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Abstract: Neutrophil extracellular traps (NETs) are web-like structures of decondensed extracellular
chromatin fibers and neutrophil granule proteins released by neutrophils. NETs participate in host
immune defense by entrapping pathogens. They are pro-inflammatory in function, and they act as an
initiator of vascular coagulopathies by providing a platform for the attachment of various coagulatory
proteins. NETs are diverse in their ability to alter physiological and pathological processes including
infection and inflammation. In this review, we will summarize recent findings on the role of NETs
in bacterial/viral infections associated with vascular inflammation, thrombosis, atherosclerosis and
autoimmune disorders. Understanding the complex role of NETs in bridging infection and chronic
inflammation as well as discussing important questions related to their contribution to pathologies
outlined above may pave the way for future research on therapeutic targeting of NETs applicable to
specific infections and inflammatory disorders.
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1. Introduction

Neutrophils play a key role in the body’s innate immune response constituting the first
line of defense against a wide range of pathogens. Neutrophils contribute to elimination of
the intruder by phagocytosis, degranulation of antibacterial proteins, generation of reactive
oxygen species (ROS) and the recruitment and activation of other immune cells. Moreover,
neutrophils may form neutrophil extracellular traps (NETs), which are strands of DNA
extruded by activated or dying neutrophils, decorated with various inflammatory media-
tors and represent a link between infection, inflammation, innate immunity, thrombosis
and cardiovascular disease (CVD) [1]. In response to a growing list of stimuli including
various bacterial and viral specimens, but also sterile particles such as urate crystals, neu-
trophils undergo a specialized series of reactions resulting in chromatin decondensation
and subsequent NETs formation. The DNA that comprises the backbone of these NETs
not only provides a scaffold for proteins stemming from the neutrophil itself but also for
external proteins from other sources. Examples of neutrophil-derived proteins associated
with NETs include myeloperoxidase, cathepsin G, neutrophil elastase (NE) and proteinase
3. A non-neutrophil protein associated with NETs would be, e.g., tissue factor (TF) a main
trigger of the coagulation cascade fostering thrombosis [2]. Although NETs play a beneficial
role in host defense against pathogens, there is increasing evidence that the presence of
NETs (also in chronic inflammatory conditions) triggers a cascade of unwanted side effects,
such as production of autoantibodies against the host’s DNA, tissue damage or induction
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of atherothrombotic events. In this review we will summarize recent findings of how
NETs formation initiated by bacterial or viral infections as well as in autoimmune diseases
contributes to complications of CVD. Uncontrolled NETs generation during bacterial and
viral infections could be the missing link between infections and increased CVD risk [3].

2. NETs Affecting Cardiovascular Health in Infectious Diseases

In 2004, Brinkmann and colleagues showed the association of NETs with both Gram-
positive and Gram-negative bacteria and showed bactericidal properties [4]. Since then,
NETs have emerged as important players in host defense against various bacterial and viral
infections. During infections, NETs induce entrapment, reduce dissemination and help in
killing microorganisms. Failure of NETs-induced capturing and killing of microorganisms
is associated with sepsis. NETs are prevalent during sepsis, as they control the spread of
infection, and their degradation, using recombinant DNase, leads to increased bacterial
burden (shown in mice) but at the same time leads to organ and tissue damage [5]. In
a similar study, NETs were associated with platelet aggregates, triggering microvessel
occlusion in septic mice [6]. In addition to this, NETs-induced hepatic damage was observed
in methicillin-resistant S. aureus induced sepsis. This damage was inhibited by NE or
peptidyl arginine deiminase type IV (PAD4) deficiency [7]. Similarly, inhibition of NETs
using DNase1 or neutralizing antibodies against histones tend to reduce organ damage
in a poly-microbial sepsis mouse model [8]. Acute infection with various viruses and
Gram-positive and Gram-negative bacteria leads to higher risk of CVD [9,10]. In this
section, we will focus on role of NETs in major bacterial and viral infections leading to
cardiovascular complications. The inducers of NETs formation during infection and their
role in CVD manifestation have been summarized in Table 1.

Table 1. List of pathologies involved in the manifestation of NETs-induced vascular diseases.

Pathological Condition NETs Inducers Vascular Manifestation References

Bacterial infection
Methicillin-resistant S. aureus,
α-enolase, lipopolysaccharides,

early secretory antigen-6 protein

Endocarditis, acute myocardial
infection, myeloid cells recruitment

to atherosclerotic lesions,
microvascular thrombosis,

thrombosis of injured heart valves,
enhanced atherosclerotic lesion size

[7,11–18]

Viral infection High levels of intracellular
reactive oxygen species

Immunothrombosis, microvascular
thrombi in the lung, kidney, and

heart and organ damage
[19–22]

Atherosclerosis

Cholesterol crystal, interleukin
(IL) IL-1β and IL-6, IL-8, oxLDL,

high levels of anti-ApoA-1,
metastasis-associated lung

adenocarcinoma transcript 1
(MALAT1)

Endothelial damage in SMC-rich
plaques, plaque macrophage

inflammation, increased plaque
vulnerability, enhanced lesion size

and carotid artery thrombosis

[23–32]

Thrombosis High mobility group box 1
(HMGB1), hemodynamic force

Occlusion of microvessels and
bigger vessels, enhanced infarct size [33–37]

Autoimmune diseases
low-density granulocytes (LDGs),
neutrophil antimicrobial peptide

LL37 and HNP

Proatherogenic NETs-derived
lipoprotein oxidation, endothelial

damage, macrophage inflammation
and atherosclerosis

[31,38–42]

2.1. Cardiovascular Manifestations of Bacterial NETs Induction

Staphylococcus aureus is a Gram-positive bacterium that causes diseases such as os-
teomyelitis, infective endocarditis, bacteremia and gastroenteritis by inducing NETs forma-
tion and severe inflammation [4,43]. S. aureus leads to conversion of NETs to deoxyadeno-
sine that exerts caspase-3-mediated cytotoxic effects on macrophages. This mechanism
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helps S. aureus to escape NETs induced entrapment [44]. Infection with methicillin-resistant
S. aureus (MRSA) was shown to induce NETs formation in liver vasculature, which leads to
liver damage [7]. NETs entrap bacterial-platelet aggregates and promote septic thrombus
formation on injured heart valves, as shown in an S. aureus-induced endocarditis rat model.
This suggests a role of NETs in bacterial biofilm production and platelet aggregation on
injured heart valves [14]. In the same study, inhibition of NETs formation by administration
of DNase1 before infecting the rats with S. aureus leads to reduction in biofilm and septic
thrombus formation [14]. Another Gram-positive bacterium, Streptococcus pneumonia, also
leads to induction of NETs formation [4]. A pneumococcal protein called α-enolase, from
S. pneumonia, interacts with neutrophil surface proteins, increases neutrophil recruitment
and induces NETs formation [11]. In a model of invasive pneumococcal disease in mice,
S. pneumonia was shown to invade the myocardium and lead to formation of microle-
sions. These microlesions in the invaded myocardium also display high neutrophil and
macrophage infiltration. Ongoing accumulation of S. pneumonia in these microlesions
induces cardiomyocyte cell death within the lesion [45].

Escherichia coli is a Gram-negative bacterium causing pathologies such as enteritis,
urinary infections, meningitis and sepsis [46]. Serum from patients with E.coli-triggered
septic shocks leads to significant NET formation by neutrophils in vitro [47]. Exposure
to E.coli-derived lipopolysaccharides (LPS) activates the coagulation system through in-
dividual histone proteins and human neutrophil DNA [48]. LPS-stimulated platelets are
shown to promote NETs formation through Toll-like receptor 4 (TLR4) activity [12], and
platelet, thrombin and NETs interactions trigger intravascular thrombus formation in
the liver microcirculation of septic mice [17]. In the same study, PAD4-deficient animals,
which have a reduced ability to form NETs, showed a significant decrease in microvas-
cular thrombosis [17]. Another study highlighted the link between acute infection, NETs
and vascular inflammation by using a mouse model of endotoxemia. Here, they induced
endotoxemia by injecting LPS to Apoe−/− mice fed with a Western diet (WD) for 4 weeks,
which resulted in accumulation of NETs along the arterial wall, recruitment of myeloid
cells to the atherosclerotic lesions and augmented lesion size [16]. Furthermore, the authors
showed that the interaction of NETs and monocytes was not regulated by a receptor but
instead by cationic histone H2a. Cationic histone H2a electrostatically interacts with the
negatively charged monocyte surface and leads to enhanced monocyte adhesion to the
arterial wall and increased recruitment to the atherosclerotic plaque. In the same study,
inhibition of NETs by Cl-amidine, a second-generation PAD inhibitor replacing the phenyl
and carboxamide groups of Cl-amidine with a biphenyl and benzimidazole group, respec-
tively, significantly reduced cell-free DNA in the plasma, eliminated the NETs in the lumen
and inhibited myeloid cell recruitment to the atherosclerotic lesion [16].

Mycobacterium tuberculosis specifically affects the respiratory system, causing tuber-
culosis. Different subspecies of mycobacterium can induce NETs when they are cultured
with neutrophils, for instance, M. tuberculosis induced NETs formation by secreting early
secretory antigen-6 protein resulting in elevated intracellular Ca2+ in neutrophils and caus-
ing necrosis [13]. NETs can effectively trap and reduce the dissemination of M. tuberculosis;
however, NETs-derived components are unable to kill M. tuberculosis [49]. Latent tuberculo-
sis infection is associated with acute myocardial infarction and may trigger cardiovascular
complications [15]. In a case study, mass spectrometry analyses of the composition of
infective endocarditis biofilm and septic thrombus showed the contribution of NETs to
the formation of tuberculous endocardiac mass formation [18]. These tuberculosis endo-
cardiac masses are space-occupying lesions in the endocardium consisting of bacterium,
platelets, fibrin, microorganisms and inflammatory cells caused by endovascular microbial
infection of intracardiac structures facing the blood. Endocardiac mass formation can
lead to endcocardial damage and valve destruction. In one case study where a patient
presented with a large mass on the anterior mitral leaflet and dense yellow areas inside
the right atrium, these areas were positive for M. tuberculosis and were sensitive to all
anti-tuberculous medications [50]. Patients with tuberculosis endocarditis were managed
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with valve replacement and anti-tuberculosis drugs [51]. Altogether, bacterial infections
promote progression of atherothrombosis or atherosclerosis possibly through induction
of NETs formation, subsequent formation of platelet–NETs aggregates and NETs-induced
cardiac damage or fostering of atherosclerotic lesion growth.

2.2. Cardiovascular Manifestations of Viral NET Induction

Many viruses such as Hemagglutinin Type 1 and Neuraminidase Type 1 (H1N1), Human
Immunodeficiency Virus (HIV) and hepatitis have either a direct or an indirect effect on
CVD. The mechanisms behind these effects are still not fully understood. In addition, NETs
involvement in CVD during viral infections has received little attention. This oversight
may be due to the fact that many viruses have developed many strategies to prevent
the formation of NETs or escape them. Therefore, they have not been investigated in
the context of viral co-morbidities such as CVD. For example, Hepatitis B virus may in-
hibit NETs release by modulating reactive oxygen species production and autophagy [52].
HIV has developed many mechanisms to evade the human immune system and can
even induce neutropenia by impairing hematopoiesis [53]. HIV also choreographs ab-
normal neutrophil behavior including chemotaxis, phagocytosis, oxidative metabolism
and pathogen-killing [54]. Neutrophils from HIV-infected individuals exhibit elevated
interleukin 12 (IL-12) secretion triggering a chronic inflammatory process [55]. As a counter
measure, HIV induces the release of the anti-inflammatory IL-10 from dendritic cells to
neutralize NETs [56]. Human IL-10 homologs have been found in the genome of DNA
viruses such as human cytomegalovirus (HCMV) and Epstein–Barr virus (EBV) [57,58].
These IL-10 homologs could suppress NETs formation in a similar manner to cellular IL-10.
Like cellular IL-10 these homologs inhibit the TLR 7 and TLR 8-signaling pathways, thus
suppressing NADPH oxidase-dependent formation of NETs [56,59]. Since the 1930s a corre-
lation between influenza infections and vascular complications has been observed [60–62].
A recent study also highlighted that excessive NETs formation, neutrophil inflammation
and delayed apoptosis is found in patients with severe influenza infection [63]. These
findings suggest that neutrophils may dominate the host response towards influenza, and
this correlates with poorer outcomes. Therefore, excessive NETs formation could also
have downstream implications such as the development of CVD. Atherosclerosis-prone
apolipoprotein E-deficient (Apoe−/−) mice are a popular model for the study of atherosclerosis
as they have a reduced lipoprotein clearance and accumulation of cholesterol ester-enriched
particles in the blood promoting the development of atherosclerotic plaques [64]. A study
has demonstrated that Apoe−/− mice infected with the influenza A virus, show direct infec-
tion of vascular endothelial cells and smooth muscle cells in atherosclerotic plaques [65].
This study further showed that influenza infection promotes inflammation, smooth muscle
cell proliferation and fibrin deposition in atherosclerotic plaques. Apoe−/− mice infected
with influenza A showed increased cell infiltration in atherosclerotic plaques compared to
uninfected Apoe−/− mice. However, wild-type infected C57BL/6 mice showed no evidence
of the same infiltration of the vascular intima [65]. This could suggest that in patients with
atherosclerosis, influenza A infections could exacerbate the disease. There is already some
evidence proposing that the influenza vaccine can reduce the risk of developing CVD [66].
Another study demonstrated that human leukocytes adhere to influenza-infected human
umbilical vein endothelial cells (HUVECs) in a viral dose-dependent manner [67]. Further
investigations on human aortic endothelial cells (HAECs) revealed that influenza virus
infections increase the expression of chemokines, including chemokine (C-C motif) ligand
2 (CCL2), CCL5, and IL-8. Furthermore, influenza infection augmented the expression of
intercellular adhesion molecule 1 (ICAM1), vascular cell adhesion molecule 1 (VCAM-1)
and E-selectin on human aortic endothelial cells (HAECs) and human umbilical vein en-
dothelial cells (HUVECs) [68,69]. Together, these data suggest that the influenza virus may
exacerbate atherosclerosis, as it enhances the pro-inflammatory environment and leukocyte
infiltration. Therefore, this increase in inflammation in the vasculature would likely result
in the infiltration of neutrophils and possibly the formation of NETs. The cytotoxic effect
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of NETs could create endothelial dysfunction setting the stage for the development of
atherosclerosis. However, this would require further investigation.

Influenza A WSN/33(H1N1) virus can also induce host cell proteases, such as trypsin
and matrix metalloprotease 9 (MMP-9), in various organs, which may act to increase vascu-
lar permeability and viral entry in different organs [70]. As of now, the role of neutrophils in
atherosclerosis during influenza infections has not been investigated. NETs have cytotoxic
effects on endothelial cells [71] and damage the lungs in mice infected with influenza A
virus H1N1 strain PR8 [72]. Furthermore, NETs are found in the alveolar epithelium and in
small blood vessels in areas of hemorrhagic lesions in the lung, probably causing alveoli-
capillary damage [72]. A study has demonstrated that patients with severe influenza
presented with elevated NETs in the plasma, and the neutrophils from these patients
released a greater amount of myeloperoxidase-DNA (MPO-DNA) complex in response
to IL-8 [73]. Furthermore, NETs from influenza A infections in H1N1 and H7N9 patients
increased the permeability of alveolar epithelial cells [73]. It is conceivable that influenza
infections could trigger NETs in the circulatory system and either induce atherosclerosis
due to increasing permeability of vascular endothelial cells or exacerbate already estab-
lished atherosclerosis plaques. However, further research is essential to understand the
role of NETs in CVD during influenza infections.

In 2019 a novel virus, severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2),
was identified which caused an atypical respiratory disease. It is a multifaceted disease
affecting the circulatory system as well as the respiratory system. Increased neutrophil
counts in COVID-19 correlate with disease severity, and poor prognosis and extensive neu-
trophil infiltration of pulmonary capillaries has been observed in autopsy studies [74,75].
The angiotensin-converting enzyme 2 (ACE2) has been identified as one of the most im-
portant receptors for the virus entry into host target cells. During hypoxia, angiotensin II
induces pulmonary vasoconstriction to restore the ventilation–perfusion imbalance, while
simultaneously inducing adverse pro-fibrotic effects. However, both vasoconstriction and
fibrosis are associated with upregulation of ACE2 [76,77]. The upregulation of ACE2 in pa-
tients with comorbidities may result in an increased viral load and spreading of infection to
extrapulmonary tissues [19]. This systemic infection is associated with higher neutrophil-to-
lymphocyte ratios in infected tissues and high levels of pro-inflammatory cytokines [78,79].
Evidence suggests that microthrombi and coagulopathy contribute to COVID-19 pathogen-
esis [78,79]. It has been demonstrated that COVID-19 increases the levels of intracellular
reactive oxygen species (ROS) in neutrophils to stimulate NETs formation [19]. Another
study has demonstrated that during COVID-19 infections, neutrophils are alternatively
activated, express more CD64 and programmed death-ligand 1 (PD-L1) [80] and could
be the reason for excessive NETs formation in COVID-19 [21]. Additional evidence has
suggested that neutrophils in severe COVID-19, guided by activated platelets, migrate into
inflamed tissue and release NETs [81–83]. A recent study showed microvascular thrombi
associated with platelet–neutrophil aggregates in the lung, kidney and the heart of COVID-
19 patients [22]. In a cohort study, plasma MPO-DNA complexes defined as NETs, platelet
factor 4, RANTES (CCL5) and selected cytokines were measured in plasma samples from
COVID-19 patients (n = 33) and age- and sex-matched controls (n = 17) [83]. This study
revealed that an increased prevalence of MPO-DNA complexes in COVID-19 patients
correlated directly with the severity of the disease. Furthermore, three COVID-19 lung
autopsies were analyzed for NETs and platelet involvement, revealing NETs-containing
microthrombi with neutrophil-platelet infiltration within these samples [83]. The latter
suggests that NETs are not only involved in the host defense against SARS-CoV-2 but
may also trigger detrimental immunothrombosis, a process understood as the interac-
tion of activated leukocytes with platelets and plasma coagulation factors resulting in
thrombotic complications of COVID-19 patients [21,84]. Others investigated how com-
plement interacts with the platelet-induced-NETs–thrombin axis during COVID-19 and
found increased plasma levels of NETs, tissue factor (TF) activity and sC5b-9 in COVID-19
patients [85]. Neutrophils isolated from COVID-19 patients had higher TF expression
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and released NETs carrying active TF. Treatment of control neutrophils with COVID-19
platelet-rich plasma generated TF-bearing NETs that induced endothelial dysfunction. The
inhibition of thrombin, NETs formation or C5aR1 blockade resulted in the attenuation of
platelet-mediated NETs-driven thrombogenicity [85]. COVID-19 serum further induced
complement activation in vitro, consistent with high complement activity found in clinical
samples, and the inhibition of complement disrupted TF expression in neutrophils [85].
Overall, these data demonstrate that complement and NETs may play an important role in
COVID-19-associated immunothrombosis. Patients hospitalized with COVID-19 exhibited
elevated levels of neutrophil activation and NETs formation, which are associated with
higher risk of death due to thrombotic complications in these patients [86].

These observations highlight the urgent need for further research on the potential
relationship between NETs-induced thrombosis in COVID-19. As the level of neutrophils
and NETs in patients with COVID-19 has a direct correlation with severity, therapeutics
targeting NETs could improve the outcome [87]. Hopefully this will encourage future
research to investigate the role of NETs in other viral infections and their influence on CVD.

3. Implications of NETs Formation in CVD

In recent years, NETs emerged as key players in the progression of CVD. Aging,
being one of the major risk factors for CVD, is also associated with a higher susceptibility
of neutrophils to form NETs, cardiac fibrosis, heart failure and atherosclerosis. In an
experimental model of cardiac fibrosis, higher NETs formation was observed in older
C57BL/6J mice (20–27 months) as compared to younger mice of 8–16 weeks of age [88].
In the same study, PAD4 deficiency or DNase1 treatment (to inhibit NETs) resulted in
diminished platelet–neutrophil complexes and reduced fibrosis in the myocardium of
older mice [88]. Mitochondrial oxidative stress in myeloid cells in aged mice (36 weeks
old) led to enhanced NETs in the atherosclerotic plaque and contributed to enhanced
atherosclerosis [89]. Presence of NETs in atherosclerotic plaques implies an important role
of NETs in atherosclerosis [90]. Analyses of blood samples drawn from patients before
and after percutaneous coronary intervention (PCI) suggested high levels of NETs markers
such as double-stranded (ds)DNA and MPO-DNA after PCI. Higher circulatory levels of
dsDNA at day 1 after PCI were associated with large infarct size, and their prevalence
indicates adverse cardiovascular complications [91]. However, dsDNA could be associated
with other cell types, and further NETs-specific investigations will be required. In another
study, NETs and NET components are shown to have pro-thrombotic properties as they
promote coagulation by inducing fibrin network formation [92]. Therefore, in this section,
we will focus on their induction, role in vascular manifestation (Table 1) and involvement
in atherosclerosis (Figure 1) and vascular thrombosis (Figure 2).

3.1. NETs in Atherosclerosis

Atherosclerosis is a chronic inflammation of the arterial wall, initiated through luminal
endothelial cell activation and damage, intimal accumulation of low-density lipoproteins
(LDLs) and recruitment of monocytes, dendritic cells, neutrophils and T-lymphocytes to
the intimal layer. Infiltrated monocytes mature into macrophages and eventually lead to
foam cell formation, thus leading to progression of atherosclerotic plaque formation [93].

High neutrophil numbers in atherosclerotic plaques in the coronary arteries was
reported to cause plaque erosion and rupture [94]. Another study focusing on monocyte-
depleted Lysmegfp/egfp Apoe−/− mice after four weeks of WD and on human atherosclerotic
plaques obtained by endarterectomy have reported the presence of NETs in mouse and hu-
man atherosclerotic plaques [90]. Another study showed the differential presence of NETs
in upstream and downstream regions of human samples isolated during carotid endarterec-
tomy. They further established that patients with high serum levels of autoantibodies
against apolipoprotein A-1 (ApoA1) presented with a higher signal for citrullinated histone
H3 outside of neutrophils when compared to serum negative patients. This indicates that
expression of NETs elements could be influenced by circulating levels of anti-ApoA-1 [26].
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NETs formation can also occur in early stages of atherosclerosis induced by cholesterol crys-
tals leading to higher transcription of pro-inflammatory mediators such as IL-1β and IL-6
from primed lesional macrophages [23]. IL-1β and IL-6 can further activate T helper cell 17
(Th17) cells and lead to accelerated recruitment of immune cells into the atherosclerotic
plaque (Figure 1) [23].

Analyses of smooth muscle cell rich fibrous caps in mouse and human atherosclerotic
plaques showed the presence of NETs releasing neutrophils. Furthermore, the super-
natant of activated smooth muscle cells attracts neutrophils via CCL7 and stimulates NETs
formation. This NETs induction resulted in histone H4 release, which leads to smooth
muscle cell lysis and eventually participates in a vulnerable plaque phenotype. Neutral-
ization of histone H4 in hypercholesterolemic mice resulted in enhanced lesional smooth
muscle cell content and generated reduced vulnerability in the plaques [29]. This un-
derlines the role of NETs in inducing vulnerable plaques, which could result in plaque
rupture-induced thrombotic complications (Table 1). Patients with atherosclerosis show
high serum levels of IL-8, a pro-inflammatory cytokine, and NETs in blood. IL-8 interacts
with the CXC chemokine receptor 2 (CXCR2) on neutrophils and induces NETs forma-
tion. CXCR2 depletion by using CXCR2 blocking antibody inhibited NETs formation and
alleviated atherosclerosis progression in Apoe−/− mice fed with WD for 12 weeks [24].
In another study, exosomes extracted from oxidized LDL treated HUVECs resulted in
metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)-induced NETs formation
and atherosclerosis progression [27]. Additionally, modified lipids such as oxidized LDL
co-incubated with HL-60-derived neutrophils and human peripheral blood neutrophils
lead to significantly higher NETs formation [25]. In turn, NETs formation can induce dam-
age to endothelial cells because in smooth muscle cell rich plaques apoptotic endothelial
cells were correlated with more NETs-rich regions (Table 1) [28]. Cathepsin G (one of the
components of NETs) and cathelicidin-related antimicrobial peptides can induce activation
of monocytes and dendritic cells, fostering monocyte adhesion to endothelial cells and
eventually influencing their recruitment to the atherosclerotic lesions [95,96]. NETs can
also stimulate macrophages to produce pro-inflammatory cytokines, which result in Th
17 cell activation and a significant increase in immune cell recruitment to the atheroscle-
rotic plaque [97]. Moreover, repetitive social defeat exposure in Apoe−/− mice promoted
atherosclerosis by promoting NETs formation within the plaque. DNase I treatment to
inhibit NETs in these animals resulted in reduction of pro-atherogenic effects of repet-
itive social defeat exposure [98]. NETs in atherosclerotic plaques are associated with a
pro-inflammatory phenotype of macrophages (Table 1). Resolution of NETs by injecting
DNase 1 to male Ldlr–/– mice fed with WD for 16 weeks reduced NETs-induced plaque
macrophage inflammation and suppressed atherosclerosis progression in diabetic mice [31].
Another study suggests that inflammasome activation could lead to increased neutrophil
recruitment and NETs formation in atherosclerotic plaques. Cholesterol transporters ATP
Binding Cassette (ABC) A1 and G1 promote cholesterol efflux to high-density-lipoprotein
(HDL), and Abca1/g1 deficiency in myeloid cells leads to cholesterol accumulation. Choles-
terol accumulation in myeloid cells activates the NLRP3 inflammasome, which enhances
neutrophil accumulation and NETs formation in atherosclerotic plaques. NLRP3 deficiency
shows to reduce atherosclerotic lesion size in myeloid Abca1/g1-deficient Ldlr−/− mice [30].

In a photochemical injury thrombosis model, Apoe−/− mice were treated for 11 weeks
with Cl-amidine to block NETs formation, which resulted in reduced atherosclerotic lesion
size and prolonged induction of carotid artery thrombosis in these animals [32]. Addi-
tionally, in the same study, combined administration of chloramidine and a neutrophil
depletion antibody into Apoe−/− mice did not affect the lesion size. Another study used
PAD4-deficient bone marrow cells to halt the ability of neutrophils to undergo NETs forma-
tion. This hematopoietic PAD4-deficiency was shown to inhibit intimal NETs formation
in the carotid arteries of eight-week-old Ldlr−/− male mice fed with modified WD diet
and led to protection of intimal integrity of the endothelium. Thrombus formation was
also observed on the intimal surface in mice reconstituted with wild-type bone marrow as
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compared to those with Pad4−/− bone marrow [99]. In a similar study, myeloid-specific
deletion of PAD4 substantially diminished NETs formation and NETs-induced atheroscle-
rosis in the aorta of Pad4−/− mice fed with WD for 10 weeks [100]. Targeted delivery of
GSK484, a PAD4 inhibitor, via collagen IV-targeted nanoparticles to reach lesions with
features of superficial erosion, resulted in decreased NETs accumulation at the sites of
intimal injury in 8-week-old Apoe−/− mice [101]. These findings point towards a crucial
role of NETs and their inhibition in lesion size formation and thrombotic complications
during atherosclerosis.
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the induction of NETs formation; (Right): Close up atherosclerotic lesion; Neutrophils activated e.g., by bacterial and
viral pathogens may undergo NETs formation thereby activating leukocytes, platelets and endothelial cells creating a
pro-inflammatory milieu triggering lesion growth. Lesional NETs may be induced by pathogens or CCL7 and initiate a
IL-1beta release or a Th17 response altogether driving lesion expansion. (made with biorender.com, 4 June 2001).

3.2. NETs-Induced Thrombosis

Numerous studies have indicated the presence of NETs in arterial and venous thrombi.
NETs formation during thrombosis is thought to be initiated by hypoxia-induced release
of von Willebrand factor (vWF) and P-selectin from the endothelium, which recruits
and activates neutrophils that form NETs (Figure 2) [102–104]. NETs in return activate
endothelial cells and induce VCAM-1 and ICAM-1 [102], thus providing a scaffold for
adhesion of platelets, red blood cells, fibrinogen, vWF and fibronectin [92]. This scaffold
not only forms a structural basis, but many of its components can also actively trigger
platelet activation and blood coagulation. Furthermore, NETs also induce TF expression
on the endothelial cell surfaces, thereby accelerating plasma clotting in vitro. Elevated
TF expression in neutrophils and the release of NETs decorated with TF have been found
not only in COVID-19 but also in patients with sepsis [47], ST-segment elevation acute
myocardial infarction (STEMI) [105] and SLE [106]. This suggests that NETs activate
the extrinsic pathway of coagulation, which is a shorter coagulation pathway of fibrin
formation. It includes activation of coagulation factor VII to factor VIIa and thereby
generation of factor Xa. Factor Xa further contributes to fibrin formation by activating
prothrombin to thrombin with the help of Factor V as a cofactor [107].
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Other component of NETs, such as histones H3 and H4, are highly cytotoxic to en-
dothelial cells [108] and smooth muscle cells [29] and induce platelet aggregation via
Toll-like receptor TLR 2 and 4 [92,108], which eventually promotes thrombin genera-
tion [92]. Histones further endorse thrombin generation by binding to thrombomodulin
and prevent the activation of activated protein C (APC) [109]. NE and cathepsin G, which
are also present on NETs, enhance TF- and factor XII-driven coagulation via proteolysis
of tissue factor pathway inhibitor (TFPI) [110]. NETs also directly bind plasma factor XII
and, with the cooperation of platelets, support its activation to plasma factor XIIa [111].
NETs can contribute towards fibrin formation through the intrinsic pathway of coagulation.
NETs–microparticle complexes can also induce NETs-induced thrombin generation via the
intrinsic pathway of coagulation since their incubation with factor XII-deficient plasma
reduced NETs-induced thrombin generation by 97% [112]. Upon exposure to pathogens,
NETs together with platelets and immune cells lead to the formation of intravascular
thrombi that could entrap the pathogen and limit its dissemination (Figure 2). Intravas-
cular NETs formation can lead to fibrin-independent immune cell-mediated occlusion of
microvessels and cause massive cell death in affected areas [35,36]. Inhibitor of NETs,
for instance, via injection of DNase 1 and DNase1-like 3, prevent vascular occlusion by
degrading NETs clots during chronic neutrophilia [113]. In addition to this, patients with
acute thrombotic microangiopathies also show low levels of plasma DNase 1 [114]. In line
with this, N-deficient mice also show differences in thrombus formation, hence suggesting
a role of NETs in vascular thrombosis [110].

In heparin-induced thrombocytopenia (HIT), which can clinically manifest in arte-
rial and venous thromboembolic complications, heparin/platelet factor 4/IgG antibody
complexes lead to platelet activation mediated through binding of platelets to FcγRIIa
receptors, which consecutively propagates a massive auto-amplifying coagulation activa-
tion, by release of procoagulant factors. Recent data now also show that neutrophils can
be directly activated by heparin/platelet factor 4/IgG antibody complexes through their
FcγRIIa receptors, which also propagates NETs formation [115]. In line, the latter pathway
cannot be inhibited by anti-CD62p and anti-CD162 antibodies to suppress NETs formation,
but NETs generation and thrombus formation are abrogated in FcγRIIa+/heparin-platelet
factor 4+ mice lacking PAD4 [115]. These results show that thrombosis in HIT, at least in
part, is mediated through neutrophil activation and NETs induction.

Venous thromboembolism (VTE) is composed of deep vein thrombosis (DVT) and
pulmonary embolism (PE). Various studies account for the presence of NETs in venous
thrombi (Table 1). One study on iliac veins with balloon catheterization in baboons revealed
an extracellular chromatin core in the thrombus. During thrombus formation, plasma levels
of cell-free DNA were also elevated [92]. Similar findings were observed in an inferior vena
cava DVT mouse model induced by flow restriction in mice [111,116]. In another study, 16
VTE thrombi originating from 11 patients with DVT, PE and/or an inferior vena cava filter
thrombus were analyzed [117]. After scoring the organization stage based on the Masson
trichrome staining, consecutive sections were analyzed for the presence of neutrophils
and citrullinated histone H3 as a marker of extracellular NETs structures. These findings
indicated that NETs formation takes place during recruitment of neutrophils to the thrombi
and are replaced by collagen fibers at a later stage of thrombus formation.

NETs are also abundant in coronary thrombi, as observed and analyzed in patients
with acute myocardial infarction [37,118]. In another study, investigating patients with
stent thrombosis after percutaneous coronary intervention, neutrophils and NETs were
abundantly found in the retrieved thrombi [119]. Analyses of NETs in coronary thrombi
collected from ST-elevation acute coronary syndrome patients, via coronary thrombectomy,
correlated positively with infarct size (Table 1) and negatively with ST-segment resolu-
tion [37]. Further, 68 ischemic stroke thrombi showed abundance of NETs [120]. Together,
these findings point towards the potential clinical importance of NETs in arterial and
venous thrombosis.
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the NETs structure. (made with biorender.com, accessed on 4 June 2001).

4. Cardiovascular Manifestations of Sterile NETs Induction

An autoimmune disease describes a pathophysiology where the host immune system
attacks cells and or tissue of host origin (self) [121]. The disease can affect one or multiple
parts of the body. Common symptoms include fever and tiredness, but autoimmune dis-
eases can also be pro-inflammatory [121]. This pro-inflammatory environment induced
by the disease can in turn trigger the development of NETs [122]. Key inducers of NETs
formation and related vascular manifestations to enhance CVD risk are shown in Table 1.
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by a loss of
tolerance to self-antigens, abnormal T and B cell responses, autoantibody production and
correlates with a higher risk of CVD, especially atherosclerosis [123]. A subset of imma-
ture neutrophils, called low-density granulocytes (LDGs), possessing a proinflammatory
phenotype may contribute to disease pathogenesis [124]. NETs formation is also reported
in SLE in vivo and was described in the kidney, skin and peripheral blood [38]. Thus, it is
conceivable that NETs formation due to SLE, especially in the arteries, could activate the
endothelium and initiate atherosclerotic lesion formation. Given that active neutrophils
and NETs are in abundance in SLE patients, and that SLE patients have a higher risk of
CVD, NETs could be an important link in this detrimental relationship.

Neutrophils have been described to have a multitude of irregularities in individuals
with SLE. These neutrophils have impaired phagocytic potential [125,126] are unable to be
cleared by the C1q/calreticulin/CD91-mediated apoptotic pathway [127] and show unchar-
acteristic oxidative activity [128,129]. Of note, SLE has a distinct granulocyte population
of neutrophil LDGs [130], which promote the production of proinflammatory cytokines,
including type I interferons (IFN-I), and cause endothelial cell damage (Table 1) [38,124].
These LDGs are capable of forming NETs, even in the absence of further stimulation, and
are protected from degradation by nucleases [38,39,131]. NETs further promote plasmacy-
toid dendritic cells to increase production of IFN-α [39]. Moreover, they trigger the NLRP3
inflammasome in macrophages to enhance IL-1β and IL-18 production [131]. Together, this
pro-inflammatory environment results in endothelial damage and dysfunction known to
trigger atherosclerosis [38,42]. MMP-9 released by LDGs during NETs formation has been
demonstrated to impair murine aortic endothelium-dependent vasorelaxation and induce
endothelial cell apoptosis [40]. The inhibition of MMP-2 activation restored endothelial
function and reduced NETs-induced vascular cytotoxicity [40]. This further highlights the
capability of NETs in SLE to incite vascular endothelial dysfunction, which could result
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in the development of atherosclerosis. Another possible proatherogenic mechanism of
NETs in SLE is the NETs-derived MPO/NADPH oxidase (NOX)/nitric oxide synthase
(NOS)-generated oxidative species, which are elevated in SLE [42]. This could generate
dysfunctional HDL in SLE as it may take place in the circulation rather than the vascular
wall [132,133]. Due to its particle size, it is conceivable that HDL can be trapped by NETs in
the blood vessel lumen, endothelium or sites of inflammation, rather than in subendothelial
atherosclerotic lesions [90]. NETs-mediated entrapment of HDL may lead to a dysfunc-
tional lipoprotein, impairing cholesterol efflux capacity and promoting proinflammatory
responses in blood vessels. Taken together, these data suggest that NETs could either
directly trigger or exacerbate atherosclerosis in SLE, as the formation of NETs in the vas-
culature could cause endothelial dysfunction and subsequent atherogenesis (Table 1) [41].
Alternatively, NETs can indirectly trigger or exacerbate by disruption of the cholesterol
efflux by entrapping HLD and promoting proinflammatory responses in blood vessels,
leading to atherosclerosis [41]. Furthermore, NETs in SLE could contribute to the formation
of thrombi, as revealed in prothrombotic NZM2328 mice, which rapidly form carotid
thrombi after photochemical injury of the endothelium. The latter was inhibited if NETs
formation was blocked, either with DNase1 or a PAD inhibitor, and resulted in decreased
formation of thrombi [134]. Thus, in autoimmune diseases where there is an excess of NETs
formation, the risk of thrombus formation could be increased.

Whether or not infections, either viral or bacterial, in patients with an autoimmune
disease such as SLE would have an effect on CDV is debatable. No study has investigated
CVD in patients with autoimmune diseases during an infection. Hence, it is not clear
if an infection would exacerbate the detrimental role NETs in a patient with an autoim-
mune disease and CVD. Infection could also change the phenotype of the NETs, reducing
its impact on CVD or vice versa. Future work would be needed to better understand
this phenomenon.

Rheumatoid arthritis (RA) is a chronic systemic disease characterized by joint inflam-
mation and bone destruction. Evidence suggests that NETs are involved in the pathogenesis
of RA [135]. For example enhanced NETs formation has been observed in circulating and
synovial fluid in RA patients compared to healthy controls and from patients with os-
teoarthritis [135]. Neutrophils infiltrated RA synovial tissue, rheumatoid nodules and skin,
and NETs abundance correlated with the presence of autoantibodies to citrullinated anti-
gens (ACPA) and with systemic inflammatory markers [135]. CVD risk is increased in RA,
but there is limited research on the involvement of NETs in atherosclerosis in patients with
RA. A case–control study of patients with RA and new-onset coronary artery disease (CAD)
(n = 75) was compared to an age-and sex-matched control group with newly diagnosed
CAD (n = 128) [136]. This study demonstrated that patients with RA were more likely
to have multivessel coronary involvement compared to the control group. There was no
significant difference between the cohorts with regards to risk factors for CAD including
diabetes, hypertension, hyperlipidemia and smoking history. However, until now it is
not clear if NETs in lesions from RA patients differ from the ones found in atherosclerotic
lesions and how RA NETs influence CVD and atherosclerosis.

Another study has demonstrated that self-DNA, possibly released during NETs forma-
tion, and an increased expression of the antimicrobial peptide Cramp/LL37 in atheroscle-
rotic lesions may drive atherosclerosis [137]. Plasmacytoid dendritic cell depletion and
cramp-deficiency in bone marrow of Apoe−/− mice resulted in the attenuation of atheroscle-
rosis and anti-ds DNA antibody titers [137]. Thus, self-DNA and cramp could act to
stimulate a plasmacytoid dendritic cell-driven pathway of autoimmune activation and
the generation of anti–double-stranded-DNA antibodies to exacerbate atherosclerosis
lesion formation.

Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is used to
describe group of autoimmune diseases characterized by destruction and inflammation of
small vessels. The presence of NETs was recently demonstrated in renal tissue of patients
with AAV (Figure 3) [138]. However, the risk of CVD in AAV is poorly quantified. A
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meta-data analysis of observational studies showed that there is an increased risk of CVD
in patients with AAV [139]. However, NETs have been suggested to play a role in ANCA-
associated thrombotic events, as thrombi obtained from ANCA vasculitis patients are rich
in both NETs and histone citrullination [140,141]. NETs could play a dominant role in this
relationship, but further research is required to reveal a causative correlation and more
insight into mechanistic pathways.
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(made with biorender.com, accessed on 4 June 2001).

Diabetes is a low-grade inflammatory autoimmune disease, and complications such as
endothelial dysfunction, hyperreactivity of platelets and elevated levels of pro-coagulant
mediators are common [142,143]. Neutrophils can infiltrate the pancreas in patients with
type 1 diabetes (T1D) and play a role in the onset and the progression of T1D [144,145].
Studies have also demonstrated that neutrophils from T2D patients produced NETs at
a greater rate than healthy controls [146]. Pancreas-residing neutrophils are capable of
forming NETs [147], and studies evaluating neutrophil count in patients with T1D reveal
a negative correlation between neutrophil counts and NE and proteinase 3 levels and
activity increase, suggesting enhanced NETs formation [144,145,148,149]. The expression of
PAD4 in neutrophils is increased in patients with both T1D and T2D compared to healthy
controls, and in PAD4−/− mice NETs formation was reduced [150]. This highlights PAD4
as a potential therapeutic target to interfere with NETs formation. Clots from the citrated
plasma of patients with diabetes mellitus showed greater prothrombotic effects than clots
from the control [151]. Thus, NETs in diabetes could contribute greatly to the formation of
thrombosis in diabetic patients.

A recent study in Ldlr−/− mice fed a WD for 16 weeks found that NETs+ plaques
had upregulated NLRP3 inflammasome and glycolysis pathways, as observed by tran-
scriptomic profiling [31]. This study also found that the occurrence of NETs declined in
non-diabetic mice when hyperlipidemia was reduced followed by resolution of atheroscle-
rosis. However, NETs persisted in diabetic mice under hyperglycemic conditions, exacer-
bating macrophage inflammation and impairing resolution. Diabetic mice treated with
DNase 1 reduced plaque NETs content and macrophage inflammation, allowing for lesion
regression. This suggests that NETs in diabetes can exacerbate atherosclerotic lesions,
and DNase could be a potential therapeutic treatment in diabetes to reduce the risk of
CVD. There is a strong correlation of T1D and T2D patients with CVD risk; one reason
for this correlation is diabetic vascular complications induced by hyperglycemia, known
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to enhance ROS formation and lipotoxicity [152]. It could also be possible that the hyper-
glycemic conditions themselves trigger NETs formation spontaneously via the NADPH
oxidase-dependent pathway [153], and increased ROS activity and lipotoxicity cause vas-
cular damage [154,155]. A correlation between the occurrence of diabetes-induced organ
damage, such as nephropathy or atherosclerosis, and cell-free DNA has been shown [156].
Additionally, it was shown that histone concentrations in plasma directly correlate with
blood glucose levels [156]. However, a contrasting study has demonstrated that high glu-
cose impairs NETs formation creating extracellular DNA lattices, which were short-lived
and unstable, leading to rapid erosion [157]. The same study also showed that neutrophils
induce NETs in an autocrine fashion by release of IL-6; however IL-6, failed to induce
NETs in a high-glucose environment. Nevertheless, when glycolysis was inhibited in vitro,
using 2-deoxyglucose (2-DG) it restored both LPS and IL-6 stimulated NETs formation
in a high-glucose milieu. Yet, high-dose glucose and hyperglycemia were also shown to
increase the release of NETs [156]. The differences in these results could be due to differing
incubation times, as studies have demonstrated that acute glucose fluctuations, and not
sustained chronic hyperglycemia, resulted in oxidative stress and were associated with the
development of microvascular complications in T2D patients [158,159]. Thus, glycemic
fluctuation in T2D may trigger NETs formation and cause or exacerbate CVD; however,
further research is needed to investigate this hypothesis. Further research is needed to bet-
ter understand the role of NETs in T2D, as in vitro results also showed that hyperglycemia
could impair and delay NETs formation [157].

Psoriasis is a chronic, immune-mediated disease manifesting mainly as skin lesions
and affects 2–3% of the world population [160,161]. Psoriasis is associated with systemic in-
flammation, similar to CVD, chronic obstructive pulmonary diseases and T2D mellitus [162].
One important mediator in psoriasis is lipocalin-2 (LCN2), which is an antimicrobial pro-
tein and adipokine associated with insulin resistance, obesity and atherosclerosis [163].
Serum LCN2 levels are elevated in psoriatic patients [163], and both granulocytes and ker-
atinocytes, residing in the epidermis, secrete LCN2, driving the chemotaxis of neutrophils
and sustaining NETs formation, thereby maintaining the psoriatic inflammation [164].
Regarding psoriasis, neutrophils release IL-17 in the process of forming NETs, which sig-
nificantly contribute to IL-17-related endothelial dysfunction in both atherosclerosis and
keratinocyte proliferation in psoriasis [165]. The latter could explain why atherosclerosis is
associated with psoriasis [166]. Secukinumab, a monoclonal anti-IL-17 antibody, can clear
the neutrophils in the epidermis and can improve psoriasis [167]. Moreover, secukinumab
also had a beneficial effect on CVD risk by maintaining endothelial homeostasis in patients
with psoriasis [168]. Beneficial effects of secukinumab in psoriasis patients may stem from
the global clearance of neutrophils; however, the activity of NETs in psoriatic patients with
CVD that are treated with secukinumab have not been investigated.

5. Conclusions

Neutrophils, as an essential component of the innate immune system, play a crucial
role in the control of infectious diseases. In addition, they are involved in the pathogenesis
of various inflammatory diseases. NETs formation may foster chronic inflammation,
thereby promoting cardiovascular and autoimmune diseases, which in turn makes them
an interesting therapeutic target. However, using therapeutic approaches such as DNAse I
treatment to disrupt NETs remain controversial. Alternative lines to interfere or block NETs
formation could be inhibition of PAD4, histone neutralization, ROS scavenging or partial
clearance of neutrophils. Nevertheless, all the latter are still not sufficiently understood to
reach a clinical state. Hence, a better understanding of NETs function and the balance of
NETs induction versus inhibition is needed to move one step further into patient-tailored
treatment approaches.



Cells 2021, 10, 1689 14 of 21

Author Contributions: M.T., B.E. and Y.D. performed literature research, drafted the manuscript
and made the figures. M.S. and I.B. wrote the manuscript and provided corrections. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Swiss National Foundation (SNF) project IDs 310030_197655
and 4078P0_198297 and by the Swiss Heart Foundation, project ID FF20099 to Y.D.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: No conflict of interest.

References
1. Klopf, J.; Brostjan, C.; Eilenberg, W.; Neumayer, C. Neutrophil Extracellular Traps and Their Implications in Cardiovascular and

Inflammatory Disease. Int. J. Mol. Sci. 2021, 22, 559. [CrossRef] [PubMed]
2. Leppkes, M.; Schick, M.; Hohberger, B.; Mahajan, A.; Knopf, J.; Schett, G.; Munoz, L.E.; Herrmann, M. Updates on NET formation

in health and disease. Semin. Arthritis Rheum. 2019, 49, S43–S48. [CrossRef] [PubMed]
3. Doring, Y.; Libby, P.; Soehnlein, O. Neutrophil Extracellular Traps Participate in Cardiovascular Diseases: Recent Experimental

and Clinical Insights. Circ. Res. 2020, 126, 1228–1241. [CrossRef]
4. Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil

extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [CrossRef] [PubMed]
5. Czaikoski, P.G.; Mota, J.M.; Nascimento, D.C.; Sonego, F.; Castanheira, F.V.; Melo, P.H.; Scortegagna, G.T.; Silva, R.L.;

Barroso-Sousa, R.; Souto, F.O.; et al. Neutrophil Extracellular Traps Induce Organ Damage during Experimental and Clin-
ical Sepsis. PLoS ONE 2016, 11, e0148142. [CrossRef]

6. Tanaka, K.; Koike, Y.; Shimura, T.; Okigami, M.; Ide, S.; Toiyama, Y.; Okugawa, Y.; Inoue, Y.; Araki, T.; Uchida, K.; et al.
In vivo characterization of neutrophil extracellular traps in various organs of a murine sepsis model. PLoS ONE 2014, 9,
e111888. [CrossRef]

7. Kolaczkowska, E.; Jenne, C.N.; Surewaard, B.G.; Thanabalasuriar, A.; Lee, W.Y.; Sanz, M.J.; Mowen, K.; Opdenakker, G.; Kubes, P.
Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat. Commun.
2015, 6, 6673. [CrossRef]

8. Meng, W.; Paunel-Gorgulu, A.; Flohe, S.; Hoffmann, A.; Witte, I.; MacKenzie, C.; Baldus, S.E.; Windolf, J.; Logters, T.T. Depletion
of neutrophil extracellular traps in vivo results in hypersusceptibility to polymicrobial sepsis in mice. Crit. Care 2012, 16,
R137. [CrossRef]

9. Dalager-Pedersen, M.; Sogaard, M.; Schonheyder, H.C.; Nielsen, H.; Thomsen, R.W. Risk for myocardial infarction and stroke
after community-acquired bacteremia: A 20-year population-based cohort study. Circulation 2014, 129, 1387–1396. [CrossRef]

10. Corrales-Medina, V.F.; Alvarez, K.N.; Weissfeld, L.A.; Angus, D.C.; Chirinos, J.A.; Chang, C.C.; Newman, A.; Loehr, L.; Folsom,
A.R.; Elkind, M.S.; et al. Association between hospitalization for pneumonia and subsequent risk of cardiovascular disease. JAMA
2015, 313, 264–274. [CrossRef]

11. Mori, Y.; Yamaguchi, M.; Terao, Y.; Hamada, S.; Ooshima, T.; Kawabata, S. alpha-Enolase of Streptococcus pneumoniae induces
formation of neutrophil extracellular traps. J. Biol. Chem. 2012, 287, 10472–10481. [CrossRef] [PubMed]

12. Clark, S.R.; Ma, A.C.; Tavener, S.A.; McDonald, B.; Goodarzi, Z.; Kelly, M.M.; Patel, K.D.; Chakrabarti, S.; McAvoy, E.;
Sinclair, G.D.; et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med.
2007, 13, 463–469. [CrossRef] [PubMed]

13. Francis, R.J.; Butler, R.E.; Stewart, G.R. Mycobacterium tuberculosis ESAT-6 is a leukocidin causing Ca2+ influx, necrosis and
neutrophil extracellular trap formation. Cell Death Dis. 2014, 5, e1474. [CrossRef] [PubMed]

14. Hsu, C.C.; Hsu, R.B.; Ohniwa, R.L.; Chen, J.W.; Yuan, C.T.; Chia, J.S.; Jung, C.J. Neutrophil Extracellular Traps Enhance
Staphylococcus Aureus Vegetation Formation through Interaction with Platelets in Infective Endocarditis. Thromb. Haemost. 2019,
119, 786–796. [CrossRef]

15. Huaman, M.A.; Ticona, E.; Miranda, G.; Kryscio, R.J.; Mugruza, R.; Aranda, E.; Rondan, P.L.; Henson, D.; Ticona, C.; Sterling, T.R.; et al.
The Relationship Between Latent Tuberculosis Infection and Acute Myocardial Infarction. Clin. Infect. Dis. 2018, 66, 886–892.
[CrossRef] [PubMed]

16. Schumski, A.; Ortega-Gomez, A.; Wichapong, K.; Winter, C.; Lemnitzer, P.; Viola, J.R.; Pinilla-Vera, M.; Folco, E.; Solis-Mezarino, V.;
Volker-Albert, M.; et al. Endotoxinemia Accelerates Atherosclerosis Through Electrostatic Charge-Mediated Monocyte Adhesion.
Circulation 2021, 143, 254–266. [CrossRef]

17. McDonald, B.; Davis, R.P.; Kim, S.J.; Tse, M.; Esmon, C.T.; Kolaczkowska, E.; Jenne, C.N. Platelets and neutrophil extracellular
traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 2017, 129, 1357–1367. [CrossRef]

http://doi.org/10.3390/ijms22020559
http://www.ncbi.nlm.nih.gov/pubmed/33429925
http://doi.org/10.1016/j.semarthrit.2019.09.011
http://www.ncbi.nlm.nih.gov/pubmed/31779852
http://doi.org/10.1161/CIRCRESAHA.120.315931
http://doi.org/10.1126/science.1092385
http://www.ncbi.nlm.nih.gov/pubmed/15001782
http://doi.org/10.1371/journal.pone.0148142
http://doi.org/10.1371/journal.pone.0111888
http://doi.org/10.1038/ncomms7673
http://doi.org/10.1186/cc11442
http://doi.org/10.1161/CIRCULATIONAHA.113.006699
http://doi.org/10.1001/jama.2014.18229
http://doi.org/10.1074/jbc.M111.280321
http://www.ncbi.nlm.nih.gov/pubmed/22262863
http://doi.org/10.1038/nm1565
http://www.ncbi.nlm.nih.gov/pubmed/17384648
http://doi.org/10.1038/cddis.2014.394
http://www.ncbi.nlm.nih.gov/pubmed/25321481
http://doi.org/10.1055/s-0039-1678665
http://doi.org/10.1093/cid/cix910
http://www.ncbi.nlm.nih.gov/pubmed/29069328
http://doi.org/10.1161/CIRCULATIONAHA.120.046677
http://doi.org/10.1182/blood-2016-09-741298


Cells 2021, 10, 1689 15 of 21

18. Sass, L.A.; Ziemba, K.J.; Heiser, E.A.; Mauriello, C.T.; Werner, A.L.; Aguiar, M.A.; Nyalwidhe, J.O.; Cunnion, K.M. A 1-Year-Old
with Mycobacterium tuberculosis Endocarditis with Mass Spectrometry Analysis of Cardiac Vegetation Composition. J. Pediatr.
Infect. Dis. Soc. 2016, 5, 85–88. [CrossRef]

19. Arcanjo, A.; Logullo, J.; Menezes, C.C.B.; de Souza Carvalho Giangiarulo, T.C.; Dos Reis, M.C.; de Castro, G.M.M.;
da Silva Fontes, Y.; Todeschini, A.R.; Freire-de-Lima, L.; Decote-Ricardo, D.; et al. The emerging role of neutrophil extracellular
traps in severe acute respiratory syndrome coronavirus 2 (COVID-19). Sci. Rep. 2020, 10, 19630. [CrossRef] [PubMed]

20. Chicca, I.J.; Milward, M.R.; Chapple, I.L.C.; Griffiths, G.; Benson, R.; Dietrich, T.; Cooper, P.R. Development and Application of
High-Content Biological Screening for Modulators of NET Production. Front. Immunol. 2018, 9, 337. [CrossRef]

21. Barnes, B.J.; Adrover, J.M.; Baxter-Stoltzfus, A.; Borczuk, A.; Cools-Lartigue, J.; Crawford, J.M.; Dassler-Plenker, J.; Guerci, P.;
Huynh, C.; Knight, J.S.; et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J. Exp. Med. 2020, 217.
[CrossRef] [PubMed]

22. Nicolai, L.; Leunig, A.; Brambs, S.; Kaiser, R.; Weinberger, T.; Weigand, M.; Muenchhoff, M.; Hellmuth, J.C.; Ledderose, S.;
Schulz, H.; et al. Immunothrombotic Dysregulation in COVID-19 Pneumonia Is Associated With Respiratory Failure and
Coagulopathy. Circulation 2020, 142, 1176–1189. [CrossRef] [PubMed]

23. Warnatsch, A.; Ioannou, M.; Wang, Q.; Papayannopoulos, V. Inflammation. Neutrophil extracellular traps license macrophages
for cytokine production in atherosclerosis. Science 2015, 349, 316–320. [CrossRef] [PubMed]

24. An, Z.; Li, J.; Yu, J.; Wang, X.; Gao, H.; Zhang, W.; Wei, Z.; Zhang, J.; Zhang, Y.; Zhao, J.; et al. Neutrophil extracellular traps
induced by IL-8 aggravate atherosclerosis via activation NF-kappaB signaling in macrophages. Cell Cycle 2019, 18, 2928–2938.
[CrossRef] [PubMed]

25. Obama, T.; Ohinata, H.; Takaki, T.; Iwamoto, S.; Sawada, N.; Aiuchi, T.; Kato, R.; Itabe, H. Cooperative Action of Oxidized
Low-Density Lipoproteins and Neutrophils on Endothelial Inflammatory Responses Through Neutrophil Extracellular Trap
Formation. Front. Immunol. 2019, 10, 1899. [CrossRef] [PubMed]

26. da Silva, R.F.; Baptista, D.; Roth, A.; Miteva, K.; Burger, F.; Vuilleumier, N.; Carbone, F.; Montecucco, F.; Mach, F.; Brandt, K.J.
Anti-Apolipoprotein A-1 IgG Influences Neutrophil Extracellular Trap Content at Distinct Regions of Human Carotid Plaques.
Int. J. Mol. Sci. 2020, 21, 7721. [CrossRef]

27. Gao, H.; Wang, X.; Lin, C.; An, Z.; Yu, J.; Cao, H.; Fan, Y.; Liang, X. Exosomal MALAT1 derived from ox-LDL-treated endothelial
cells induce neutrophil extracellular traps to aggravate atherosclerosis. Biol. Chem. 2020, 401, 367–376. [CrossRef] [PubMed]

28. Quillard, T.; Araujo, H.A.; Franck, G.; Shvartz, E.; Sukhova, G.; Libby, P. TLR2 and neutrophils potentiate endothelial stress,
apoptosis and detachment: Implications for superficial erosion. Eur. Heart J. 2015, 36, 1394–1404. [CrossRef]

29. Silvestre-Roig, C.; Braster, Q.; Wichapong, K.; Lee, E.Y.; Teulon, J.M.; Berrebeh, N.; Winter, J.; Adrover, J.M.; Santos, G.S.;
Froese, A.; et al. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature 2019, 569,
236–240. [CrossRef]

30. Westerterp, M.; Fotakis, P.; Ouimet, M.; Bochem, A.E.; Zhang, H.; Molusky, M.M.; Wang, W.; Abramowicz, S.;
la Bastide-van Gemert, S.; Wang, N.; et al. Cholesterol Efflux Pathways Suppress Inflammasome Activation, NETosis,
and Atherogenesis. Circulation 2018, 138, 898–912. [CrossRef]

31. Josefs, T.; Barrett, T.J.; Brown, E.J.; Quezada, A.; Wu, X.; Voisin, M.; Amengual, J.; Fisher, E.A. Neutrophil extracellular traps
promote macrophage inflammation and impair atherosclerosis resolution in diabetic mice. JCI Insight 2020, 5. [CrossRef]

32. Knight, J.S.; Luo, W.; O’Dell, A.A.; Yalavarthi, S.; Zhao, W.; Subramanian, V.; Guo, C.; Grenn, R.C.; Thompson, P.R.; Eitzman, D.T.;
et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models
of atherosclerosis. Circ. Res. 2014, 114, 947–956. [CrossRef]

33. Kim, S.W.; Lee, J.K. Role of HMGB1 in the Interplay between NETosis and Thrombosis in Ischemic Stroke: A Review. Cells 2020,
9, 1794. [CrossRef] [PubMed]

34. Yu, X.; Tan, J.; Diamond, S.L. Hemodynamic force triggers rapid NETosis within sterile thrombotic occlusions. J. Thromb. Haemost.
2018, 16, 316–329. [CrossRef] [PubMed]

35. Gaertner, F.; Massberg, S. Blood coagulation in immunothrombosis-At the frontline of intravascular immunity. Semin. Immunol.
2016, 28, 561–569. [CrossRef] [PubMed]

36. Engelmann, B.; Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 2013, 13, 34–45.
[CrossRef] [PubMed]

37. Mangold, A.; Alias, S.; Scherz, T.; Hofbauer, M.; Jakowitsch, J.; Panzenbock, A.; Simon, D.; Laimer, D.; Bangert, C.;
Kammerlander, A.; et al. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute
coronary syndrome are predictors of ST-segment resolution and infarct size. Circ. Res. 2015, 116, 1182–1192. [CrossRef] [PubMed]

38. Villanueva, E.; Yalavarthi, S.; Berthier, C.C.; Hodgin, J.B.; Khandpur, R.; Lin, A.M.; Rubin, C.J.; Zhao, W.; Olsen, S.H.;
Klinker, M.; et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in
systemic lupus erythematosus. J. Immunol. 2011, 187, 538–552. [CrossRef]

39. Lande, R.; Ganguly, D.; Facchinetti, V.; Frasca, L.; Conrad, C.; Gregorio, J.; Meller, S.; Chamilos, G.; Sebasigari, R.; Riccieri, V.; et al.
Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci.
Transl. Med. 2011, 3, 73ra19. [CrossRef]

40. Carmona-Rivera, C.; Zhao, W.; Yalavarthi, S.; Kaplan, M.J. Neutrophil extracellular traps induce endothelial dysfunction in systemic
lupus erythematosus through the activation of matrix metalloproteinase-2. Ann. Rheum. Dis. 2015, 74, 1417–1424. [CrossRef]

http://doi.org/10.1093/jpids/piu087
http://doi.org/10.1038/s41598-020-76781-0
http://www.ncbi.nlm.nih.gov/pubmed/33184506
http://doi.org/10.3389/fimmu.2018.00337
http://doi.org/10.1084/jem.20200652
http://www.ncbi.nlm.nih.gov/pubmed/32302401
http://doi.org/10.1161/CIRCULATIONAHA.120.048488
http://www.ncbi.nlm.nih.gov/pubmed/32755393
http://doi.org/10.1126/science.aaa8064
http://www.ncbi.nlm.nih.gov/pubmed/26185250
http://doi.org/10.1080/15384101.2019.1662678
http://www.ncbi.nlm.nih.gov/pubmed/31496351
http://doi.org/10.3389/fimmu.2019.01899
http://www.ncbi.nlm.nih.gov/pubmed/31447863
http://doi.org/10.3390/ijms21207721
http://doi.org/10.1515/hsz-2019-0219
http://www.ncbi.nlm.nih.gov/pubmed/31318684
http://doi.org/10.1093/eurheartj/ehv044
http://doi.org/10.1038/s41586-019-1167-6
http://doi.org/10.1161/CIRCULATIONAHA.117.032636
http://doi.org/10.1172/jci.insight.134796
http://doi.org/10.1161/CIRCRESAHA.114.303312
http://doi.org/10.3390/cells9081794
http://www.ncbi.nlm.nih.gov/pubmed/32731558
http://doi.org/10.1111/jth.13907
http://www.ncbi.nlm.nih.gov/pubmed/29156107
http://doi.org/10.1016/j.smim.2016.10.010
http://www.ncbi.nlm.nih.gov/pubmed/27866916
http://doi.org/10.1038/nri3345
http://www.ncbi.nlm.nih.gov/pubmed/23222502
http://doi.org/10.1161/CIRCRESAHA.116.304944
http://www.ncbi.nlm.nih.gov/pubmed/25547404
http://doi.org/10.4049/jimmunol.1100450
http://doi.org/10.1126/scitranslmed.3001180
http://doi.org/10.1136/annrheumdis-2013-204837


Cells 2021, 10, 1689 16 of 21

41. Davignon, J.; Ganz, P. Role of endothelial dysfunction in atherosclerosis. Circulation 2004, 109, III27–III32. [CrossRef]
42. Smith, C.K.; Vivekanandan-Giri, A.; Tang, C.; Knight, J.S.; Mathew, A.; Padilla, R.L.; Gillespie, B.W.; Carmona-Rivera, C.;

Liu, X.; Subramanian, V.; et al. Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: An additional
proatherogenic mechanism in systemic lupus erythematosus. Arthritis Rheumatol. 2014, 66, 2532–2544. [CrossRef]

43. Pilsczek, F.H.; Salina, D.; Poon, K.K.; Fahey, C.; Yipp, B.G.; Sibley, C.D.; Robbins, S.M.; Green, F.H.; Surette, M.G.; Sugai, M.; et al.
A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J. Immunol.
2010, 185, 7413–7425. [CrossRef]

44. Thammavongsa, V.; Missiakas, D.M.; Schneewind, O. Staphylococcus aureus degrades neutrophil extracellular traps to promote
immune cell death. Science 2013, 342, 863–866. [CrossRef]

45. Brown, A.O.; Mann, B.; Gao, G.; Hankins, J.S.; Humann, J.; Giardina, J.; Faverio, P.; Restrepo, M.I.; Halade, G.V.; Mortensen, E.M.;
et al. Streptococcus pneumoniae translocates into the myocardium and forms unique microlesions that disrupt cardiac function.
PLoS Pathog. 2014, 10, e1004383. [CrossRef] [PubMed]

46. Croxen, M.A.; Finlay, B.B. Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Microbiol. 2010, 8, 26–38.
[CrossRef] [PubMed]

47. Kambas, K.; Mitroulis, I.; Apostolidou, E.; Girod, A.; Chrysanthopoulou, A.; Pneumatikos, I.; Skendros, P.; Kourtzelis, I.;
Koffa, M.; Kotsianidis, I.; et al. Autophagy mediates the delivery of thrombogenic tissue factor to neutrophil extracellular traps in
human sepsis. PLoS ONE 2012, 7, e45427. [CrossRef] [PubMed]

48. Noubouossie, D.F.; Whelihan, M.F.; Yu, Y.B.; Sparkenbaugh, E.; Pawlinski, R.; Monroe, D.M.; Key, N.S. In vitro activation of
coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood 2017, 129, 1021–1029.
[CrossRef] [PubMed]

49. Ramos-Kichik, V.; Mondragon-Flores, R.; Mondragon-Castelan, M.; Gonzalez-Pozos, S.; Muniz-Hernandez, S.; Rojas-Espinosa, O.;
Chacon-Salinas, R.; Estrada-Parra, S.; Estrada-Garcia, I. Neutrophil extracellular traps are induced by Mycobacterium tuberculosis.
Tuberculosis 2009, 89, 29–37. [CrossRef] [PubMed]

50. Sultan, F.A.; Fatimi, S.; Jamil, B.; Moustafa, S.E.; Mookadam, F. Tuberculous endocarditis: Valvular and right atrial involvement.
Eur. J. Echocardiogr. 2010, 11, E13. [CrossRef]

51. Sogabe, O.; Ohya, T. A case of tuberculous endocarditis with acute aortic valve insufficiency and annular subvalvular left
ventricular aneurysm. Gen. Thorac. Cardiovasc. Surg. 2007, 55, 61–64. [CrossRef]

52. Hu, S.; Liu, X.; Gao, Y.; Zhou, R.; Wei, M.; Dong, J.; Yan, H.; Zhao, Y. Hepatitis B Virus Inhibits Neutrophil Extracellular Trap
Release by Modulating Reactive Oxygen Species Production and Autophagy. J. Immunol. 2019, 202, 805–815. [CrossRef] [PubMed]

53. Jaresko, G.S. Etiology of neutropenia in HIV-infected patients. Am. J. Health Syst. Pharm. 1999, 56 (Suppl. 5), S5–S8. [CrossRef]
54. Cloke, T.; Munder, M.; Bergin, P.; Herath, S.; Modolell, M.; Taylor, G.; Muller, I.; Kropf, P. Phenotypic alteration of neutrophils in

the blood of HIV seropositive patients. PLoS ONE 2013, 8, e72034. [CrossRef] [PubMed]
55. Vecchiarelli, A.; Monari, C.; Palazzetti, B.; Bistoni, F.; Casadevall, A. Dysregulation in IL-12 secretion by neutrophils from

HIV-infected patients. Clin. Exp. Immunol. 2000, 121, 311–319. [CrossRef]
56. Saitoh, T.; Komano, J.; Saitoh, Y.; Misawa, T.; Takahama, M.; Kozaki, T.; Uehata, T.; Iwasaki, H.; Omori, H.; Yamaoka, S.; et al.

Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 2012, 12,
109–116. [CrossRef]

57. Hsu, D.H.; de Waal Malefyt, R.; Fiorentino, D.F.; Dang, M.N.; Vieira, P.; de Vries, J.; Spits, H.; Mosmann, T.R.; Moore, K.W.
Expression of interleukin-10 activity by Epstein-Barr virus protein BCRF1. Science 1990, 250, 830–832. [CrossRef] [PubMed]

58. Kotenko, S.V.; Saccani, S.; Izotova, L.S.; Mirochnitchenko, O.V.; Pestka, S. Human cytomegalovirus harbors its own unique IL-10
homolog (cmvIL-10). Proc. Natl. Acad. Sci. USA 2000, 97, 1695–1700. [CrossRef]

59. Raftery, M.J.; Wieland, D.; Gronewald, S.; Kraus, A.A.; Giese, T.; Schonrich, G. Shaping phenotype, function, and survival of
dendritic cells by cytomegalovirus-encoded IL-10. J. Immunol. 2004, 173, 3383–3391. [CrossRef]

60. Field, T.S.; Zhu, H.; Tarrant, M.; Mitchell, J.R.; Hill, M.D. Relationship between supra-annual trends in influenza rates and stroke
occurrence. Neuroepidemiology 2004, 23, 228–235. [CrossRef] [PubMed]

61. Soltero, I.; Liu, K.; Cooper, R.; Stamler, J.; Garside, D. Trends in mortality from cerebrovascular diseases in the United States, 1960
to 1975. Stroke 1978, 9, 549–558. [CrossRef]

62. Spodick, D.H.; Flessas, A.P.; Johnson, M.M. Association of acute respiratory symptoms with onset of acute myocardial infarction:
Prospective investigation of 150 consecutive patients and matched control patients. Am. J. Cardiol. 1984, 53, 481–482. [CrossRef]

63. Tang, B.M.; Shojaei, M.; Teoh, S.; Meyers, A.; Ho, J.; Ball, T.B.; Keynan, Y.; Pisipati, A.; Kumar, A.; Eisen, D.P.; et al. Neutrophils-
related host factors associated with severe disease and fatality in patients with influenza infection. Nat. Commun. 2019, 10,
3422. [CrossRef]

64. Lo Sasso, G.; Schlage, W.K.; Boue, S.; Veljkovic, E.; Peitsch, M.C.; Hoeng, J. The Apoe(−/−) mouse model: A suitable model to
study cardiovascular and respiratory diseases in the context of cigarette smoke exposure and harm reduction. J. Transl. Med. 2016,
14, 146. [CrossRef]

65. Naghavi, M.; Wyde, P.; Litovsky, S.; Madjid, M.; Akhtar, A.; Naguib, S.; Siadaty, M.S.; Sanati, S.; Casscells, W. Influenza
infection exerts prominent inflammatory and thrombotic effects on the atherosclerotic plaques of apolipoprotein E-deficient mice.
Circulation 2003, 107, 762–768. [CrossRef] [PubMed]

http://doi.org/10.1161/01.CIR.0000131515.03336.f8
http://doi.org/10.1002/art.38703
http://doi.org/10.4049/jimmunol.1000675
http://doi.org/10.1126/science.1242255
http://doi.org/10.1371/journal.ppat.1004383
http://www.ncbi.nlm.nih.gov/pubmed/25232870
http://doi.org/10.1038/nrmicro2265
http://www.ncbi.nlm.nih.gov/pubmed/19966814
http://doi.org/10.1371/journal.pone.0045427
http://www.ncbi.nlm.nih.gov/pubmed/23029002
http://doi.org/10.1182/blood-2016-06-722298
http://www.ncbi.nlm.nih.gov/pubmed/27919911
http://doi.org/10.1016/j.tube.2008.09.009
http://www.ncbi.nlm.nih.gov/pubmed/19056316
http://doi.org/10.1093/ejechocard/jep202
http://doi.org/10.1007/s11748-006-0073-7
http://doi.org/10.4049/jimmunol.1800871
http://www.ncbi.nlm.nih.gov/pubmed/30567731
http://doi.org/10.1093/ajhp/56.suppl_5.S5
http://doi.org/10.1371/journal.pone.0072034
http://www.ncbi.nlm.nih.gov/pubmed/24039734
http://doi.org/10.1046/j.1365-2249.2000.01278.x
http://doi.org/10.1016/j.chom.2012.05.015
http://doi.org/10.1126/science.2173142
http://www.ncbi.nlm.nih.gov/pubmed/2173142
http://doi.org/10.1073/pnas.97.4.1695
http://doi.org/10.4049/jimmunol.173.5.3383
http://doi.org/10.1159/000079948
http://www.ncbi.nlm.nih.gov/pubmed/15316249
http://doi.org/10.1161/01.STR.9.6.549
http://doi.org/10.1016/0002-9149(84)90016-X
http://doi.org/10.1038/s41467-019-11249-y
http://doi.org/10.1186/s12967-016-0901-1
http://doi.org/10.1161/01.CIR.0000048190.68071.2B
http://www.ncbi.nlm.nih.gov/pubmed/12578882


Cells 2021, 10, 1689 17 of 21

66. Madjid, M.; Awan, I.; Ali, M.; Frazier, L.; Casscells, W. Influenza and atherosclerosis: Vaccination for cardiovascular disease
prevention. Expert Opin. Biol. Ther. 2005, 5, 91–96. [CrossRef] [PubMed]

67. Colden-Stanfield, M.; Ratcliffe, D.; Cramer, E.B.; Gallin, E.K. Characterization of influenza virus-induced leukocyte adherence to
human umbilical vein endothelial cell monolayers. J. Immunol. 1993, 151, 310–321. [PubMed]

68. Haidari, M.; Wyde, P.R.; Litovsky, S.; Vela, D.; Ali, M.; Casscells, S.W.; Madjid, M. Influenza virus directly infects, inflames, and
resides in the arteries of atherosclerotic and normal mice. Atherosclerosis 2010, 208, 90–96. [CrossRef]

69. Ishiguro, N.; Takada, A.; Yoshioka, M.; Ma, X.; Kikuta, H.; Kida, H.; Kobayashi, K. Induction of interferon-inducible protein-10
and monokine induced by interferon-gamma from human endothelial cells infected with Influenza A virus. Arch. Virol. 2004, 149,
17–34. [CrossRef]

70. Wang, S.; Le, T.Q.; Kurihara, N.; Chida, J.; Cisse, Y.; Yano, M.; Kido, H. Influenza virus-cytokine-protease cycle in the pathogenesis
of vascular hyperpermeability in severe influenza. J. Infect. Dis. 2010, 202, 991–1001. [CrossRef]

71. Saffarzadeh, M.; Juenemann, C.; Queisser, M.A.; Lochnit, G.; Barreto, G.; Galuska, S.P.; Lohmeyer, J.; Preissner, K.T. Neutrophil
extracellular traps directly induce epithelial and endothelial cell death: A predominant role of histones. PLoS ONE 2012, 7, e32366.
[CrossRef] [PubMed]

72. Narasaraju, T.; Yang, E.; Samy, R.P.; Ng, H.H.; Poh, W.P.; Liew, A.A.; Phoon, M.C.; van Rooijen, N.; Chow, V.T. Excessive
neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am. J. Pathol. 2011, 179,
199–210. [CrossRef]

73. Zhu, L.; Liu, L.; Zhang, Y.; Pu, L.; Liu, J.; Li, X.; Chen, Z.; Hao, Y.; Wang, B.; Han, J.; et al. High Level of Neutrophil Extracellular
Traps Correlates With Poor Prognosis of Severe Influenza A Infection. J. Infect. Dis. 2018, 217, 428–437. [CrossRef] [PubMed]

74. Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138
Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [CrossRef]

75. Magro, C.; Mulvey, J.J.; Berlin, D.; Nuovo, G.; Salvatore, S.; Harp, J.; Baxter-Stoltzfus, A.; Laurence, J. Complement associated
microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl. Res. 2020,
220, 1–13. [CrossRef]

76. Bourgonje, A.R.; Abdulle, A.E.; Timens, W.; Hillebrands, J.L.; Navis, G.J.; Gordijn, S.J.; Bolling, M.C.; Dijkstra, G.; Voors, A.A.;
Osterhaus, A.D.; et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease
2019 (COVID-19). J. Pathol. 2020, 251, 228–248. [CrossRef]

77. Kalkeri, R.; Goebel, S.; Sharma, G.D. SARS-CoV-2 Shedding from Asymptomatic Patients: Contribution of Potential Extrapul-
monary Tissue Reservoirs. Am. J. Trop. Med. Hyg. 2020, 103, 18–21. [CrossRef]

78. Connors, J.M.; Levy, J.H. COVID-19 and its implications for thrombosis and anticoagulation. Blood 2020, 135, 2033–2040.
[CrossRef] [PubMed]

79. Silvin, A.; Chapuis, N.; Dunsmore, G.; Goubet, A.G.; Dubuisson, A.; Derosa, L.; Almire, C.; Henon, C.; Kosmider, O.;
Droin, N.; et al. Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe from Mild COVID-19. Cell 2020,
182, 1401–1418. [CrossRef] [PubMed]

80. Schulte-Schrepping, J.; Reusch, N.; Paclik, D.; Bassler, K.; Schlickeiser, S.; Zhang, B.; Kramer, B.; Krammer, T.; Brumhard, S.;
Bonaguro, L.; et al. Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment. Cell 2020, 182, 1419–1440. [CrossRef]

81. Sreeramkumar, V.; Adrover, J.M.; Ballesteros, I.; Cuartero, M.I.; Rossaint, J.; Bilbao, I.; Nacher, M.; Pitaval, C.; Radovanovic, I.;
Fukui, Y.; et al. Neutrophils scan for activated platelets to initiate inflammation. Science 2014, 346, 1234–1238. [CrossRef]

82. Hidalgo, A.; Chang, J.; Jang, J.E.; Peired, A.J.; Chiang, E.Y.; Frenette, P.S. Heterotypic interactions enabled by polarized neutrophil
microdomains mediate thromboinflammatory injury. Nat. Med. 2009, 15, 384–391. [CrossRef] [PubMed]

83. Middleton, E.A.; He, X.Y.; Denorme, F.; Campbell, R.A.; Ng, D.; Salvatore, S.P.; Mostyka, M.; Baxter-Stoltzfus, A.; Borczuk, A.C.;
Loda, M.; et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome.
Blood 2020, 136, 1169–1179. [CrossRef] [PubMed]

84. Manne, B.K.; Denorme, F.; Middleton, E.A.; Portier, I.; Rowley, J.W.; Stubben, C.; Petrey, A.C.; Tolley, N.D.; Guo, L.; Cody, M.; et al.
Platelet gene expression and function in patients with COVID-19. Blood 2020, 136, 1317–1329. [CrossRef] [PubMed]

85. Skendros, P.; Mitsios, A.; Chrysanthopoulou, A.; Mastellos, D.C.; Metallidis, S.; Rafailidis, P.; Ntinopoulou, M.; Sertaridou, E.;
Tsironidou, V.; Tsigalou, C.; et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in
COVID-19 immunothrombosis. J. Clin. Investig. 2020, 130, 6151–6157. [CrossRef] [PubMed]

86. Zuo, Y.; Zuo, M.; Yalavarthi, S.; Gockman, K.; Madison, J.A.; Shi, H.; Woodard, W.; Lezak, S.P.; Lugogo, N.L.; Knight, J.S.; et al.
Neutrophil extracellular traps and thrombosis in COVID-19. medRxiv 2020. [CrossRef] [PubMed]

87. Zuo, Y.; Yalavarthi, S.; Shi, H.; Gockman, K.; Zuo, M.; Madison, J.A.; Blair, C.; Weber, A.; Barnes, B.J.; Egeblad, M.; et al. Neutrophil
extracellular traps (NETs) as markers of disease severity in COVID-19. medRxiv 2020. [CrossRef]

88. Martinod, K.; Witsch, T.; Erpenbeck, L.; Savchenko, A.; Hayashi, H.; Cherpokova, D.; Gallant, M.; Mauler, M.; Cifuni, S.M.;
Wagner, D.D. Peptidylarginine deiminase 4 promotes age-related organ fibrosis. J. Exp. Med. 2017, 214, 439–458.
[CrossRef] [PubMed]

89. Wang, Y.; Wang, W.; Wang, N.; Tall, A.R.; Tabas, I. Mitochondrial Oxidative Stress Promotes Atherosclerosis and Neutrophil
Extracellular Traps in Aged Mice. Arterioscler. Thromb. Vasc. Biol. 2017, 37, e99–e107. [CrossRef]

90. Megens, R.T.; Vijayan, S.; Lievens, D.; Doring, Y.; van Zandvoort, M.A.; Grommes, J.; Weber, C.; Soehnlein, O. Presence of luminal
neutrophil extracellular traps in atherosclerosis. Thromb. Haemost. 2012, 107, 597–598. [CrossRef] [PubMed]

http://doi.org/10.1517/14712598.5.1.91
http://www.ncbi.nlm.nih.gov/pubmed/15709912
http://www.ncbi.nlm.nih.gov/pubmed/7686938
http://doi.org/10.1016/j.atherosclerosis.2009.07.028
http://doi.org/10.1007/s00705-003-0208-4
http://doi.org/10.1086/656044
http://doi.org/10.1371/journal.pone.0032366
http://www.ncbi.nlm.nih.gov/pubmed/22389696
http://doi.org/10.1016/j.ajpath.2011.03.013
http://doi.org/10.1093/infdis/jix475
http://www.ncbi.nlm.nih.gov/pubmed/29325098
http://doi.org/10.1001/jama.2020.1585
http://doi.org/10.1016/j.trsl.2020.04.007
http://doi.org/10.1002/path.5471
http://doi.org/10.4269/ajtmh.20-0279
http://doi.org/10.1182/blood.2020006000
http://www.ncbi.nlm.nih.gov/pubmed/32339221
http://doi.org/10.1016/j.cell.2020.08.002
http://www.ncbi.nlm.nih.gov/pubmed/32810439
http://doi.org/10.1016/j.cell.2020.08.001
http://doi.org/10.1126/science.1256478
http://doi.org/10.1038/nm.1939
http://www.ncbi.nlm.nih.gov/pubmed/19305412
http://doi.org/10.1182/blood.2020007008
http://www.ncbi.nlm.nih.gov/pubmed/32597954
http://doi.org/10.1182/blood.2020007214
http://www.ncbi.nlm.nih.gov/pubmed/32573711
http://doi.org/10.1172/JCI141374
http://www.ncbi.nlm.nih.gov/pubmed/32759504
http://doi.org/10.1007/s11239-020-02324-z
http://www.ncbi.nlm.nih.gov/pubmed/33151461
http://doi.org/10.1101/2020.04.09.20059626
http://doi.org/10.1084/jem.20160530
http://www.ncbi.nlm.nih.gov/pubmed/28031479
http://doi.org/10.1161/ATVBAHA.117.309580
http://doi.org/10.1160/TH11-09-0650
http://www.ncbi.nlm.nih.gov/pubmed/22318427


Cells 2021, 10, 1689 18 of 21

91. Helseth, R.; Shetelig, C.; Andersen, G.O.; Langseth, M.S.; Limalanathan, S.; Opstad, T.B.; Arnesen, H.; Hoffmann, P.; Eritsland, J.;
Seljeflot, I. Neutrophil Extracellular Trap Components Associate with Infarct Size, Ventricular Function, and Clinical Outcome in
STEMI. Mediat. Inflamm. 2019, 2019, 7816491. [CrossRef]

92. Fuchs, T.A.; Brill, A.; Duerschmied, D.; Schatzberg, D.; Monestier, M.; Myers, D.D., Jr.; Wrobleski, S.K.; Wakefield, T.W.;
Hartwig, J.H.; Wagner, D.D. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. USA 2010, 107,
15880–15885. [CrossRef]

93. Robbins, C.S.; Hilgendorf, I.; Weber, G.F.; Theurl, I.; Iwamoto, Y.; Figueiredo, J.L.; Gorbatov, R.; Sukhova, G.K.; Gerhardt, L.M.;
Smyth, D.; et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat. Med. 2013, 19,
1166–1172. [CrossRef]

94. Ionita, M.G.; van den Borne, P.; Catanzariti, L.M.; Moll, F.L.; de Vries, J.P.; Pasterkamp, G.; Vink, A.; de Kleijn, D.P. High neutrophil
numbers in human carotid atherosclerotic plaques are associated with characteristics of rupture-prone lesions. Arterioscler.
Thromb. Vasc. Biol. 2010, 30, 1842–1848. [CrossRef] [PubMed]

95. Wang, J.; Sjoberg, S.; Tang, T.T.; Oorni, K.; Wu, W.; Liu, C.; Secco, B.; Tia, V.; Sukhova, G.K.; Fernandes, C.; et al. Cathepsin G
activity lowers plasma LDL and reduces atherosclerosis. Biochim. Biophys. Acta 2014, 1842, 2174–2183. [CrossRef] [PubMed]

96. Wantha, S.; Alard, J.E.; Megens, R.T.; van der Does, A.M.; Doring, Y.; Drechsler, M.; Pham, C.T.; Wang, M.W.; Wang, J.M.;
Gallo, R.L.; et al. Neutrophil-derived cathelicidin promotes adhesion of classical monocytes. Circ. Res. 2013, 112, 792–801.
[CrossRef] [PubMed]

97. Chistiakov, D.A.; Bobryshev, Y.V.; Orekhov, A.N. Neutrophil’s weapons in atherosclerosis. Exp. Mol. Pathol. 2015, 99,
663–671. [CrossRef]

98. Yamamoto, K.; Yamada, H.; Wakana, N.; Kikai, M.; Terada, K.; Wada, N.; Motoyama, S.; Saburi, M.; Sugimoto, T.; Kami, D.; et al.
Augmented neutrophil extracellular traps formation promotes atherosclerosis development in socially defeated apoE(−/−) mice.
Biochem. Biophys. Res. Commun. 2018, 500, 490–496. [CrossRef]

99. Franck, G.; Mawson, T.L.; Folco, E.J.; Molinaro, R.; Ruvkun, V.; Engelbertsen, D.; Liu, X.; Tesmenitsky, Y.; Shvartz, E.; Sukhova,
G.K.; et al. Roles of PAD4 and NETosis in Experimental Atherosclerosis and Arterial Injury: Implications for Superficial Erosion.
Circ. Res. 2018, 123, 33–42. [CrossRef]

100. Liu, Y.; Carmona-Rivera, C.; Moore, E.; Seto, N.L.; Knight, J.S.; Pryor, M.; Yang, Z.H.; Hemmers, S.; Remaley, A.T.;
Mowen, K.A.; et al. Myeloid-Specific Deletion of Peptidylarginine Deiminase 4 Mitigates Atherosclerosis. Front. Immunol. 2018, 9,
1680. [CrossRef]

101. Molinaro, R.; Yu, M.; Sausen, G.; Bichsel, C.A.; Corbo, C.; Folco, E.J.; Lee, G.Y.; Liu, Y.; Tesmenitsky, Y.; Shvartz, E.; et al. Targeted
delivery of Protein Arginine Deiminase-4 inhibitors to limit arterial intimal NETosis and preserve endothelial integrity. Cardiovasc.
Res. 2021. [CrossRef]

102. Folco, E.J.; Mawson, T.L.; Vromman, A.; Bernardes-Souza, B.; Franck, G.; Persson, O.; Nakamura, M.; Newton, G.; Luscinskas, F.W.;
Libby, P. Neutrophil Extracellular Traps Induce Endothelial Cell Activation and Tissue Factor Production Through Interleukin-
1alpha and Cathepsin G. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 1901–1912. [CrossRef]

103. Brill, A.; Fuchs, T.A.; Chauhan, A.K.; Yang, J.J.; De Meyer, S.F.; Kollnberger, M.; Wakefield, T.W.; Lammle, B.; Massberg, S.;
Wagner, D.D. von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood 2011,
117, 1400–1407. [CrossRef]

104. Etulain, J.; Martinod, K.; Wong, S.L.; Cifuni, S.M.; Schattner, M.; Wagner, D.D. P-selectin promotes neutrophil extracellular trap
formation in mice. Blood 2015, 126, 242–246. [CrossRef]

105. Stakos, D.A.; Kambas, K.; Konstantinidis, T.; Mitroulis, I.; Apostolidou, E.; Arelaki, S.; Tsironidou, V.; Giatromanolaki, A.;
Skendros, P.; Konstantinides, S.; et al. Expression of functional tissue factor by neutrophil extracellular traps in culprit artery of
acute myocardial infarction. Eur. Heart J. 2015, 36, 1405–1414. [CrossRef] [PubMed]

106. Frangou, E.; Chrysanthopoulou, A.; Mitsios, A.; Kambas, K.; Arelaki, S.; Angelidou, I.; Arampatzioglou, A.; Gakiopoulou, H.;
Bertsias, G.K.; Verginis, P.; et al. REDD1/autophagy pathway promotes thromboinflammation and fibrosis in human systemic
lupus erythematosus (SLE) through NETs decorated with tissue factor (TF) and interleukin-17A (IL-17A). Ann. Rheum. Dis. 2019,
78, 238–248. [CrossRef] [PubMed]

107. Mackman, N.; Tilley, R.E.; Key, N.S. Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler.
Thromb. Vasc. Biol. 2007, 27, 1687–1693. [CrossRef]

108. Xu, J.; Zhang, X.; Pelayo, R.; Monestier, M.; Ammollo, C.T.; Semeraro, F.; Taylor, F.B.; Esmon, N.L.; Lupu, F.; Esmon, C.T.
Extracellular histones are major mediators of death in sepsis. Nat. Med. 2009, 15, 1318–1321. [CrossRef] [PubMed]

109. Ammollo, C.T.; Semeraro, F.; Xu, J.; Esmon, N.L.; Esmon, C.T. Extracellular histones increase plasma thrombin generation by
impairing thrombomodulin-dependent protein C activation. J. Thromb. Haemost. 2011, 9, 1795–1803. [CrossRef] [PubMed]

110. Massberg, S.; Grahl, L.; von Bruehl, M.L.; Manukyan, D.; Pfeiler, S.; Goosmann, C.; Brinkmann, V.; Lorenz, M.; Bidzhekov, K.;
Khandagale, A.B.; et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 2010,
16, 887–896. [CrossRef] [PubMed]

111. von Bruhl, M.L.; Stark, K.; Steinhart, A.; Chandraratne, S.; Konrad, I.; Lorenz, M.; Khandoga, A.; Tirniceriu, A.; Coletti, R.;
Kollnberger, M.; et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice
in vivo. J. Exp. Med. 2012, 209, 819–835. [CrossRef]

http://doi.org/10.1155/2019/7816491
http://doi.org/10.1073/pnas.1005743107
http://doi.org/10.1038/nm.3258
http://doi.org/10.1161/ATVBAHA.110.209296
http://www.ncbi.nlm.nih.gov/pubmed/20595650
http://doi.org/10.1016/j.bbadis.2014.07.026
http://www.ncbi.nlm.nih.gov/pubmed/25092171
http://doi.org/10.1161/CIRCRESAHA.112.300666
http://www.ncbi.nlm.nih.gov/pubmed/23283724
http://doi.org/10.1016/j.yexmp.2015.11.011
http://doi.org/10.1016/j.bbrc.2018.04.115
http://doi.org/10.1161/CIRCRESAHA.117.312494
http://doi.org/10.3389/fimmu.2018.01680
http://doi.org/10.1093/cvr/cvab074
http://doi.org/10.1161/ATVBAHA.118.311150
http://doi.org/10.1182/blood-2010-05-287623
http://doi.org/10.1182/blood-2015-01-624023
http://doi.org/10.1093/eurheartj/ehv007
http://www.ncbi.nlm.nih.gov/pubmed/25660055
http://doi.org/10.1136/annrheumdis-2018-213181
http://www.ncbi.nlm.nih.gov/pubmed/30563869
http://doi.org/10.1161/ATVBAHA.107.141911
http://doi.org/10.1038/nm.2053
http://www.ncbi.nlm.nih.gov/pubmed/19855397
http://doi.org/10.1111/j.1538-7836.2011.04422.x
http://www.ncbi.nlm.nih.gov/pubmed/21711444
http://doi.org/10.1038/nm.2184
http://www.ncbi.nlm.nih.gov/pubmed/20676107
http://doi.org/10.1084/jem.20112322


Cells 2021, 10, 1689 19 of 21

112. Wang, Y.; Luo, L.; Braun, O.O.; Westman, J.; Madhi, R.; Herwald, H.; Morgelin, M.; Thorlacius, H. Neutrophil extracellular
trap-microparticle complexes enhance thrombin generation via the intrinsic pathway of coagulation in mice. Sci. Rep. 2018, 8,
4020. [CrossRef]

113. Jimenez-Alcazar, M.; Rangaswamy, C.; Panda, R.; Bitterling, J.; Simsek, Y.J.; Long, A.T.; Bilyy, R.; Krenn, V.; Renne, C.;
Renne, T.; et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science 2017, 358, 1202–1206.
[CrossRef] [PubMed]

114. Jimenez-Alcazar, M.; Napirei, M.; Panda, R.; Kohler, E.C.; Kremer Hovinga, J.A.; Mannherz, H.G.; Peine, S.; Renne, T.; Lammle, B.;
Fuchs, T.A. Impaired DNase1-mediated degradation of neutrophil extracellular traps is associated with acute thrombotic
microangiopathies. J. Thromb. Haemost. 2015, 13, 732–742. [CrossRef]

115. Perdomo, J.; Leung, H.H.L.; Ahmadi, Z.; Yan, F.; Chong, J.J.H.; Passam, F.H.; Chong, B.H. Neutrophil activation and NETosis are
the major drivers of thrombosis in heparin-induced thrombocytopenia. Nat. Commun. 2019, 10, 1322. [CrossRef]

116. Brill, A.; Fuchs, T.A.; Savchenko, A.S.; Thomas, G.M.; Martinod, K.; De Meyer, S.F.; Bhandari, A.A.; Wagner, D.D. Neutrophil
extracellular traps promote deep vein thrombosis in mice. J. Thromb. Haemost. 2012, 10, 136–144. [CrossRef]

117. Savchenko, A.S.; Martinod, K.; Seidman, M.A.; Wong, S.L.; Borissoff, J.I.; Piazza, G.; Libby, P.; Goldhaber, S.Z.; Mitchell, R.N.;
Wagner, D.D. Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism
development. J. Thromb. Haemost. 2014, 12, 860–870. [CrossRef]

118. de Boer, O.J.; Li, X.; Teeling, P.; Mackaay, C.; Ploegmakers, H.J.; van der Loos, C.M.; Daemen, M.J.; de Winter, R.J.; van der Wal,
A.C. Neutrophils, neutrophil extracellular traps and interleukin-17 associate with the organisation of thrombi in acute myocardial
infarction. Thromb. Haemost. 2013, 109, 290–297. [CrossRef] [PubMed]

119. Riegger, J.; Byrne, R.A.; Joner, M.; Chandraratne, S.; Gershlick, A.H.; Ten Berg, J.M.; Adriaenssens, T.; Guagliumi, G.;
Godschalk, T.C.; Neumann, F.J.; et al. Histopathological evaluation of thrombus in patients presenting with stent throm-
bosis. A multicenter European study: A report of the prevention of late stent thrombosis by an interdisciplinary global European
effort consortium. Eur. Heart J. 2016, 37, 1538–1549. [CrossRef]

120. Laridan, E.; Denorme, F.; Desender, L.; Francois, O.; Andersson, T.; Deckmyn, H.; Vanhoorelbeke, K.; De Meyer, S.F. Neutrophil
extracellular traps in ischemic stroke thrombi. Ann. Neurol. 2017, 82, 223–232. [CrossRef] [PubMed]

121. Hellesen, A.; Bratland, E.; Husebye, E.S. Autoimmune Addison’s disease-An update on pathogenesis. Ann. Endocrinol. 2018,
79, 157–163. [CrossRef] [PubMed]

122. Granger, V.; Peyneau, M.; Chollet-Martin, S.; de Chaisemartin, L. Neutrophil Extracellular Traps in Autoimmunity and Allergy:
Immune Complexes at Work. Front. Immunol. 2019, 10, 2824. [CrossRef] [PubMed]

123. Frieri, M.; Stampfl, H. Systemic lupus erythematosus and atherosclerosis: Review of the literature. Autoimmun. Rev. 2016, 15,
16–21. [CrossRef] [PubMed]

124. Denny, M.F.; Yalavarthi, S.; Zhao, W.; Thacker, S.G.; Anderson, M.; Sandy, A.R.; McCune, W.J.; Kaplan, M.J. A distinct subset of
proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes
type I IFNs. J. Immunol. 2010, 184, 3284–3297. [CrossRef] [PubMed]

125. Brandt, L.; Hedberg, H. Impaired phagocytosis by peripheral blood granulocytes in systemic lupus erythematosus. Scand. J.
Haematol. 1969, 6, 348–353. [CrossRef] [PubMed]

126. Cairns, A.P.; Crockard, A.D.; McConnell, J.R.; Courtney, P.A.; Bell, A.L. Reduced expression of CD44 on monocytes and
neutrophils in systemic lupus erythematosus: Relations with apoptotic neutrophils and disease activity. Ann. Rheum. Dis. 2001, 60,
950–955. [CrossRef]

127. Donnelly, S.; Roake, W.; Brown, S.; Young, P.; Naik, H.; Wordsworth, P.; Isenberg, D.A.; Reid, K.B.; Eggleton, P. Impaired
recognition of apoptotic neutrophils by the C1q/calreticulin and CD91 pathway in systemic lupus erythematosus. Arthritis
Rheum. 2006, 54, 1543–1556. [CrossRef] [PubMed]

128. Pieterse, E.; van der Vlag, J. Breaking immunological tolerance in systemic lupus erythematosus. Front. Immunol. 2014, 5,
164. [CrossRef]

129. Kaplan, M.J. Neutrophils in the pathogenesis and manifestations of SLE. Nat. Rev. Rheumatol. 2011, 7, 691–699. [CrossRef]
130. Hacbarth, E.; Kajdacsy-Balla, A. Low density neutrophils in patients with systemic lupus erythematosus, rheumatoid arthritis,

and acute rheumatic fever. Arthritis Rheum. 1986, 29, 1334–1342. [CrossRef]
131. Hakkim, A.; Furnrohr, B.G.; Amann, K.; Laube, B.; Abed, U.A.; Brinkmann, V.; Herrmann, M.; Voll, R.E.; Zychlinsky, A.

Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl. Acad. Sci. USA 2010, 107,
9813–9818. [CrossRef]

132. Kahlenberg, J.M.; Carmona-Rivera, C.; Smith, C.K.; Kaplan, M.J. Neutrophil extracellular trap-associated protein activation of the
NLRP3 inflammasome is enhanced in lupus macrophages. J. Immunol. 2013, 190, 1217–1226. [CrossRef] [PubMed]

133. Kahlenberg, J.M.; Kaplan, M.J. Mechanisms of premature atherosclerosis in rheumatoid arthritis and lupus. Annu. Rev. Med. 2013,
64, 249–263. [CrossRef]

134. Knight, J.S.; Zhao, W.; Luo, W.; Subramanian, V.; O’Dell, A.A.; Yalavarthi, S.; Hodgin, J.B.; Eitzman, D.T.; Thompson, P.R.;
Kaplan, M.J. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J. Clin. Investig.
2013, 123, 2981–2993. [CrossRef]

http://doi.org/10.1038/s41598-018-22156-5
http://doi.org/10.1126/science.aam8897
http://www.ncbi.nlm.nih.gov/pubmed/29191910
http://doi.org/10.1111/jth.12796
http://doi.org/10.1038/s41467-019-09160-7
http://doi.org/10.1111/j.1538-7836.2011.04544.x
http://doi.org/10.1111/jth.12571
http://doi.org/10.1160/TH12-06-0425
http://www.ncbi.nlm.nih.gov/pubmed/23238559
http://doi.org/10.1093/eurheartj/ehv419
http://doi.org/10.1002/ana.24993
http://www.ncbi.nlm.nih.gov/pubmed/28696508
http://doi.org/10.1016/j.ando.2018.03.008
http://www.ncbi.nlm.nih.gov/pubmed/29631795
http://doi.org/10.3389/fimmu.2019.02824
http://www.ncbi.nlm.nih.gov/pubmed/31849989
http://doi.org/10.1016/j.autrev.2015.08.007
http://www.ncbi.nlm.nih.gov/pubmed/26299985
http://doi.org/10.4049/jimmunol.0902199
http://www.ncbi.nlm.nih.gov/pubmed/20164424
http://doi.org/10.1111/j.1600-0609.1969.tb02420.x
http://www.ncbi.nlm.nih.gov/pubmed/4188539
http://doi.org/10.1136/ard.60.10.950
http://doi.org/10.1002/art.21783
http://www.ncbi.nlm.nih.gov/pubmed/16645988
http://doi.org/10.3389/fimmu.2014.00164
http://doi.org/10.1038/nrrheum.2011.132
http://doi.org/10.1002/art.1780291105
http://doi.org/10.1073/pnas.0909927107
http://doi.org/10.4049/jimmunol.1202388
http://www.ncbi.nlm.nih.gov/pubmed/23267025
http://doi.org/10.1146/annurev-med-060911-090007
http://doi.org/10.1172/JCI67390


Cells 2021, 10, 1689 20 of 21

135. Khandpur, R.; Carmona-Rivera, C.; Vivekanandan-Giri, A.; Gizinski, A.; Yalavarthi, S.; Knight, J.S.; Friday, S.; Li, S.; Patel, R.M.;
Subramanian, V.; et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid
arthritis. Sci. Transl. Med. 2013, 5, 178ra140. [CrossRef] [PubMed]

136. Warrington, K.J.; Kent, P.D.; Frye, R.L.; Lymp, J.F.; Kopecky, S.L.; Goronzy, J.J.; Weyand, C.M. Rheumatoid arthritis is an
independent risk factor for multi-vessel coronary artery disease: A case control study. Arthritis Res. Ther. 2005, 7, R984–R991.
[CrossRef] [PubMed]

137. Doring, Y.; Manthey, H.D.; Drechsler, M.; Lievens, D.; Megens, R.T.; Soehnlein, O.; Busch, M.; Manca, M.; Koenen, R.R.;
Pelisek, J.; et al. Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis.
Circulation 2012, 125, 1673–1683. [CrossRef] [PubMed]

138. Sangaletti, S.; Tripodo, C.; Chiodoni, C.; Guarnotta, C.; Cappetti, B.; Casalini, P.; Piconese, S.; Parenza, M.; Guiducci, C.;
Vitali, C.; et al. Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells
toward ANCA induction and associated autoimmunity. Blood 2012, 120, 3007–3018. [CrossRef]

139. Houben, E.; Penne, E.L.; Voskuyl, A.E.; van der Heijden, J.W.; Otten, R.H.J.; Boers, M.; Hoekstra, T. Cardiovascular events in
anti-neutrophil cytoplasmic antibody-associated vasculitis: A meta-analysis of observational studies. Rheumatology 2018, 57,
555–562. [CrossRef]

140. Imamoto, T.; Nakazawa, D.; Shida, H.; Suzuki, A.; Otsuka, N.; Tomaru, U.; Ishizu, A. Possible linkage between microscopic
polyangiitis and thrombosis via neutrophil extracellular traps. Clin. Exp. Rheumatol. 2014, 32, 149–150.

141. Nakazawa, D.; Tomaru, U.; Yamamoto, C.; Jodo, S.; Ishizu, A. Abundant neutrophil extracellular traps in thrombus of patient
with microscopic polyangiitis. Front. Immunol. 2012, 3, 333. [CrossRef]

142. Bonaventura, A.; Liberale, L.; Montecucco, F. Aspirin in primary prevention for patients with diabetes: Still a matter of debate.
Eur. J. Clin. Investig. 2018, 48, e13001. [CrossRef]

143. Wellen, K.E.; Hotamisligil, G.S. Inflammation, stress, and diabetes. J. Clin. Investig. 2005, 115, 1111–1119. [CrossRef]
144. Harsunen, M.H.; Puff, R.; D’Orlando, O.; Giannopoulou, E.; Lachmann, L.; Beyerlein, A.; von Meyer, A.; Ziegler, A.G. Reduced

blood leukocyte and neutrophil numbers in the pathogenesis of type 1 diabetes. Horm. Metab. Res. 2013, 45, 467–470. [CrossRef]
145. Valle, A.; Giamporcaro, G.M.; Scavini, M.; Stabilini, A.; Grogan, P.; Bianconi, E.; Sebastiani, G.; Masini, M.; Maugeri, N.;

Porretti, L.; et al. Reduction of circulating neutrophils precedes and accompanies type 1 diabetes. Diabetes 2013, 62,
2072–2077. [CrossRef]

146. Carestia, A.; Frechtel, G.; Cerrone, G.; Linari, M.A.; Gonzalez, C.D.; Casais, P.; Schattner, M. NETosis before and after Hyper-
glycemic Control in Type 2 Diabetes Mellitus Patients. PLoS ONE 2016, 11, e0168647. [CrossRef]

147. Vecchio, F.; Lo Buono, N.; Stabilini, A.; Nigi, L.; Dufort, M.J.; Geyer, S.; Rancoita, P.M.; Cugnata, F.; Mandelli, A.; Valle, A.; et al.
Abnormal neutrophil signature in the blood and pancreas of presymptomatic and symptomatic type 1 diabetes. JCI Insight 2018,
3. [CrossRef] [PubMed]

148. Qin, J.; Fu, S.; Speake, C.; Greenbaum, C.J.; Odegard, J.M. NETosis-associated serum biomarkers are reduced in type 1 diabetes in
association with neutrophil count. Clin. Exp. Immunol. 2016, 184, 318–322. [CrossRef]

149. Wang, Y.; Xiao, Y.; Zhong, L.; Ye, D.; Zhang, J.; Tu, Y.; Bornstein, S.R.; Zhou, Z.; Lam, K.S.; Xu, A. Increased neutrophil elastase
and proteinase 3 and augmented NETosis are closely associated with beta-cell autoimmunity in patients with type 1 diabetes.
Diabetes 2014, 63, 4239–4248. [CrossRef] [PubMed]

150. Wong, S.L.; Demers, M.; Martinod, K.; Gallant, M.; Wang, Y.; Goldfine, A.B.; Kahn, C.R.; Wagner, D.D. Diabetes primes neutrophils
to undergo NETosis, which impairs wound healing. Nat. Med. 2015, 21, 815–819. [CrossRef] [PubMed]

151. de Vries, J.J.; Hoppenbrouwers, T.; Martinez-Torres, C.; Majied, R.; Ozcan, B.; van Hoek, M.; Leebeek, F.W.G.; Rijken, D.C.;
Koenderink, G.H.; de Maat, M.P.M. Effects of Diabetes Mellitus on Fibrin Clot Structure and Mechanics in a Model of Acute
Neutrophil Extracellular Traps (NETs) Formation. Int. J. Mol. Sci. 2020, 21, 7107. [CrossRef]

152. Yu, T.; Robotham, J.L.; Yoon, Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic
change of mitochondrial morphology. Proc. Natl. Acad. Sci. USA 2006, 103, 2653–2658. [CrossRef] [PubMed]

153. Wang, L.; Zhou, X.; Yin, Y.; Mai, Y.; Wang, D.; Zhang, X. Hyperglycemia Induces Neutrophil Extracellular Traps Formation
Through an NADPH Oxidase-Dependent Pathway in Diabetic Retinopathy. Front. Immunol. 2018, 9, 3076. [CrossRef]

154. Berezin, A. Neutrophil extracellular traps: The core player in vascular complications of diabetes mellitus. Diabetes Metab. Syndr.
2019, 13, 3017–3023. [CrossRef]

155. Karima, M.; Kantarci, A.; Ohira, T.; Hasturk, H.; Jones, V.L.; Nam, B.H.; Malabanan, A.; Trackman, P.C.; Badwey, J.A.;
Van Dyke, T.E. Enhanced superoxide release and elevated protein kinase C activity in neutrophils from diabetic patients:
Association with periodontitis. J. Leukoc. Biol. 2005, 78, 862–870. [CrossRef] [PubMed]

156. Menegazzo, L.; Ciciliot, S.; Poncina, N.; Mazzucato, M.; Persano, M.; Bonora, B.; Albiero, M.; Vigili de Kreutzenberg, S.;
Avogaro, A.; Fadini, G.P. NETosis is induced by high glucose and associated with type 2 diabetes. Acta Diabetol. 2015, 52, 497–503.
[CrossRef] [PubMed]

157. Joshi, M.B.; Lad, A.; Bharath Prasad, A.S.; Balakrishnan, A.; Ramachandra, L.; Satyamoorthy, K. High glucose modulates
IL-6 mediated immune homeostasis through impeding neutrophil extracellular trap formation. FEBS Lett. 2013, 587,
2241–2246. [CrossRef]

158. Monnier, L.; Mas, E.; Ginet, C.; Michel, F.; Villon, L.; Cristol, J.P.; Colette, C. Activation of oxidative stress by acute glucose fluctuations
compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 2006, 295, 1681–1687. [CrossRef]

http://doi.org/10.1126/scitranslmed.3005580
http://www.ncbi.nlm.nih.gov/pubmed/23536012
http://doi.org/10.1186/ar1775
http://www.ncbi.nlm.nih.gov/pubmed/16207339
http://doi.org/10.1161/CIRCULATIONAHA.111.046755
http://www.ncbi.nlm.nih.gov/pubmed/22388324
http://doi.org/10.1182/blood-2012-03-416156
http://doi.org/10.1093/rheumatology/kex338
http://doi.org/10.3389/fimmu.2012.00333
http://doi.org/10.1111/eci.13001
http://doi.org/10.1172/JCI25102
http://doi.org/10.1055/s-0032-1331226
http://doi.org/10.2337/db12-1345
http://doi.org/10.1371/journal.pone.0168647
http://doi.org/10.1172/jci.insight.122146
http://www.ncbi.nlm.nih.gov/pubmed/30232284
http://doi.org/10.1111/cei.12783
http://doi.org/10.2337/db14-0480
http://www.ncbi.nlm.nih.gov/pubmed/25092677
http://doi.org/10.1038/nm.3887
http://www.ncbi.nlm.nih.gov/pubmed/26076037
http://doi.org/10.3390/ijms21197107
http://doi.org/10.1073/pnas.0511154103
http://www.ncbi.nlm.nih.gov/pubmed/16477035
http://doi.org/10.3389/fimmu.2018.03076
http://doi.org/10.1016/j.dsx.2018.07.010
http://doi.org/10.1189/jlb.1004583
http://www.ncbi.nlm.nih.gov/pubmed/16081595
http://doi.org/10.1007/s00592-014-0676-x
http://www.ncbi.nlm.nih.gov/pubmed/25387570
http://doi.org/10.1016/j.febslet.2013.05.053
http://doi.org/10.1001/jama.295.14.1681


Cells 2021, 10, 1689 21 of 21

159. Xu, F.; Zhao, L.H.; Su, J.B.; Chen, T.; Wang, X.Q.; Chen, J.F.; Wu, G.; Jin, Y.; Wang, X.H. The relationship between glycemic variability
and diabetic peripheral neuropathy in type 2 diabetes with well-controlled HbA1c. Diabetol. Metab. Syndr. 2014, 6, 139. [CrossRef]

160. Greb, J.E.; Goldminz, A.M.; Elder, J.T.; Lebwohl, M.G.; Gladman, D.D.; Wu, J.J.; Mehta, N.N.; Finlay, A.Y.; Gottlieb, A.B. Psoriasis.
Nat. Rev. Dis. Primers 2016, 2, 16082. [CrossRef]

161. Sticherling, M. Psoriasis and autoimmunity. Autoimmun. Rev. 2016, 15, 1167–1170. [CrossRef] [PubMed]
162. Kaushik, S.B.; Lebwohl, M.G. Psoriasis: Which therapy for which patient: Psoriasis comorbidities and preferred systemic agents.

J. Am. Acad. Dermatol. 2019, 80, 27–40. [CrossRef]
163. Hau, C.S.; Kanda, N.; Tada, Y.; Shibata, S.; Uozaki, H.; Fukusato, T.; Sato, S.; Watanabe, S. Lipocalin-2 exacerbates psoriasiform

skin inflammation by augmenting T-helper 17 response. J. Dermatol. 2016, 43, 785–794. [CrossRef] [PubMed]
164. Shao, S.; Fang, H.; Dang, E.; Xue, K.; Zhang, J.; Li, B.; Qiao, H.; Cao, T.; Zhuang, Y.; Shen, S.; et al. Neutrophil Extracellular

Traps Promote Inflammatory Responses in Psoriasis via Activating Epidermal TLR4/IL-36R Crosstalk. Front. Immunol. 2019, 10,
746. [CrossRef]

165. Lin, A.M.; Rubin, C.J.; Khandpur, R.; Wang, J.Y.; Riblett, M.; Yalavarthi, S.; Villanueva, E.C.; Shah, P.; Kaplan, M.J.; Bruce, A.T. Mast
cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J. Immunol. 2011, 187, 490–500. [CrossRef]

166. Schon, M.P.; Erpenbeck, L. The Interleukin-23/Interleukin-17 Axis Links Adaptive and Innate Immunity in Psoriasis. Front.
Immunol. 2018, 9, 1323. [CrossRef] [PubMed]

167. Reich, K.; Papp, K.A.; Matheson, R.T.; Tu, J.H.; Bissonnette, R.; Bourcier, M.; Gratton, D.; Kunynetz, R.A.; Poulin, Y.; Rosoph, L.A.;
et al. Evidence that a neutrophil-keratinocyte crosstalk is an early target of IL-17A inhibition in psoriasis. Exp. Dermatol. 2015, 24,
529–535. [CrossRef]

168. von Stebut, E.; Reich, K.; Thaci, D.; Koenig, W.; Pinter, A.; Korber, A.; Rassaf, T.; Waisman, A.; Mani, V.; Yates, D.; et al. Impact of
Secukinumab on Endothelial Dysfunction and Other Cardiovascular Disease Parameters in Psoriasis Patients over 52 Weeks.
J. Investig. Dermatol. 2019, 139, 1054–1062. [CrossRef] [PubMed]

http://doi.org/10.1186/1758-5996-6-139
http://doi.org/10.1038/nrdp.2016.82
http://doi.org/10.1016/j.autrev.2016.09.004
http://www.ncbi.nlm.nih.gov/pubmed/27639838
http://doi.org/10.1016/j.jaad.2018.06.057
http://doi.org/10.1111/1346-8138.13227
http://www.ncbi.nlm.nih.gov/pubmed/26702876
http://doi.org/10.3389/fimmu.2019.00746
http://doi.org/10.4049/jimmunol.1100123
http://doi.org/10.3389/fimmu.2018.01323
http://www.ncbi.nlm.nih.gov/pubmed/29963046
http://doi.org/10.1111/exd.12710
http://doi.org/10.1016/j.jid.2018.10.042
http://www.ncbi.nlm.nih.gov/pubmed/30508547

	Introduction 
	NETs Affecting Cardiovascular Health in Infectious Diseases 
	Cardiovascular Manifestations of Bacterial NETs Induction 
	Cardiovascular Manifestations of Viral NET Induction 

	Implications of NETs Formation in CVD 
	NETs in Atherosclerosis 
	NETs-Induced Thrombosis 

	Cardiovascular Manifestations of Sterile NETs Induction 
	Conclusions 
	References

