes to metaplastic basal cells, as the airways contain 

key anatomic differences across the two species13. This is a clinically significant question 

because the extent of alveolar KRT5+ basal cells directly correlates with mortality in IPF14. 

In this study, we made a surprising finding that hAEC2s, but not mAEC2s, can readily 

transdifferentiate into KRT5+ basal cells in organoid culture and xenotransplant. Moreover, 

we define pro-fibrotic mesenchymal niche-derived factors that promote hAEC2-to-basal cell 

transdifferentiation. Finally, quantitative spatial analysis of IPF lung tissue reveals basal 

cells and advanced alveolar-basal intermediates are surrounded by aberrant, CTHRC1hi 

pro-fibrotic mesenchyme. These results identify hAEC2s as a source of metaplastic KRT5+ 

basal cells in severe alveolar injuries, and provide a potential explanation for the reported 

appearance of aberrant hAEC2s with basaloid features in the transcriptomes of IPF and other 

severe lung injures such as COVID pneumonia (cite)8, 9.

RESULTS

hAEC2s transdifferentiate into basal cells in vitro

Previously reported hAEC2 organoids have utilized MRC5, a fetal human lung fibroblast 

cell line, as feeders to maintain primary adult hAEC2s in vitro, at least in part through 

local BMP and Wnt signaling1,15. We confirmed similar organoid development using low 

passage MRC5 cells in our 3D organoid system and hAEC2s isolated with the HTII-280 

antibody (EpCAM+/HTII-280+) (Fig. 1b,c, Extended Data Fig. 1a), with high purity of 

hAEC2 confirmed by single cell RNAseq (scRNAseq) and cytospin (Fig. 1a and Extended 

Data Fig. 1b,c). We hypothesized that primary mesenchyme obtained from normal adult 

lungs would provide a more supportive niche. We used a flow cytometry strategy to 

isolate adult human lung mesenchyme (AHLM) (CD45−/CD11b−/CD31−/EpCAM−) that 

was previously described by scRNAseq to yield a predominantly PDGFRα+ fibroblast 

population16 (Extended Data Fig. 1d), and co-cultured AHLM with hAEC2 in 3D organoid. 

While there was no difference in colony-forming capacity between MRC5 and AHLM, we 

saw a dramatic loss of SFTPC accompanied by gradual appearance of KRT5, an airway 

basal cell marker, in hAEC2 organoids co-cultured with AHLM (Fig. 1d,e) (Extended 

Data Fig. 1e). By day 14 of co-culture, the majority of the organoids derived from hAEC2-

AHLM co-culture contained KRT5+ cells, whereas the majority of organoids in the hAEC2-

MRC5 co-cultured contained only SFTPC+ cells (Fig. 1c,e). Further immunophenotyping 

of KRT5+ organoids from hAEC2 co-cultured with either AHLM or MRC5 demonstrated 

that most KRT5+ cells arising from MRC5 co-culture do not stain for other mature basal 

cell markers such as TP63 or KRT17 (Extended Data Fig. 1f,h), whereas the majority of 

KRT5+ cells derived from AEC2/AHLM organoids are also TP63+ and KRT17 (Extended 

Data Fig. 1g,h). Some of the organoids assume apical-basal polarity with KRT5+ basal cells 
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in the outer layer, and KRT5−/KRT8+ cells in the inner layer (Extended Data Fig. 1i), which 

have been identified as a transitional cell type derived from AEC2s17–20. To further ensure 

that the basal cells did not result from an outgrowth of contaminants in the HTII-280 sort, 

we cultured hAEC2 in previously defined mesenchymal-free, alveolar growth media21 over 

a month to enrich for hAEC2s (cytospin shows >99% purity) prior to coculture with AHLM, 

which resulted in the same basal cell differentiation as seen with freshly isolated hAEC2s 

(Extended Data Fig. 1k). Comparison of hAEC2 organoids utilizing passage 0 (freshly 

sorted) vs. passage 2 from the same AHLM donor did not show any significant difference 

in KRT5 transdifferentiation (Extended Data Fig. 1j). A parallel experiment using murine 

AEC2s (mAEC2s) co-cultured with primary adult murine lung mesenchyme (AMLM) under 

identical in vitro conditions produced no KRT5+ organoids (Extended Data Fig. 2a,b). 

Conversely, culturing hAEC2 with AMLM failed to generate organoids (Extended Data Fig. 

2c).

To further study the capacity of hAEC2s to differentiate into KRT5+ basal cells using 

a trackable differentiation system, we utilized a previously validated human induced 

pluripotent stem cell-derived AEC2 (iAEC2) model system22. We generated stably self-

renewing iAEC2s in epithelial-only (feeder-free) cultures from the published SPC2-ST iPSC 

line that has been previously engineered with a tdTomato reporter targeted to one allele 

of the endogenous SFTPC locus to isolate iAEC2s lacking basal cell transcripts23. As 

previously shown, we confirmed purity of iAEC2s as judged by the absence of basal cell 

markers and maintenance of robust tdTomato expression (Fig. 1f). Next, we co-cultured 

iAEC2s with either MRC5 or AHLM in our previously published media that has been 

optimized to maintain iAEC2 fate in culture22, 23 (CHIR, KGF, dexamethasone, cyclic 

AMP, and IBMX, hereafter called CK/DCI). In stark contrast to iAEC2 co-cultured with 

MRC5, iAEC2 co-cultured with AHLM dramatically lost SFTPC expression as evidenced 

by the loss of tdTomato fluorescence (Fig. 1g). Immunophenotyping confirmed the loss 

of SFTPC in iAEC2 co-cultured with AHLM in virtually all organoids, along with the 

emergence of intermediate and early basal cell markers KRT8 and KRT17, respectively in 

approximately 65% of organoids (Fig. 1i,j). Interestingly, iAEC2s co-cultured with AHLM 

do not completely transdifferentiate into KRT5+ basal cells in CK/DCI. Further experiments 

revealed CHIR as the main media component that prevents basal cell differentiation 

(Extended Data Fig. 2d,e) and when CHIR was reduced by dilution there was complete 

differentiation into basal cells that are also positive for KRT5, KRT14, and p63, while 

retaining NKX2–1, confirming lung fate (Fig. 1k,l, Extended Data Fig. 2f).

hAEC2 transdifferentiate to basal cells in a fibrotic host in vivo

Prior transplant study of freshly sorted murine AEC2s demonstrate no evidence of basal 

cell transdifferentiation when engrafted in injured lungs24. To determine whether in vitro 
transdifferentiation capacity of hAEC2s is maintained in vivo, we transplanted freshly 

sorted hAEC2s into bleomycin-induced fibrotic lungs of NSG mice on day 10 (Fig. 2a). 

hAEC2s were transplanted either alone or with MRC5 or AHLM cells, analogous to ex 

vivo experiments with 3D organoids. Using the human-specific nuclear antigen (HNA), 

we were able to identify numerous patches of human cells predominantly in damaged 

alveolar regions 10 days after transplant (D20 post bleomycin injury). Co-staining with 
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KRT5 identified HNA+/KRT5+ cells that were SFTPC− where the metaplastic basal cells 

appeared to form “bronchiolized” cysts in the murine host (Fig. 2c). Utilizing an antibody 

specific to human-pro-SP-C, we also noted the presence of HNA+/pro-SP-C+ hAEC2 

patches in the lung that were spatially distinct from dysplastic basal patches (Fig. 2b,c). 

Immunohistology analysis showed that when transplanted alone or with MRC5 cells, 

the majority of the hAEC2s retained alveolar fate (~75%) whereas co-transplants of a 

similar AHLM:AEC2 ratio resulted in a majority of the patches comprised of KRT5+ 

basal cells (~80%) (Fig. 2b,c). To determine whether transplanted AHLM and hAEC2s are 

associated in fibrotic lung, we labeled AHLM with a lentivirus expressing RFP followed 

by co-transplantation of hAEC2s and RFP-labeled AHLM. Interestingly, we found pods 

of hAEC2s with basaloid feature (SFTPC+/KRT5+/HNA+, green arrows) along with basal 

cells (SFTPC−/KRT5+/HNA+, green arrows) in regions adjacent to engrafted RFP+ AHLM 

(Fig. 2d, orange arrows). We also detected clusters of cells co-expressing AEC2 (SFTPC), 

basal (KRT5), and transitioning (KRT8)17, 19 cell markers, adjacent to AHLM (Fig. 2e). 

The xenotransplantation experiments demonstrate that hAEC2s are capable of reconstituting 

a fibrotic milieu in vivo and transdifferentiate into basal cells with high efficiency in the 

presence of AHLM, confirming the in vivo plasticity of hAEC2s.

IPF-like mesenchymal subsets emerge during AHLM culture

hAEC2 co-cultured with IPF mesenchyme accelerated basal cell transdifferentiation 

compared to passage-matched AHLM from normal donors (Extended Data Fig. 3a,b). To 

determine whether AHLM acquire features of IPF mesenchymal subsets with culture, we 

analyzed scRNAseq of fresh (sorted from donor lung, uncultured) AHLM (normal donors, 

N = 3), fresh IPF mesenchyme (N = 3), and cultured AHLM at passage 0–1 isolated from 

organoids (N = 2). IPF lungs were collected from patients undergoing lung transplantation, 

and AHLM collected from cadaveric donors without prior history of lung disease. Library 

preparation was performed separately and mesenchymal cells were segregated based on 

PDGFRA expression, and merged for UMAP and clustering into distinct mesenchymal 

subsets (Fig. 3a). UMAP analysis showed fairly consistent clustering of subsets across 

AHLM and IPF donors respectively (Extended Data Fig. 3c). Fresh AHLM consists mainly 

of proximal (advential, labeled as prox 1, 2), and distal (alveolar) fibroblasts16 along with a 

small population of smooth muscle (SM) (Fig. 3c). However, cultured AHLM underwent a 

dramatic shift in cellular identity, with the loss of distal alveolar fibroblast identity similar 

to IPF mesenchyme (Fig. 3c, blue box, Supplementary Table 1). Instead, a CTHRC1-high 

(CTHRC1hi) fibroblast cluster, and a separate HAS-high (HAShi) cluster in emerged in 

cultured AHLM that was rare in fresh AHLM but enriched in IPF (Fig. 3b,c, red boxes, 
Supplementary Table 1). The merged UMAP demonstrated a clear overlap in identities of 

the CTHRC1hi and HAShi fibroblast subsets derived from fresh IPF and cultured AHLM 

(Fig. 3c). The emergence of these new subsets in culture was very interesting because 

both HAShi 8 and CTHRC1hi 25 fibroblast subsets have been previously identified as 

fibroblast subsets in single cell analysis of IPF lungs. Analysis of differentially expressed 

genes demonstrated highly concordant marker expressions in the pathologic mesenchymal 

niche subsets in cultured AHLM and IPF mesenchyme (Fig. 3d, Extended Data Fig. 3d, 

Supplementary Table 1). Both CTHRC1hi and HAShi subsets arising in cultured AHLM 

and IPF display features of fibrotic transformation. The CTHRC1hi fibroblast subset is 
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characterized by high expression of collagen along with TGFB1 (Fig. 3b,d,e), and the HAShi 

fibroblast subset is characterized by the elevated expression of secreted BMP antagonists 

that have previously been shown to be elevated in IPF lungs26 (Fig. 3b,d,f). Analysis of 

immune subsets in IPF lungs shows that TGFB1 is also highly expressed in the macrophage 

population found in fibrotic lungs (Extended Data Fig. 3e–g). This analysis shows that 

pathologic fibroblast subsets emerge from cultured AHLM that are present in IPF, and 

they express niche factors that could potentially promote metaplastic transdifferentiation of 

hAEC2 into basal cells.

Pathological niche signaling modulates transdifferentiation

To further define niche factors promoting hAEC2 transdifferentiiation, we examined the 

transcriptome of cultured AHLM vs. MRC5 by bulk RNAseq. Differentially expressed gene 

(DEG) analysis shows significant upregulation of multiple secreted BMP antagonists in the 

AHLM along with TGFβ ligands, whereas BMP ligands and hedgehog antagonist, HHIP, 

were preferentially upregulated in MRC5 (Fig. 4a, Supplementary Table 2). HHIP is a 

secreted antagonist of SHH that has previously been identified in both human hAEC2s and 

mesenchymal niche cells27, and its expression is reduced in IPF8. Hedgehog (Hh) activation 

can manipulate BMP signaling to modify basal cell metaplasia in murine models26, and 

addition of recombinant HHIP to hAEC2 organoids co-cultured with AHLM significantly 

attenuated KRT5 expression while increasing SFTPC expression in the organoids (Fig. 4b), 

which is confirmed by immunophenotyping of organoid sections (Fig. 4c). HHIP treatment 

attenuated expression of Hh transcriptional activator, Gli1, in AHLM cocultured with 

hAEC2s, concurrent with an increase in the expression of BMP ligands (Fig. 4d). Similar 

to HHIP, addition of recombinant BMP4 significantly attenuated hAEC2 transdifferentiation 

into basal cells (Fig. 4e,f) and other airway lineages such as club cells (Extended Data 

Fig. 4a). Conversely, addition of DMH1, a small molecule inhibitor of BMP activation, 

and recombinant TGFβ1 both augmented the number of basal cells derived from hAEC2s 

cocultured with MRC5 (Fig. 4g,h). This demonstrates that active TGFβ signaling promotes 

hAEC2 transdifferentiation into basal cells while BMP activation in the hAEC2 niche 

maintains AEC2 fate, which could account for the differential effects of AHLM vs. MRC5 

in their ability to promote basal cell differentiation.

hAEC2-derived basal cells resemble IPF metaplastic basal cells

There is increased recognition of basal cell heterogeneity in normal and diseased lungs, 

with specific basal cell subsets increased in IPF28. To compare hAEC2-derived basal cells 

in organoids with basal cells isolated from intact lungs, we analyzed scRNAseq of freshly 

isolated epithelial cells isolated from distal fragment (not from trachea) of normal donor 

lungs (N = 2), IPF lungs (N = 2), and hAEC2-derived basal cell isolated from organoids 

(N = 2). Library preparation was performed separately, basal cells were segregated based 

on KRT5 expression, and merged for UMAP and clustering into distinct basal subsets (Fig. 

5a, Extended Data Fig. 5a). Clustering revealed four distinct subsets of basal cells with 

high degree of gene overlap with previously identified basal cell subsets in vivo28, including 

secretory primed (SPB), multipotent (MPB), activated (AB), and proliferating (PB) (Fig. 

5a–c, Extended Data Fig. 5b). Interestingly, the plurality of hAEC2-derived basal cells are 

secretory primed basal cells (Fig 5a, Extended Data Fig. 5c, red box), a population that 
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was identified as the predominant basal population in the alveoli of IPF lungs28. Basal cell 

subset-specific marker analysis shows similarities in expression of genes in hAEC2-derived 

and IPF basal cells (Fig. 5c).

To explore further whether IPF biomarkers are upregulated in hAEC2-derived basal cells, we 

performed DEG analysis comparing basal cells from normal lung vs. hAEC2-derived basal 

cells. This analysis showed that while hAEC2-derived basal cells express similar canonical 

basal markers such as SOX2, NGFR and TP63, they over-express markers previously 

reported to be upregulated in IPF epithelium, such as KRT14, VIM, and MMP73, 4, 8, 9, 29 

(Fig. 5d). Histologic comparison of normal lungs, IPF lungs, and hAEC2-derived organoids 

shows that these IPF biomarkers are preferentially present in basal cells from IPF and 

hAEC2-derived organoids, but not normal lungs (Fig. 5e). Finally, to identify common gene 

signature of IPF and hAEC2-derived basal cells, we performed an overlap analysis of DEGs 

of IPF basal cells and hAEC2-derived basal cells compared with normal lung basal cells. 

Hypergeometric probability testing shows significant enrichment of overlap genes in DEGs 

between hAEC2-derived and IPF basal cells (Extended Data Fig. 5d), generating a large list 

of DEGs that were shared between IPF and hAEC2-derived basal cells (Extended Data Fig. 

5e, Supplementary Table 3). These results demonstrate that while hAEC2-derived basal cells 

express canonical basal cell gene programs, they share more similarities with IPF basal cells 

ectopically localized in the diseased alveoli.

hAEC2s to basal cells occurs through intermediate states.

Recently, AEC2-derived intermediate cell types have been described in the alveolar space 

of bleomycin-challenged mice and IPF lungs8, 9, 17, 19. To determine whether we observe 

similar discrete intermediates in the progressive transdifferentiation of hAEC2s toward basal 

cells in organoids, we analyzed the time course of all epithelial cells (based on EPCAM 
expression) undergoing transdifferentiation in vitro by scRNAseq. Epithelial cells from D0 

(live sort of HTII-280+ prior to culture, Fig. 1a and Extended Data Fig. 1a, b), D7 (7 

days after co-culture), D14, and D21 organoids were sequenced separately, then merged 

and clustered by uniform manifold approximation and projection (UMAP) where 6 main 

clusters emerged (Fig. 6a, Extended Data Fig. 6a, Supplementary Table 4). Four clusters 

were easily identified by lineage markers of hAEC2s, basal cells, club cells, and ciliated 

cells respectively (Extended Data Fig. 6a,c,d). Time course shows a time-dependent loss 

of the hAEC2 population and gain of KRT5+ basal cell population, along with an early 

emergence of two distinct alveolar-basal intermediates (ABIs) bearing both hAEC2 and 

basal markers at D7 that recedes with time in culture (Fig. 6a, highlighted by dotted line). 

ABI1 cells are identified by persistence of SFTPC, ABCA3, and NAPSA, along with the 

emergence of KRT17 (Fig. 6i, Extended Data Fig. 6e). ABI2 cells are identified by low 

levels of AEC2 markers, higher levels of KRT17, and absence of KRT5 (Fig. 6i, Extended 

Data Fig. 6e). Both these intermediates express high levels of KRT8 (Fig. 6i, Extended 

Data Fig. 6i), a marker of intermediate cell types described earlier17, 19. Of note, we 

observed a SFTPClow/KRT8+/KRT5− population comparable to ABIs in the epithelial cells 

derived from hAEC2s in vivo after engraftments in mice. (Fig. 2d). Concurrent with the 

disappearance of the ABIs over time, there is also a progressive emergence of SCGB1A1+ 

club cells and FOXJ1+ ciliated population in culture (Fig. 6a, Extended Data Fig. 6c,d), 
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suggesting that transdifferentiated KRT5+ cells are mature basal cells capable of further 

differentiation into club and ciliated lineages.

The emergence of ABI1 and ABI2 intermediate populations in the direct line of 

transdifferentiation to basal cells was confirmed by both Monocle and RNA trajectory 

analysis (Fig. 6b–d). Visualization of gene expression along the hAEC2 transdifferentiation 

trajectory shows that well-established AEC2 marker, LAMP3, and new hAEC2 marker, 

HHIP27, are quickly lost first as mature hAEC2s transition into ABIs (Fig. 6c, Extended 

Data Fig. 6a,b). The emergence of early basal marker, KRT17, and transitional-state 

marker, KRT817–20, concurrent with the persistence of AEC2 markers SFTPC, ABCA3, and 

NAPSA, marks the ABI1 populations seen early in culture (Extended Data Fig. 6b–d). The 

presence of the ABI1 and ABI2 is confirmed on immunophenotyping of D7 organoids early 

in the transdifferentiation, where we see KRT17−/KRT8+/SFTPC+ and KRT17+/KRT8+/

SFTPClow cells, in addition to a minority of organoids (9%) that contains only completely 

transdifferentiated into basal cells (KRT17+/KRT5+) (Fig. 6e). As transdifferentiation 

progresses, the ABIs give away to mature basal cells as all hAEC2 markers are lost with 

the emergence of mature basal cell markers KRT5 and KRT14 (Fig. 6c,i, Extended Data 

Fig. 6a,e,i). An upstream IPA analysis of pathways driving hAEC2s, ABI1 and ABI2s 

confirmed the distinct expression profiles of these intermediates. ABI1 cells exhibited active 

upstream drivers typical of hAEC2s (FOXA2, GATA4, NKX2–1) relative to ABI2s (Fig. 

6f). Conversely, the ABI2s are preferentially activated by basal cell pathways (TP63, HES1, 

SOX2) along with TGFβ1 signaling and expression of mesenchymal markers (Fig. 6f, 

Supplementary Table 5).

Identification of AEC2 to basal cell ABIs in fibrotic human lungs

Several recent studies in mice have reported mAEC2s undergo a transitional state when 

differentiating into mAEC1s in vitro and in vivo18–20. The pre-alveolar type 1 transitional 

cells (PATS) described in mouse20 were equated with both the transitional AEC2s and 

KRT17+/KRT5− basaloid cells described earlier8, 9 and labeled as “PATS-like cells” in 

human. However, basal cells were omitted from the original analysis20 even though the 

KRT17+/KRT5− basaloid cells express low levels of canonical basal cell transcription factor 

TP63 (Habermann et al8 and Kobayashi et al20). Therefore, we hypothesized that PATS-like 

cells, inclusive of transitional AEC2s and KRT17+/KRT5− basaloid cells, also represent 

intermediate cells between AEC2s and basal cells. To this end, we re-analyzed IPF epithelial 

transcriptomes to include basal cells from the original dataset (from Haberman et al8, 

analyzed by Kobayashi et al.20), and then performed Monocle trajectory analysis (Fig 6g, h). 

This analysis confirmed an hAEC2-hAEC1 trajectory through transitional AEC2s. However, 

inclusion of basal cells in the analysis also revealed an equally prominent hAEC2 to basal 

cell trajectory through the KRT17+/KRT5− basaloid cells (Figure 6g, h). We then directly 

compared the genes found to be upregulated in PATS-like cells in IPF20 with the organoid 

ABIs (ABI1 and ABI2) and observed an almost identical expression pattern (Fig. 6i, 

Extended Data Fig. 6f–i). The organoid ABI1 population appears similar to the transitional 

AEC2s while the organoid ABI2 population appears similar to the KRT17+/KRT5− basaloid 

cells (Fig. 6i). Together these findings suggest that ABIs derived from hAEC2s in our 3D 

organoid culture recapitulate previously identified intermediate cell populations in IPF lungs 
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and suggest a direct trajectory from hAEC2s to basal cells through these intermediate cell 

types.

Consistent with our in silico prediction of a continuous trajectory from hAEC2s to ABIs 

to basal cells, we found evidence of all four cell types in the same cystic region (Fig. 

7a, Extended Data Fig. 7a) as judged by protein staining for hAEC2s (SFTPC+/KRT8low/

KRT17−/KRT5−), ABI1 (SFTPC+/KRT8hi/KRT17low/KRT5−), ABI2 (SFTPClow/KRT8hi/

KRT17+/KRT5−), and basal cells (SFTPC−/KRT8−/KRT17+/KRT5+). Furthermore, ABI2s 

can be subdivided based on the presence of TP63, as we found several examples of both 

TP63+/KRT17+/KRT5− and TP63−/KRT17+/KRT5− ABI2s in the lungs of IPF patients 

(Extended Data Fig. 7a), comparable to previously described basaloid (KRT17+/KRT5− 

cells that are either TP63+ or TP63−) populations in IPF8, 9, 20. Next, we systematically 

inspected IPF lungs for the presence of ABIs by RNA in situ hybridization as a function 

of the extent of alveolar remodeling using a combination of markers for ABI1, ABI2, and 

basal cells, all of which express varying levels of KRT17 mRNA. As expected, ABI1 or 

ABI2 were extremely rare in the alveolar regions of normal lung (Extended Data Fig. 7b). 

Considering the highly heterogeneous histology of an IPF lung, we focused our analysis 

of ABIs in histologically defined regions (Fig. 7b). The relative frequencies of ABI1s 

and ABI2s correlated with progression of disease. In the normal-appearing and thickened 

alveolar regions of IPF lungs reflecting histological regions of minor injury, >80% of the 

KRT17+ cells were SFTPC+ ABI1s while the remaining were KRT17+/SFTPC−/KRT5− 

ABI2s (Fig. 7c). Conversely, in areas of moderate to severe injury reflected by presence of 

microcystic regions, the majority of KRT17+ cells were ABI2s (63%) and with emergence 

of a small number of KRT17+/KRT5+ basal cells (10% of KRT17+ cells)(Fig. 7c). Finally, 

in areas with complete bronchiolization and heavy fibrosis, we found few ABI1s (2%) and 

ABI2s (30%) with 68% of KRT17+ cells now acquiring complete basal identity as judged 

by KRT5 expression (Fig. 7c). Furthermore, by immunostaining we found evidence of ABIs 

in lungs with scleroderma and COVID-19 showing linearly connected AEC2s (SFTPC+), 

ABI1s (SFTPC+/KRT17+), ABI2s (SFTPC−/KRT17+/KRT5−), and basal cells (KRT17+/

KRT5+) cells in the same area of the disease lung (Fig. 7d, Extended Data Fig. 7c). The 

results strongly suggest that ABI populations in vivo, similar to the population identified in 

our 3D organoids, appear as a function of alveolar injuries that result in transdifferentiation 

of hAEC2 to basal cells.

Analysis of AHLM cocultured with hAEC2s in our organoid platform identified a TGFB1hi 

mesenchymal population that is marked by CTHRC1 gene expression, which has been 

shown previously to be associated with fibroblastic foci25. Because ABI2s have elevated 

TGFβ signaling (Fig. 6f), that can antagonize BMP signaling30, 31, we tested the hypothesis 

that aberrant mesenchyme providing a profibrotic TGFB1hi niche is spatially associated 

with ABIs. We probed IPF lung specimens in situ with ABI markers (SFTPC and KRT17) 

and profibrotic mesenchymal marker CTHRC1, followed by protein staining for basal 

marker KRT5 (Fig. 8a). Consistent with our hypothesis, while ~10% of ABI1s were 

adjacent to CTHRC1+ cells, 83% of ABI2s were found adjacent to CTHRC1+ mesenchyme, 

suggesting a high degree of association between metaplastic intermediate cells and TGFβ1hi 

profibrotic mesenchymal cells (Fig. 8b). We also found that CTHRC1+ mesenchyme was 

also associated with 77% of all basal cells found in actively remodeling regions (Fig. 8b). 
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These data indicate that hAEC2s transdifferentiate into metaplastic basal cells through a 

series of intermediates, at least in part in a fibrotic niche made of TGFβ1hi, pro-fibrotic 

mesenchymal populations (Fig 8c).

DISCUSSION

There is currently an assumption that the regenerative capacity of AEC2s, the resident 

stem cell of the alveolus, is highly conserved between mouse and human32. However, the 

unexpected finding that unlike mAEC2s, hAEC2s robustly transdifferentiate into functional 

basal cells with cues from pathological mesenchymal cells arising in vitro invited the 

possibility that a parallel process occurs in human diseases characterized by severe alveolar 

injuries in vivo (e.g. IPF and COVID). Single cell analysis of the cultured mesenchymal 

niche cells responsible for the transdifferentiation (AHLM) demonstrated the emergence 

of two fibroblast subpopulations recently identified in freshly isolated IPF lungs that are 

enriched in either secreted TGFβ1 (CTHRC1hi) or BMP antagonists (HAShi). Similarly, 

single cell analysis of the hAEC2-to-basal cell trajectory in vitro revealed the presence of 

intermediate cell types and basal cell subsets previously identified in IPF lungs. These 

findings validate our AHLM/hAEC2 organoid assay as an in vitro model for hAEC2-

mesenchymal crosstalk that results in stem cell metaplasia seen in severe alveolar injury, 

and provides experimental confirmation of a stem cell trajectory that is seen in diseased 

human, but not murine lung.

Another group of recent studies have also identified an intermediate cell-state between 

AEC2 to AEC1 differentiation, first described in mice, that is marked by elevated expression 

of KRT8 and increased TGFβ1 signaling17, 19, 20. These murine intermediate cell types bear 

striking resemblance to the human ABIs identified in our study, suggesting that a KRT8 

high intermediate state may not be unique during AEC2-to-AEC1 transdifferentiation in 

mice, but also evolved to include AEC2-to-Basal transdifferentiation in human. Furthermore, 

ABI1 and ABI2 found in vitro are remarkably similar to discrete intermediate cell types, 

i.e. transitional AEC2s and KRT5−/KRT17+ aberrant basaloid cells, described in IPF lungs. 

A comparative IPA analysis of hAEC2, ABI1, and ABI2 transcriptomes (Fig. 6f) reveals 

the extensive transcriptional reprogramming involved in the transdifferentiation through 

these intermediate states, including progressive loss of AEC2-promoting signaling, such 

as NKX2–1, and the emergence of numerous activities promoting mesenchymal features, 

especially the strong activation of TGFβ1 signaling in ABI2s. We focused on TGFβ1 

because TGFβ1 promotes hAEC2 transdifferentiation to basal cells in organoids, and 

CTHRC1hi fibroblasts known to be TGFB1hi emerge both in our organoid assay and in 

IPF tissues. Indeed, over 80% of the ABI2 clusters and 67% of alveolar basal cells were 

found adjacent to CTHRC1hi fibroblasts (Fig 8). These spatial relationships are consistent 

with high TGFβ1 signaling observed as an upstream driver of ABI2 signaling (Fig. 6f).

That hAEC2s undergo progressive transdifferentiation to metaplastic basal cells is not 

unique to IPF. Alveolar metaplastic basal cells are also common in sections of scleroderma 

and COVID lungs, and these are intermingled with ABI1 and ABI2 intermediates in areas 

of active remodeling (Fig. 7d). The common finding of ABIs in hAEC2-derived organoids 

as well as hAEC2 xenografts, and in histologic analyses of fibrotic lungs suggest hAEC2s 
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are a major source of metaplastic basal cells in diseases with severe alveolar injury. Future 

studies are needed to clarify if and under what circumstances hAEC2 reprogramming toward 

metaplastic basal cells in the alveoli is reversible, and whether other components of the 

fibrotic niche such as endothelial cells and immune cells are able to drive the metaplastic 

phenotype.

METHODS

This study complies with all relevant ethical regulations that are approved by UCSF 

Institutional Review Board (IRB) and Institutional Animal Care and Use Committee 

(IACUC).

Human Lung Tissue

Studies involving human tissue were approved by the UCSF Institutional Review Board. 

All subjects provided written informed consent. Peripheral regions of the normal lungs were 

obtained to select for distal most regions of the lung from brain-dead donors that were 

rejected for lung transplantation. IPF, scleroderma, and ARDS (COVID19) lung specimens 

were taken from the periphery of the lung at the time of lung transplant. Age and sex of 

tissue donors are listed in Supplementary Table 6.

Animal Studies and Treatment

Mice were housed in accordance with UCSF IACUC protocol in humidity- and 

temperature-controlled rooms on a 12 h light-dark cycle with free access to food and 

water. 8–12 weeks old animals were used for the experiments. For labeling mAEC2s, 

SftpccreERT2/+:R26RmTmG/+ mice33, 34 were intraperitoneally administered with tamoxifen 

(Cat#T5648; Sigma) at 200 mg/kg weight per day for three consecutive days. NOD.Cg-

Prkdcscid Il2rgtm1Wjl/SzJ (NOD scid gamma; NSG) mice were previously described35, 36. 

Animal studies utilized a minimum of 4 mice per group. Mice were injured with oral 

aspiration of bleomycin (2.1 U/kg body weight). Mice were weighed twice a week. Mice 

were sacrificed between Day 17–20 post injury for histopathological analysis.

Histology and Immunofluorescence

Paraffin Embedding: Mouse lungs were inflated with and fixed in 4% paraformaldehyde 

(PFA) overnight at 4 °C. Human lung pieces were fixed in 4% PFA overnight at 4 °C. The 

lungs were then washed with PBS 4 times for 30 mins each at 4 °C, and then dehydrated in 

a series of ethanol (30%, 50%, 70%, 95%, and 100%). The dehydrated lungs were incubated 

with xylene for 1 hr at RT and then embedded in paraffin. The lungs were sectioned at 8 μm 

on a microtome.

OCT Embedding: 94%OCT/2%PFA/4%PBS-inflated lungs were fixed with 4% PFA for 

1 hr at RT, washed with PBS for 4 hrs at RT, and embedded in OCT after 30% and 15% 

sucrose gradient washing. Organoids in 3D matrigel were fixed with 4% PFA for 30 mins at 

RT or overnight at 4 °C, then washed in PBS overnight 3X, followed by embedding in OCT. 

8 μm sections were cut on a cryostat.
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Immunofluorescent staining: Paraffin sections were incubated in xylene for 10 mins 

twice, then rehydrated in ethanol washes (100%, 95%, 70%, 50% ethanol) for 5 mins 

each. OCT embedded slides were fixed in 4% PFA at RT for 10 mins, then washed with 

PBS. For both paraffin and OCT embedded slides, antigen retrieval (Cat#DV2004MX; 

Biocare) was performed for 30 mins at 95 °C or at 155 °C followed by incubation 

with sodium borohydride (Sigma) in PBS. Slides were washed with 0.1% Tween-20 in 

PBS (PBST), blocked (3% donkey serum in PBST) for 1 hr, and then incubated with 

primary antibodies overnight at 4 °C. The following primary antibodies were used: anti-

SFTPC (Cat#AB3786; Millipore; 1:2000), anti-SFTPC (Cat#sc-518029; Santa Cruz; 1:100), 

anti-KRT5 (Cat#905901; BioLegend; 1:500), anti-KRT14 (Cat#CBL197; Millipore; 1:200), 

anti-KRT17 (Cat#sc-393002; Santa Cruz; 1:100), anti-p63 (cat#13109; CST; 1:100), anti-

KRT8 (cat#TROMA-I; DSHB; 0.045 μg/mL), anti-LAMP3 (cat#AF0487; R&D; 1:200), 

anti-ABCA3 (Cat#ab99856; Abcam; 1:500), anti-human nuclear antigen (Cat#ab86129; 

Abcam; 1:500), anti-MMP7 (Cat#MAB3315; Millipore; 1:200), anti-Ac-Tuba1a (Sigma; 

Cat#T7451, 1:500), anti-p-SMAD1/5/8 (Cat#AB3848-I; Millipore; 1:100), anti-beta IV 

Tubulin (Abcam; Cat#ab11315; 1:200), and anti-SCGB1A1 (R&D; Cat#MAB4218; 1:500). 

Slides were washed with PBST and then incubated with secondary antibodies for 1 hr at 

RT. The following secondary antibodies were used at 1:250: anti-chicken IgY (H+L) AF647 

(Jackson ImmunoResearch; Cat# 703–605-155), anti-rabbit IgG (H+L) AF555 (Thermo 

Fisher; Cat# A-31572), anti-rabbit IgG (H+L) AF488 (Thermo Fisher; Cat# A-21206), anti-

mouse IgG (H+L) AF555 (Thermo Fisher; Cat# A-31570), and anti-rat IgG (H+L) AF488 

(Thermo Fisher; Cat# A-21208). DAPI was added for 5 mins, and slides were then mounted. 

Images were captured using Zeiss Imager M1 and analyzed using Axiovision 4.8.2 or Zeiss 

ZEN v3.1 (Zeiss, Germany). Where indicated, multiple images at 20X were captured using 

the “MosaiX” function and stitched together using “Tile Stitch” function in the Axiovision 

or ZEN. Final images were prepared in affinity designer v1.10.1.1142.

Organoid composition calculation: An organoid constituted of SFTPC+ cells and 

no KRT5+ cells was counted as an alveolar organoid (SFTPC+), an organoid constituted 

of both SFTPC+ and KRT5+ cells was counted as a hybrid organoid (SFTPC+/KRT5+) 

and an organoid constituted of KRT5+ cells and no SFTPC+ cell was counted as a basal 

organoid (KRT5+). Organoids with no detectable staining of either SFTPC or KRT5 were 

counted as unstained organoids (SFTPC−/KRT5−). To characterize and compare basal cells 

derived from AEC2/MRC5 and AEC2/AHLM co-cultures, organoids were harvested and 

stained at D14 with basal cell markers. Individual KRT5+ cells were counted for protein 

expression of other basal markers and represented as a percentage of total KRT5+ cells. Day 

7 organoids and for testing the effects of BMP4, HHIP, CHIR, KGF, TGFβ1, and DMH-I on 

transdifferentiation of hAEC2 into KRT5+ basal cells, the percentage of SFTPC+, KRT5+, 

SFTPC+/KRT5+ cells, and ABIs were calculated by counting all the cells across multiple 

organoids on at least one slide.

Lung digestion and fluorescence activated cell sorting (FACS)

Human lung pieces were washed in PBS (2x) and HBSS (1x) for 10 mins at RT, compressed 

to remove liquid, and dissected into 1 cm3 pieces. 15 U/ml Dispase II (Cat#17105041; 

Thermo fisher), 225 U/mL Collagenase Type I (Cat#17100017; Thermo Fisher), 100 U/mL 
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Dnase I (Cat#DN25; Sigma-Aldrich), and 1% pen/strep in 1X HBSS were used to digest 

the pieces for 2 hrs at 37°C. Fungizone (1:400) was added for the final 30 mins of the 

digestion. The digested tissue was liquified in a blender. The suspension was serially filtered 

through gauze, 100 μm, 70 μm, and 40 μm strainers. Red blood cells were removed using 

Red Blood Cell Lysis Buffer (Sigma). After Fc blocking, immune and endothelial cells 

were depleted using biotinylated CD45 (Cat#368534; BioLegend, 1:200), CD31 (Cat#13–

0319-80; eBioscience; 1:200), and CD11b (Cat#301304; BioLegend; 1:200) antibodies and 

running through streptavidin beads (Cat#17663; STEMCELL Technologies) at 25 μl/ml. The 

following antibodies were used at 1:200: anti-CD45-APC-Cy7 (BioLegend; Cat#304014), 

anti-CD11b-APC-Cy7 (BD; Cat#557754), anti-CD31-APC-Cy7 (BioLegend; Cat#303120), 

anti-CD326-PE (BioLegend; Cat#324206), anti-HTII-280 (Terrace Biotech, Cat#303118), 

and anti-mouse IgM-AF488 (Cat# A-21042; Thermo Fisher; 1:1000). Doublets and dead 

cells were excluded based on forward and side scatters and DRAQ7 (Cat#7406S; Cell 

Signaling; 1:200) or DAPI fluorescence. hAEC2s were sorted as live/EpCAM+/HTII-280+ 

cells, and AHLM were sorted as live/CD45−/CD11b−/CD31−/EpCAM− cells.

Mouse lungs were incubated in the same digestion cocktail for 45 mins at 37 °C. The 

mixture was passed through a 70 μm cell strainer, resuspended in RBC lysis buffer, and 

filtered through a 40 μm cell strainer. Cells were stained with antibodies for 30 mins at 4 

°C. Antibodies were used at 1:200: CD45-AF700 (Cat#560510; BD), CD31-APC/Fire750 

(Cat#102528; BioLegend), and CD326-BV421 (Cat#563214; BD). mAEC2s were sorted 

using endogenous GFP from tamoxifen-induced SftpccreERT2/+:R26RmTmG/+ lungs. AMLM 

were sorted based on the selection of live EpCAM−/CD45−/CD31−.

Freezing/Thawing primary human cells.

Cells were resuspended in F12 at 10^7 cells/mL, followed by addition of equal volume of 2x 

Freeze Solution (2% 1.5 M Hepes, 10% FBS, 78% F12, and 10% DMSO). Desired volume 

of cell aliquots was then frozen at −80 °C and stored in liquid nitrogen. Frozen cells were 

thawed and equal volume of warm recovery media (DMEM with 10% FBS) was added and 

incubated for 1 min, followed by addition of 12 mL of warm DMEM to the centrifuge tube. 

Cells were spun at 550 g for 4 mins and stained for FACS.

Cell culture

Mesenchymal cells were cultured in DMEM/F-12 (Cat#11330032; Thermo Fisher) with 

10% FBS and 1% Pen/Strep. Cells were used within the first five passages of either 

receiving from ATCC (Cat#CCL-171) for MRC5 or isolating from donor lungs for 

AHLM. The construct pLKO5-tRFP (Addgene Plasmid #57823) was used to generate 

RFP-expressing lentiviruses (Lenti-RFP). For labelling AHLM, AHLM were transduced 

by Lenti-RFP with 10 μg/ml Polybrene (Cat#TR-1003-G, Millipore). iPSC-derived AEC2s 

with SFTPC−tdTomato reporter (iAEC2s)23 were generated and maintained in CK+DCI 

media as described before22. Purity of iAEC2 culture was assessed at every passage by 

flow cytometry where a cell population with >96% tdTomato+ cells was considered pure as 

described before22, 23.
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Organoid assay

AEC2 and mesenchymal cells were co-cultured (5,000 AEC2 : 30,000 mesenchymal 

cells/well) in modified MTEC media diluted 1:1 in growth factor-reduced matrigel 

(Cat#CB-40230A; Thermo Fisher). Modified MTEC culture media is comprised of small 

airway basal media (SABM, Cat#CC-3118; Lonza) with Insulin, Transferrin, Bovine 

Pituitary Extract, Retinoic Acid, and EGF as per the SAGM Bullet Kit and 0.1 μg/mL 

cholera toxin (Cat#C8052; Sigma), 5% FBS, and 1% Pen/Strep. Cell suspension-matrigel 

mixture was placed in a transwell and incubated with 10 μM ROCK inhibitor (Cat#72252; 

STEMCELL) for the first 48 hrs. Each experimental condition was performed in triplicates. 

Where applicable, BMP4 (Cat#314-BP-010; R&D Systems; 50 ng/mL), TGFβ1 (Cat#100–

21; Peprotech; 3 ng/mL), DMH-I (Cat#73632; STEMCELL; 1 μM), HHIP (Cat#9280-

HP-050; R&D; 2.5 μg/mL), CHIR (Cat#4423; Tocris; 3 μM), and KGF (Cat#251KG01050; 

R&D; 100 ng/ml) were added to the media after 48 hrs and replenished in every media 

change. iAEC2s were co-cultured with either MRC5 or AHLM (5,000 AEC2s: 30,000 

mesenchymal cells/well; both MRC5 and AHLM with passage<5) and maintained with 

either CK-DCI media or a 1:1 mixture of CK-DCI and modified MTEC media as described 

above. Colonies were assayed after 7, 14, and 21 days. For mesenchyme-free hAEC2 

culture, hAEC2s were isolated from donor lungs via FACS as described above and cultured 

as previously described21. After two or three passages, purity of hAEC2s was assessed by 

protein staining for SFTPC and KRT5. Pure hAEC2s were then co-cultured with either 

MRC5 or AHLM as described above.

To extract RNA from organoids, cell-matrigel mixture in the transwell was washed with 

PBS and incubated in the lung digestion cocktail for 1 hr at 37°C with intermittent 

resuspension. The mixture was removed from the transwell and resuspended in TrypLE 

(Cat#12563011; Thermo Fisher) and shaken at 37°C for 20 mins. Cells were blocked with 

human FcR blocking reagent (Cat#564220; BD; 1:50) for 10 mins at 4°C, and then stained 

with biotin anti-CD326 (Cat#324216; BioLegend; 1:250) for 30 mins at 4°C. Streptavidin 

beads (Cat#17663; STEMCEL; 1:50) were added to isolate the epithelial cells, and the rest 

cells were mesenchymal cells. For sequencing, organoids were digested as above and FACS 

sorted for live EpCAM+ and EpCAM− cells.

qPCR

RNA was extracted from cells using PicoPure RNA Isolation Kit (Cat#KIT0204; Applied 

Biosystems). cDNA was synthesized from total RNA using SuperScript Strand Synthesis 

System (Cat#18080044, Thermo Fisher). qPCR was performed using SYBR Green 

(Cat#F415L; Thermo Fisher). Relative gene expression levels were defined using ΔΔCt 

method. qPCR primers (IDT) are listed in Supplementary Table 7.

RNA In Situ Hybridization

Paraformaldehyde-fixed OCT embedded sections were used for RNA in situ hybridization 

with RNAScope multiplex fluorescent v2 assay (ACDBio). Briefly, 7μm sections of normal 

or IPF lungs were washed, protease-dependent antigen retrieval was performed, and probes 

were hybridized for 2 hrs at 40°C, followed by step-wise amplification of each probe. RNA 

probes for SFTPC (Cat# 452561-C1, -C2; ACDBio), KRT17 (Cat# 463661-C3; ACDBio), 
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and CTHRC1 (Cat# 413331; ACDBio) were purchased and used. Following completion of 

RNA In Situ Hybridization, immunostaining was performed after blocking as stated earlier.

Xenotransplantation Assay

700,000 freshly sorted hAEC2s alone or mixed with 200,000 cultured AHLM or MRC5 

cells (passage < 4) in 40 μL volume (1XPBS) were transplanted at 10 days post bleomycin 

injury into the lungs of NOD scid gamma mice via oral aspiration. Transplanted mice were 

euthanized 8–12 days post-transplant (a total of 18–22 days post bleomycin injury).

Single cell transcriptomics

Single cell sequencing was performed on a 10X Chromium instrument (10X Genomics) 

at the Institute of Human Genetics in UCSF as described before37. Briefly, cells were 

isolated via FACS and were then loaded on a Chromium Controller instrument to generate 

single-cell Gel Bead-In-EMulsions (GEMs). Libraries were prepared by performing reverse 

transcription on Bio-Rad C1000 Touch Thermal Cycler (Bio-Rad, Hercules, CA), following 

which, GEMs were harvested to amplify cDNA also using Bio-Rad C1000 Touch Thermal 

Cycler. SPRIselect (Beckman Coulter, Brea, CA) was used to select for amplified cDNA. 

Indexed sequencing libraries were constructed using the Chromium Single-Cell 3’ library kit 

(10X Genomics) and sequenced on NovaSeq 6000 (Illumina) with the following parameters: 

Read 1 (26 cycles), Read 2 (98 cycles), and i7 index (8 cycles) to obtain a sequencing depth 

of ~100,000 read/cell. Reads were aligned to the appropriate mouse or human genome and 

quantified using the Cell Range Single-Cell Software Suite.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Analysis—All statistical analyses were performed in GraphPad Prism. 

Unpaired one-tailed t-tests were used to determine the p-value and data in graphs are 

presented as mean ± SD. For quantification of xenotransplants, Kolmogorov-Smirnov test 

was used to determine normality and one-way ANOVA followed by Kruskal-Wallis test was 

used for multiple comparisons. For normally distributed data, ordinary one-way ANOVA 

followed by Tukey’s multiple comparisons test was performed. For all tests, p-values < 

0.05 were considered significant. Representation factor calculated to represent the number 

of overlapping genes divided by the number of expected overlapping genes drawn from 

two independent groups, as calculated on nemates.org with a base value of 30,000 genes in 

human genome. A representation factor > 1 indicates more overlapping genes than expected 

of two independent groups.

Immunofluorescence Image Quantification—Sections were imaged for quantification 

on a Zeiss Lumar V12 or Zeiss AxioImager.M1 microscope. Cell counts for stained cells 

were performed on Fiji using the “Cell Counter” plug-in. Results were averaged between 

each specimen and SD were calculated per condition. For quantification of xenografts, at 

least three mice in each group were analyzed with at least two sections taken at 200 μm 

apart to capture different regions of the lung. Any HNA+ (human nuclear antigen) region 

of >5 cells was counted as one engrafted region. At least three lobes were analyzed at 

each section for three mice/condition; minimum of two sections/mouse were analyzed. Data 

are presented as mean ± SD. ** p < 0.01 (One way ANOVA followed by Kruskal-Wallis 
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for multiple comparison). For quantification of ABIs, at least six distinct areas per IPF 

specimen (n=3) covering at least three different zones of disease severity were counted. 

Zones of disease severity were defined as follows: 1) Normal looking alveoli - alveoli with 

a single layer of DAPI+ cells, 2) Thickened alveolar walls - alveoli with multiple layers of 

DAPI+ cells in the alveolar wall, 3) Microcysts - cyst-like structures that line and overlay 

the fibrotic regions as judged by accumulated DAPI+ cells in alveolar space, 4) Heavily 

fibrotic/bronchiolized zone - fibrotic lesions with autofluorescent collagen deposition around 

bronchiolized epithelium. SFPTC+/KRT17+/KRT5− cells were detected by mRNA in situ 

for SFTPC and KRT17 and protein staining for KRT5 and were counted as ABI1s, SFTPC−/

KRT17+/KRT5− cells were counted as ABI2s and SFTPC−/KRT17+/KRT5+ cells were 

counted as mature basal cells. IPF lung specimens (n=3) were probed with probes against 

SFTPC, KRT17, and CTHRC1 mRNA and KRT5 protein staining to identify ABIs and 

adjacent CTHRC1+ mesenchyme. At least a 3×3 area was imaged at 20X (9 images), 

stitched together and counted as one data point. In total, 160 images were captured at 

20X across three IPF lungs and every instance of ABI1, ABI2, or basal cell in actively 

remodeling region was counted. A cell cluster of at least 5 cells was counted as an ABI or a 

CTHRC1+ mesenchymal region. A mesenchymal region was marked as adjacent to ABIs if 

it was within 3 cell distance of an ABI cluster.

Analysis of single cell RNA-sequencing—FASTQ files were run through CellRanger 

v2.1.1 software with default settings for de-multiplexing, aligning reads with STAR 

software to Hg19 or GRCh38, and counting unique molecular identifiers (UMIs). Seurat 

packagev4.038 in R v3.5.1 was used for downstream analysis. Low quality cells were 

filtered (expressing less than 200 genes, > 10% mitochondrial reads and >6000 unique 

gene counts). Principal component analysis (PCA) was performed on log normalized and 

scaled data using 2000 variable genes. Top 10 PCAs were used for clustering, which were 

visualized using the Uniform Manifold Approximation and Projection (UMAP) algorithm 

in the Seurat package. Monocle trajectory analysis was performed using the Monocle 339 

by importing the counts from the Seurat object. RNA velocity was calculated using scVelo 

v0.1.16 package40 in Python v3.6 and velocity calculations were overlayed on UMAP 

projections calculated in Seurat. For single cell transcriptomes of healthy and IPF lungs were 

obtained from GSE135893 and GSE132771 and processed using Seurat. AEC2s, AEC1s, 

transitional AEC2s, KRT17+/KRT5− cells, and basal cells were extracted and analyzed. 

RNA values were averaged for each cluster using AverageExpression function followed 

by DoHeatmap function in Seurat to generate heatmaps. Genes specific to PATS-like cells 

reported in Kobayashi et al. were picked for heatmaps. The lists of differentially expressed 

genes were identified with a MAST test. Upstream regulator analysis of gene lists containing 

significantly differentially expressed genes (padj < 0.05, logFC < −0.15 or > 0.15) was done 

with Ingenuity Pathway Analysis (QIAGEN).

Bulk RNA Sequencing Analysis—Total RNA was extracted from AHLM and MRC5 

cells using the RNeasy Kit (Cat#74004; QIAGEN). Sequencing was done using HiSeq 

4000. Quality control of reads was conducted by using FastQC (Babraham Bioinformatics). 

Ligation adaptors were removed using the Cutadapt and Sickle 1.33. Sequencing reads were 
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aligned using STAR 2.7.9a and UCSC human GRCh38/hg38 was used as reference genome. 

The differential gene expression list was generated using DEseq2.

STATISTICS & REPRODUCIBILITY

No statistical method was used to predermine sample size. No data was excluded from 

analyses. Sample ID was blinded to investigator for image quantification.

DATA AVAILABILITY

The RNA-seq data that support the findings of this study have been deposited in the Gene 

Expression Omnibus (GEO) under the accession codes: GSE148992 (human bulkRNA-

seq), GSE150068 (organoids and IPF), and GSE150247 (human scRNA-seq). Previously 

published scRNA-seq data that are re-analyzed here are available at GSE135893 and 

GSE132771. All other data supporting the findings of this study are available from the 

corresponding author on reasonable request.

CODE AVAILABILITY

No custom codes were developed and used in this manuscript. All codes are available by 

request to corresponding author.
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Extended Data

Extended Data Fig. 1: Purified hAEC2s transdifferentiate into KRT5+ basal cells when co-
cultured with AHLM.
(a) FACS plot shows the strategy for isolating hAEC2s. After selecting live/CD45−/

CD31−/CD11b− cells, hAEC2s were further isolated by gating EpCAM+/HTII-280+ cells. 

(b) Quantification of SFTPC+ and KRT5+ cells in freshly sorted HTII-280+ cells by 

cytospins. Data are mean ± SD, representative of n=4 biologically independent human 

lung cytospins analyzed. (c) confirmation of the purity of HTII-280+ cells by scRNAseq 
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showed no appreciable detection of non-AEC2 markers. (d) scRNA-seq of AHLM isolated 

as live/CD31−/CD45−/CD11b−/EpCAM− cells that express PDGFRA. (e) Colony forming 

efficiency of hAEC2/MRC5 and hAEC2/AHLM co-culture at D14. Data are mean ± SD, 

representative of n=3 biologically independent for AHLM and hAEC2 and representative 

of n=3 independent experiments for MRC5. (f) and (g) IF analysis of p63 and KRT17, 

and KRT5 in the hAEC2s+MRC5 and hAEC2s+AHLM organoids at D14. Images are 

representative of n=2 (in f) and n=3 (in g) biological replicates. (h) Quantification 

of KRT17+ and p63+ cells in total KRT5+ basal cells in the hAEC2s+MRC5 and 

hAEC2s+AHLM organoids at D14. n=2 (for MRC5) and n=3 (for AHLM) biologically 

independent samples were analyzed. Data are mean ± SD. (i) IF analysis of KRT8 in the 

hAEC2s+AHLM organoids at D14. Representative of n=2 independent experiments. (j) IF 

analysis and quantification of KRT5+ and SFTPC+ cells in the hAEC2-derived organoids 

co-cultured with freshly sorted AHLM (Passage 0) and cultured AHLM (Passage 2) at D14. 

Each dot represents a technical replicate. Representative of n=2 independent experiments. 

(k) Enrichment of hAEC2s using a mesenchyme-free system, confirmed by IF analysis and 

quantification of SFTPC+ and KRT5+ cells (left), and co-culture of the enriched hAEC2s 

with AHLM or MRC5, the organoids are analyzed at D14 (right). Data are expressed as the 

mean ± SD, representative of n=3 biologically independent experiments.
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Extended Data Fig. 2: Difference in niche provided by mouse and human lung mesenchyme and 
components of the CK/DCI media on hAEC2s-to-basal transdifferentiation
(a) IF analysis of mouse AEC2s (mAEC2s)-derived organoids co-cultured with the adult 

mouse lung mesenchyme (AMLM) at D14. mAEC2s (GFP+) were sorted from the 

lung of adult SftpcCreERT2/+:R26RmTmG/+ mouse. Representative of n=3 independent 

experiments. (b) Quantification of lineages of organoids (SFTPC+ organoids, organoids 

with both SFTPC+ cells and KRT5+ cells, or KRT5+ organoids) in mAEC2 + AMLM 

organoids. (c) hAEC2s co-cultured with either adult murine lung mesenchyme (AMLM) 
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or AHLM. (d,e) IF analysis and quantification of hAEC2 + AHLM organoids treated with 

3 μM CHIR or 100 ng/ml KGF at D14. Representative of n=2 independent experiments. 

Data are expressed as the mean ± SD, representative of n=3 technical triplicates. ** p = 

0.0012. (f) IF analysis of human iAEC2 + AHLM organoids cultured in 1:1 dilution of 

CK-DCI:SABM/MTEC standard media show canonical basal markers (KRT14, KRT17, 

P63) and lung lineage (NKX2–1). Data are expressed as the mean ± SD, representative of 

n=2 independent experiments. ** indicates p < 0.01 as determined by unpaired one-tailed 

student’s t-test.
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Extended Data Fig. 3: Comparison of pathologic mesenchymal niche subsets arising from IPF 
and cultured AHLM
(a, b) IF analysis of hAEC2s-derived organoids co-cultured with human adult normal 

lung (AHLM) and IPF mesenchyme at D7, and quantified by the percentage of SFTPC+, 

KRT5+, and SFTPC+/KRT5+ cells in total cells. Data are expressed as the mean ± SD, 

representative of n=3 technical replicates. * p = 0.0182 and ** p = 0.0066. Representative 

of n=2 independent experiments. (c) UMAP plots of mesenchyme from each individual IPF 

or normal donor that was used in scRNA-seq analysis. (d) Comparison of top 100 markers 
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in CTHRC1+ (left) and HAShigh/BMP anatgonisthigh (right) clusters of uncultured IPF (IPF 

fresh) and cultured AHLM with statistical comparison for degree of gene overlap of two 

independent gene sets denoted by representation factor (see methods). (e, f, and g) UAMP 

plots show BMP antagonists and TGFB1 expression in IPF lungs (from IPF Cell Atlas, 

Habermann et al.). Data are expressed as the mean ± SD. * indicates p < 0.05 and ** 

indicates p < 0.01 as determined by unpaired one-tailed student’s t-test. Each data point on 

the graph represents a technical replicate.

Extended Data Fig. 4: Effect of HHIP and BMP4 in modulating metaplastic hAEC2 
transdifferentiation
(a) IF analysis of SCGB1A1 in the hAEC2+ AHLM organoids treated with 2.5 μg/ml HHIP 

and 50 ng/ml BMP4, quantified by percentage of organoid containing SCGB1A1+ cells. 

Data are expressed as the mean ± SD. * p = 0.0441. (b) IF analysis of pSMAD1/5/8 in 

the hAEC2+ AHLM organoids treated with 2.5 μg/ml HHIP, quantified by percentage of 

pSMAD1/5/8+ cells in total cells. Data are expressed as the mean ± SD. ** p = 0.0079. 

Experiment was performed in a technical triplicate. * indicates p < 0.05 and ** indicates p < 

0.01 as determined by unpaired two-tailed student’s t-test.

Kathiriya et al. Page 22

Nat Cell Biol. Author manuscript; available in PMC 2022 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 5: Comparison of hAEC2-derived and IPF basal cells
(a) Feature plots show KRT5 and KRT17 expression in the merged basal cell data from 

fresh normal donors (N = 2, marked as NL basal), fresh IPF patients (N = 2, marked as 

IPF basal), and hAEC2+AHLM organoids (N = 2). (b) Comparison of top 100 markers in 

SPB, MPB, AB, and PB clusters of this study and Carraro et al.3 with statistical comparison 

for degree of gene overlap of two independent gene sets denoted by representation factor 

was done via http://nemates.org (see methods) (see methods). (c) UMAP plots of basal cells 

from IPF, normal donors, and hAEC2-derived organoids with contributing cell number in 
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each cluster. (d) Comparison of top 500 differentially expressed genes in hAEC2-derived 

and IPF basal cells against normal lung basal cells with statistical comparison for degree 

of gene overlap of two independent gene sets denoted by representation factor was done 

via http://nemates.org (see methods). (e) Representative upregulated genes in top 50 of IPF 

and hAEC2-derived vs. normal lung basal cells. SPB = secretory primed basal, MPB = 

multipotent basal, AB = activated basal, PB = proliferating basal.

Extended Data Fig. 6: Expression of ABI markers in organoid and comparison with PATS-like 
cells in IPF.
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(a) Heatmap of lineage marker expressions in different cellular subsets arising from hAEC2-

derived organoids. (b) Expression along pseudotime trajectory of AEC2, ABI, and basal 

cell markers. (c) Featureplots of organoid scRNA-seq (D0-D21) show SCGB1A1+ club 

cells and FOXJ1+ ciliated cells. (d) IF staining of hAEC2+AHLM organoids (Day 21) 

show SCGB1A1+ club and rare TUBB4+ ciliated cells. Representative of n=2 independent 

experiments. (e) Top 15 significantly differentially expressed genes between AEC2s, ABI1s, 

ABI2s, and basal cells show AEC2-like profile of ABI1s and basal-like profile of ABI2s 

in addition to high ECM related gene signature of ABI2s. (f) UMAP of hAEC2-derived 

organoids cocultured with AHLM and IPF epithelium where transitional AEC2s and 

KRT17+/KRT5− cells as originally described by Habermann et al4. appear. The combination 

of transitional AEC2s and KRT17+/KRT5− cells were labeled as PATS-like cells by 

Kobayashi et al1. Feature plots comparing (g) hAEC2 lineage markers expression, (h) 

PATS-like markers expression, and (i) basal lineage marker expression in the UMAPs of 

organoid and IPF.
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Extended Data Fig. 7: Identification of ABIs in normal, IPF, and COVID-19 lungs.
(a) Immunostaining of IPF lung with AEC2, ABIs, and basal markers show (1) linearly 

connected AEC2, ABI1, ABI2, and basal cell, (2) a cluster of basal cells (KRT17+/

KRT5+/TP63+), and two types of ABI2s (KRT17+/KRT5−): (3) TP63neg and (4) TP63pos. 

Representative of n=3 independent IPF lungs. (b) In situ analysis hybridization of normal 

lung with SFTPC and KRT17 identifies rare ABI1s (SFTPC+/KRT17+) as a fraction of 

total SFTPC+ cells. Data are represented as mean ± SD, representative of n=2 biologically 

independent samples. (c) Immunostaining of COVID-19 lung shows presence of AEC2s, 
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ABI1 and ABI2s, and basal cells in the same bronchiolized region. Representative of n=1 

sample.
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Figure 1. Primary adult human lung mesenchyme (AHLM) drives human AEC2 (hAEC2) 
transdifferentiation into KRT5+ basal cells in vitro.
(a) Live/EpCAM+/HTII-280+ cells (hAEC2s) were sorted and sequenced, confirming 

purified SFTPC+ population. (b,c) IF of hAEC2-derived organoids co-cultured with MRC5 

with quantification of epithelial lineages found in the organoids (SFTPC+ organoids, 

organoids with both SFTPC+ cells and KRT5+ cells, or KRT5+ organoids). representative 

of n=3 biologically independent replicates. Data are presented as mean of the two replicates. 

(d,e) IF of hAEC2-derived organoids co-cultured with AHLM with quantification of 
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lineages of organoids. Data are presented as mean of n=2 biological samples. Representative 

of n=2 independent experiments. (f) iPSC-derived AEC2s express tdTomato from one 

allele of SFTPC and can be flow purified based on their tdTomato expression. (g) 

iAEC2s were co-cultured with either MRC5 or AHLM (both passage < 5) with CK+DCI 

media and organoids were analyzed at D14 for tdTomato expression. Experiments were 

performed in biological duplicates with AHLM harvested from two independent donor 

lungs. (h) Organoids from iAEC2s/MRC5 or iAEC2s/AHLM were harvested and stained 

for alveolar (SFTPC), basal (KRT5 or KRT17), or intermediate (KRT8) markers. (i) 90% 

of iAEC2s/MRC5 organoids were SFTPC+/tdTomato+, while (j) ~65% of iAEC2s/AHLM 

organoids were SFTPClow, with the rest SFTPCneg. These organoids were also KRT5−/

KRT17+/KRT8+, suggesting only partial differentiation. Representative of n=2 independent 

experiments. (k, l) iAEC2/AHLM organoids, when co-cultured with 1:1 mixture of CK-

DCI and modified MTEC media show complete transdifferentiation of tdTomato+ iAEC2s 

into tdTomato−/SFTPC−/KRT5+/NKX2–1+ (86.7% of analyzed colonies) lung basal cells. 

The remaining 13.3% of organoids were SFTPC−/K5−/NKX2–1+. Representative of n=2 

independent experiments.

Kathiriya et al. Page 31

Nat Cell Biol. Author manuscript; available in PMC 2022 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. hAEC2 is capable of metaplastic KRT5+ transdifferentiation in a fibrotic host in vivo.
(a) Experimental setup of xenotransplant experiment testing engraftment of hAEC2s alone 

or co-transplanted with MRC5 or AHLM. (b) hAEC2s engrafted in the injured lungs and 

differentiated towards either KRT5+ (green) basal cells or remained as pro-SFTPC+ (white) 

hAEC2s as judged by co-staining with human nuclear antigen (HNA, red) in the lungs of 

mice transplanted with hAEC2s alone or hAEC2s+MRC5 or hAEC2s+AHLM. n=3 mice/

group, representative of n=2 independent replicates. (c) Co-transplantation of hAEC2s with 

MRC5 cells does not change relative rates of hAEC2s engraftment events when compared 
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with hAEC2s alone. However, co-transplantation of AHLM reduced the number of hAEC2 

patches observed in the lungs of mice while increasing basal cell differentiation. Each 

dot represents the number of engrafted regions (> 5 cells) in one section. At least two 

sections/mouse were analyzed and n=3 mice/group. Data are expressed as the mean ± SD. 

Kolmogorov-Smirnov test was used to determine normality and one-way ANOVA followed 

by Kruskal-Wallis test was used for multiple comparisons. (d) IF of engrafted hAEC2s 

actively transdifferentiating into KRT5+ basal cells in proximity to engrafted AHLM in 

the injured lung. Orange arrows: RFP-labeled AHLM, green arrows: KRT5+/SFTPC− basal 

cells, white arrows: SFTPC+/KRT5− hAEC2s, red arrows: KRT5+/SFTPC+ hybrid cells. 

n=3 mice/group, representative of one independent experiment. (e) Immunostaining of 

lungs transplanted with hAEC2 and tdTomato−labeled AHLM showed KRT8low/SFTPC+ 

hAEC2s (white arrows; inset), KRT8+/SFTPC+ intermediate-hAEC2s (white arrowhead; 

inset), KRT5+ basal cells (green arrows; inset), and rare SFTPC+/KRT5+ cells (red arrows; 

inset) adjacent to tdTomato−labeled AHLM (orange arrow) in areas of engraftment. Data are 

representative of n=3 mice.
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Figure 3. Emergence of pathologic mesenchymal niche subsets previously seen in IPF from 
cultured AHLM
(a) scRNAseq analysis of fresh (sorted from donor lung, uncultured) AHLM (normal 

donors, N = 3, marked as AHLM fresh), fresh IPF mesenchyme (N = 3, marked as 

IPF fresh), and cultured AHLM at passage 0–1 isolated from organoids (N = 2). (b) 

Signature genes in CTHRC1+ and HAShi/BMP antagonisthi clusters. (c) scRNAseq analysis 

showing decrease of distal (alveolar) population (blue box) and increase of CTHRC1+ 

and HAShi/BMP antagonisthi populations (red boxes) in both fresh IPF mesenchyme 
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and cultured AHLM. (d) Heat maps show the signature genes of each cluster in fresh 

IPF mesenchyme and cultured AHLM. (e) Violin plots show the signature genes in the 

CTHRC1+ fibroblasts among AHLM cultured, IPF fresh, and AHLM fresh. (f) Violin 

plots show the BMP antagonists in the HAShi/BMP antagonisthi fibroblasts among AHLM 

cultured, IPF fresh, and AHLM fresh.
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Figure 4. hAEC2-intrinsic and niche factors altered in IPF modulate metaplastic hAEC2 
transdifferentiation.
(a) Bulk RNA-seq analysis of AHLM and MRC5 with differential gene expression analysis. 

Significantly differentially expressed genes (padj < 0.01, log2FC < −0.5 or > 0.5) were 

marked as red dots, otherwise in grey. (b) Treatment of hAEC2s+AHLM organoids with 

2.5 μg/ml HHIP increases SFTPC and decreases KRT5 expression in the epithelial fractions 

at D14 of co-culture. The expression levels of SFTPC and KRT5 in the epithelial fractions 

of hAEC2s+MRC5 organoids were used as controls. Data are expressed as the mean ± 
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SD. SFTPC: ** p = 0.0028 and * p = 0.0399; KRT5: ** p = 0.0015 and * p = 0.0294. 

(c) IF analysis of HHIP-treated hAEC2s+AHLM organoids at D14, and quantified by the 

percentage of SFTPC+, KRT5+, and SFTPC+/KRT5+ cells in total cells. Data are expressed 

as the mean ± SD. ** p = 0.0023. (d) HHIP-treated AHLM isolated from D14 organoid 

co-culture demonstrates decreased GLI1 and increased BMP3 and BMP4 mRNA levels. 

Data are expressed as the mean ± SD. ** p = 0.0043, * p = 0.0354, and *** p = 0.0002. 

(e) IF analysis and quantification of the hAEC2s+AHLM organoids at D14 treated with 50 

ng/ml BMP4. Data are expressed as the mean ± SD. * p = 0.0142 and *** p = 0.0005. 

(f) Treatment of hAEC2s+AHLM organoids with BMP4 increases SFTPC and decreases 

KRT5 mRNA expression in the epithelial fractions at D14 of co-culture. The expression 

levels of SFTPC and KRT5 in the epithelial fractions of hAEC2s+MRC5 organoids were 

used as controls. Data are expressed as the mean ± SD. SFTPC: ** p = 0.0066 and * p = 

0.0358; KRT5: ** p = 0.0062 and ** p = 0.0028. (g,h) IF analysis of D14 hAEC2s+AHLM 

organoids treated with DMH-I (1 μM) or TGFβ1 (3 ng/mL). DMH-I treatment gives rise to 

either SFTPC+ alveolospheres (g’, 24% SFTPC+ AEC2s) or KRT5+/SFTPC+ basal/AEC2 

mixed colonies (35% KRT5+ basal cells). TGFβ1 treatment drives more efficient basal cell 

transdifferentiation by suppressing alveolar fate (10% SFTPC+ AEC2s) and induces basal 

fate (57% KRT5+ basal cells). Experiment was performed in a technical triplicate and data 

from three technical replicates are counted as one biological replicate. * indicates p < 0.05 

and ** indicates p < 0.01 as determined by unpaired two-tailed student’s t-test. Each data 

point on graph represents one technical replicate.
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Figure 5. hAEC2-derived basal cells resemble metaplastic basal cells seen in IPF
(a) scRNAseq analysis of basal cells from fresh normal donors (N = 2, marked as NL basal), 

fresh IPF patients (N = 2, marked as IPF basal), and hAEC2+AHLM organoids (N = 2). (b) 

Signature genes in SPB, MPB, AB, and PB clusters. (c) Heat maps show the signature genes 

of each cluster in hAEC2-derived basal and IPF basal cells. (d) Differential gene expression 

analysis of hAEC2-derived basal vs. IPF basal cells. (e) IF analysis of KRT14, MMP7, and 

KRT5 in normal lung, IPF lung, and hAEC2-derived organoids at D14. Representative of 
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n=2 independent experiments. SPB = secretory primed basal, MPB = multipotent basal, AB 

= activated basal, PB = proliferating basal.
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Figure 6: hAEC2 transdifferentiates into KRT5+ basal cells through alveolar-basal intermediate 
(ABI) cells in vitro and in vivo
(a) scRNA-seq of freshly sorted HTII-280+ hAEC2s (D0) and hAEC2s co-cultured with 

AHLM at D7, D14, and D21. (b-d) Pseudotime ordering of epithelial cells from D0, 

D7, D14, and D21 organoids identify an hAEC2s → ABIs → Basal → Club → 
Ciliated cell trajectory based on gene expression levels over pseudotime trajectory that 

was confirmed on RNA Velocity. (e) Immunofluorescence staining of D7 hAEC2+AHLM 

organoids identify presence of KRT17−/KRT8high/SFTPC+ ABI1 (14%) and KRT17+/
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KRT8+/SFTPClow ABI2s (23%) along with SFTPC+ hAEC2s (43%) and KRT17+/KRT5+ 

basal cell (9%). Representative of n=2 biologically independent experiments performed 

in technical triplicates each. Data are represented as mean of biological replicates. (f) 
Ingenuity Pathway Analysis of the differentially expressed genes between AEC2s, ABI1, 

ABI2 identified the upregulation of alveolar signaling (NKX2–1, ETV5) in AEC2s, WNT 

and BMP signaling in AEC2s and ABI1s and fibrotic/airway signaling pathways (TGFβ1, 

HES1, extracellular matrix genes, SOX2, and TP63) in ABI2s. (g,h) Re-analysis of IPF 

epithelium from Habermann et al. to include basal cells along with PATS-like cells 

(encompassing transitional AEC2s and KRT17+/KRT5− cells on UMAP) with pseudotime 

ordering. (i) Heatmaps comparing lineage-specific gene expression of KRT17+/KRT5− 

basaloid cells in IPF (labeled as PATS-like cells by Kobayashi et al20) and ABIs in 3D 

organoid.
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Figure 7: Evidence of hAEC2-to-basal transition through ABIs in severe alveolar injury.
(a) Immunostaining of IPF lungs finds hAEC2s (SFTPC+), ABI1 (SFTPC+/KRT17low), 

ABI2 (SFTPClow/KRT17+/KRT5−), and Basal cells (KRT5+/KRT17+) in the same cystic 

regions. Heatmap shows average expression of select candidate genes in each cell types 

in organoids. Representative of n=3 IPF specimens. (b, c) In situ analysis of IPF lungs 

identify decreasing frequency of ABI1s (SFTPC+/KRT17+; orange arrows) and increasing 

frequency of ABI2s (SFTPC−/KRT17+/KRT5−; red arrows) and basal cells (SFTPC−/

KRT17+/KRT5+; white arrows) as severity of fibrosis increases. Green arrows indicate 
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AEC2s (SFTPC+/KRT17-). Representative of n=6 independent IPF specimens used to 

define normal, thickened, microcystic, and bronchiolized regions. Each region included at 

least 4 images taken at 20X from at least three IPF specimens. Data are represented as 

the average of all the images and error bars are standard deviation. (d) Immunostaining of 

scleroderma lung identifies linear progression from hAEC2s → ABI1→ ABI2 → Basal cell 

in the same region. Images representative of n=1 scleroderma lung.
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Figure 8: ABIs and basal cells in actively remodeling regions in IPF lungs are adjacent to 
aberrant CTHRC1high mesenchyme
(a, b) RNA in situ hybridization was performed for SFTPC, KRT17, and CTHRC1 followed 

by KRT5 protein staining. 83% of ABI2s (SFTPC−/KRT17+/KRT5−) and 77% of basal 

cells (KRT17+/KRT5+) found in actively remodeling regions were in close proximity to 

clusters of CTHRC1high fibroblasts. Representative of n=3 independent IPF lungs analyzed. 

Each dot in b represents an average of at least a 3×3 tiled region captured at 20X. In 

total, 160 images were captured at 20X and counted across three IPF specimens. Data 
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is represented as mean ± SD. Significance is calculated by one-way ANOVA followed 

by Kruskal-Wallis test for multiple comparisons. **** p < 0.0001, ** p = 0.0014. (c) 
Schematic illustrating a transdifferentiation pathway of hAEC2s to metaplastic Basal cells 

through discrete ABIs and as a likely consequence the accumulation of dysplastic alveolar 

structures prominent in IPF. Transdifferentiation develops as a function of transition of 

surrounding mesenchyme from a BMP/Wnt high supportive niche (green) to an aberrant, 

pro-fibrotic niche comprised of fibroblasts high in anti-BMPs, TGFβ1, and ECM proteins 

(red). Although the schematic highlights active TGFβ1 deriving from fibroblasts, ABIs are 

also a prominent source of TGFβ1 activation and signaling (See Fig 6; Kobayashi 202020, 

Strunz et al 202019), likely contributing to the development of aberrant mesenchyme and a 

pro-fibrotic milieu.
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