
APE: A Command-Line Tool and API
for Automated Workflow Composition

Vedran Kasalica(B) and Anna-Lena Lamprecht(B)

Department of Information and Computing Sciences, Utrecht University,
3584 CC Utrecht, The Netherlands

{v.kasalica,a.l.lamprecht}@uu.nl

Abstract. Automated workflow composition is bound to take the work
with scientific workflows to the next level. On top of today’s compre-
hensive eScience infrastructure, it enables the automated generation of
possible workflows for a given specification. However, functionality for
automated workflow composition tends to be integrated with one of the
many available workflow management systems, and is thus difficult or
impossible to apply in other environments. Therefore we have developed
APE (the Automated Pipeline Explorer) as a command-line tool and
API for automated composition of scientific workflows. APE is easily
configured to a new application domain by providing it with a domain
ontology and semantically annotated tools. It can then be used to synthe-
size purpose-specific workflows based on a specification of the available
workflow inputs, desired outputs and possibly additional constraints.
The workflows can further be transformed into executable implemen-
tations and/or exported into standard workflow formats. In this paper
we describe APE v1.0 and discuss lessons learned from applications in
bioinformatics and geosciences.

Keywords: Scientific workflows · Computational pipelines · Workflow
management systems · Automated workflow composition · Workflow
exploration

1 Introduction

Computational pipelines, or workflows, are central to contemporary computa-
tional science [5]. The international eScience community has created a compre-
hensive infrastructure of tools, services and platforms that support the work
with scientific workflows. Numerous scientific workflow management systems
exist [1,29], some of the currently most popular being Galaxy [10], KNIME [6]
and Nextflow [7]. While these systems free their users from many technicalities
that they would have to deal with when conventionally programming workflows,
the identification of suitable computational components and their composition
into executable workflows remains a manual task.

The idea of automated workflow composition is to let an algorithm perform
this process. Based on a loose specification of the intended workflow (for example
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in terms of available workflow inputs and desired outputs, or principal steps to
take), it would automatically generate suitable, executable workflows. It has been
shown that program synthesis [11] and AI planning techniques [8] can be used to
implement such functionality [20,22,23]. Some workflow management systems,
such as jORCA/Magallanes [15], jABC/PROPHETS [21,24] and WINGS [9],
provide automated workflow composition functionality based on such techniques.
However, the tight integration with the respective workflow systems makes it
difficult or even impossible to use this functionality in other environments.

Therefore we have developed APE1 (the Automated Pipeline Explorer) as a
command-line tool and API for automated workflow composition. It is designed
to be independent from any concrete workflow system, and thus ready to be
used in other workflow management systems, tool repositories or workflow shar-
ing platforms as needed. Internally, APE uses a SAT-based implementation of
a temporal-logic process synthesis method, inspired by the approach behind the
PROPHETS framework [21,27] and described in detail [17]. In a nutshell, the
framework uses an extension of the well known Linear Temporal Logic (LTL) to
encode the workflow specification. This specification is translated into a propo-
sitional logic formula that can be processed by an off-the-shelf SAT solver, with
the resulting solutions representing possible workflows for the specification.

In this paper, we introduce APE v1.0 from an application point of view.
Section 2 describes how to set it up for use by providing a semantic domain
model. Section 3 focuses on the automated composition of workflows based on
the domain model and custom workflow specifications. Section 4 describes how
APE-composed workflows can further be transformed into executable imple-
mentations and/or exported into standard workflow formats. Section 5 discusses
lessons learned from applications of APE in bioinformatics and geosciences.
Section 6 concludes the paper.

2 Domain Model

The semantic domain model constitutes the knowledge base on which APE relies
for the automated composition of workflows. It comprises a domain ontology and
a collection of semantically annotated tools. The domain ontology provides taxo-
nomic classifications of the data types and operations in the application domain,
as a controlled vocabulary of technical terms. Tools in the domain model are
semantically annotated with their inputs, outputs and operations, using terms
from the ontology. Additionally, the domain model might include (temporal-
logic) constraints to express further domain knowledge or rules.

For example, Fig. 1 and Table 1 show fragments of a bioinformatics domain
model from a recent case study on automated workflow composition in pro-
teomics [25]. The domain ontology (see Fig. 1) was directly derived from the
popular bioinformatics data and methods ontology EDAM [12]. Table 1 shows a
few tool annotations from the same case study. Each tool is semantically anno-
tated with the operation(s) it performs and its input and output data types
1 https://github.com/sanctuuary/ape.

https://github.com/sanctuuary/ape
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Fig. 1. Fragment of a bioinformatics domain ontology.

and formats, using terms from the respective taxonomies. These annotations
were directly derived from the bio.tools registry [13,14], a large collection of
EDAM-annotated bioinformatics tools. Note that in this example, two dimen-
sions (type and format) are used for the annotation of the input and output
data. Other applications need only one (e.g. format), and yet others have more
than two required dimensions. Hence, APE supports the use of multiple disjoint
taxonomy trees to represent the required dimensions of data characterization.

Technically, we rely on existing and (de facto) standard formalisms for the
representation of the domain model. APE loads the domain ontology from a file
in Web Ontology Language (OWL) format. The tool annotations are represented
in JavaScript Object Notation (JSON) format, following the schema that is used
in the bio.tools registry [2].

3 Automated Workflow Composition

Once the domain model has been configured, APE is ready to be used for auto-
mated workflow composition. Therefor the user specifies the workflow inputs,
intended outputs and additional constraints that the workflow has to fulfill.
Internally the constraints are expressed in a formal (temporal) logic, but the
APE interfaces expose them in the form of intuitive natural-language templates.
For example (as illustrated in Fig. 2), one workflow specification from the pro-
teomics case study consists of “Mass spectrum” type in “Thermo RAW format”
as input, “Amino acid index (hydropathy)” (in any format) as output, and con-
straints specifying to use tools that perform the operations “peptide identifica-
tion”, “validation of peptide spectrum matches” and “retention time prediction”
(constraint template “Use operation X ”). These operations are abstract terms
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Table 1. Fragment of an annotated set of bioinformatics tools [14].

Name Operation Data input
(type/format)

Data output
(type/format)

Comet Peptide
database
search

Mass spectrum Peptide
identification

mzML or mzXML pepXML

msconvert Formatting
Filtering

Mass spectrum Mass spectrum

MGF or mzXML
or mzML

MGF or mzXML
or mzML

Peptide Prophet Peptide
identification
Statistical
modelling

Peptide
identification

Peptide
identification

pepXML or
mzIdentML

pepXML

rt4 Retention
time
prediction

Peptide property Amino acid index
(hydropathy)

TSV or pepXML TSV or XML

xml2tsv Conversion Peptide
identification

Peptide
identification

mzIdentML TSV

SSRCalc Retention
time
prediction

Peptide property Amino acid index
(hydropathy)

Textual format or
TSV

Textual format

...

from the ontology, known to scientists from the domain. This shows that for-
mulating such constraints does not require knowledge of all available tools that
fit the description. Based on the given specification APE synthesizes workflows
that fulfill the specification by construction. Figure 2 shows two of many possible
workflow solutions for the example specification.

Automated workflow composition with APE can be performed through its
command line interface (CLI) or its application programming interface (API).
While the CLI provides a simple means to interact and experiment with the
system, the API provides more flexibility and control over the synthesis process.
It can also be used to integrate APE’s functionality into other systems.
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Fig. 2. Automated composition of a proteomics workflow.

3.1 Command Line Interface (CLI)

When running APE-<version>.jar from the command line, it requires a con-
figuration file as a parameter and executes the complete automated workflow
composition process accordingly. This JSON-based configuration file provides
references to all therefor required information:

1. The domain model (as described in Sect. 2), provided as a pair of a well-
formatted OWL and JSON files,

2. the workflow specification, provided as a list of workflow inputs/outputs and
template-based workflow constraints, and

3. parameters for the synthesis execution, such as the number of desired solu-
tions, output directory, system configurations, etc.

APE then writes the synthesized workflows into the defined output directory.
Each solution consists of a text file that describes the steps of theworkflow, a graph-
ical representation, and a shell script that implements the workflow (depending on
the availability of suitable shell commands in the tool annotations).

3.2 Application Programming Interface (API)

Like the CLI, the APE API relies on a configuration file that references the
domain ontology, tool annotations, workflow specification and execution param-
eters. However, the API allows to edit this file programmatically, and thus for
instance add constraints or change execution parameters dynamically. This is
useful, for instance, for providing more interactive user interfaces or for system-
atically exploring and evaluating workflow synthesis results for varying specifi-
cations and execution parameters.
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JSONObject apeConfig = Utils.generateGeneralConfiguration();

apeConfig.put("ontology_path", "./EDAM.owl");

apeConfig.put("tool_annotations_path", "./biotools.json");

APE apeFramework = new APE(apeConfig);

JSONObject runConfig = Utils.parseJson("./runConfig.json");

List<SolutionWorkflow> solutions = apeFramework.runSynthesis(runConfig);

apeFramework.writeSolutionToFile(solutions);

apeFramework.writeDataFlowGraphs(solutions);

Listing 1.1. APE API calls used to synthesize workflows and save solution.

Listing 1.1 shows a small example of using the APE API for synthesizing a
set of workflows similar to the example in Fig. 2. First, the paths to the domain
ontology and tool annotation files are added to the APE configuration object.
Then a new instance of the APE framework is created based on the configuration,
and the workflow synthesis algorithm is executed with the provided run config-
uration. The result of the synthesis run is a list of solutions obtained from the
SAT solver, which are written into the output directory in textual and graphical
(data-flow) format.

Fig. 3. Fragment of the APE API.

The APE API provides further functionality, allowing for a more fine-grained
interaction with the APE framework. Figure 3 outlines the API, for brevity focus-
ing on the most relevant fields and functions. The ConstraintFactory and Con-
straint classes allow for the retrieval of constraint templates and for adding
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new or removing existing constraints, thus further constraining or loosening the
specification, respectively. As shown in the example code above, the APE class
constitutes the main interface for interaction with the framework. It is used to
define the execution parameters as well as the output formats. Once the library
has generated the solutions, they are provided as a list of SolutionWorkflows.
Each solution is represented as a directed graph that comprises type and tool
nodes (internally named modules). The interface for working with the workflow
solutions (further elaborated in the next section) is provided by the classes Solu-
tionWorkflow, TypeNode (representing type instances) and ModuleNode (repre-
senting tool instances).

4 Workflow Implementation

As mentioned above, APE provides functionality for exporting the synthesized
workflows as textual representations, in the form of (data-flow and control-flow)
graphs and as executable shell scripts. In practice it is often desirable to imple-
ment workflows in one of the languages used by popular workflow management
systems, in order to be able to execute them with the respective workflow engines.
Given the large number of existing workflow languages, it is however not feasible
for APE to provide ready-to-use export functionality for all of them. Instead,
the information contained in APE’s own workflow representation can be used
to create workflows in other languages. In the following we describe the APE
workflow format and demonstrate how the contained information can be used to
create corresponding workflows in the Common Workflow Language (CWL) [4].
This feature is going to be integrated to the APE API in the near future. The
mapping process described in this paper can furthermore serve as a template for
the translation of APE results to other workflow formats, such as NextFlow [7],
SnakeMake [19] or the Workflow Description Language (WDL) [3].

4.1 APE Workflow Format

APE represents the workflow solutions in the form of directed graphs. The left-
hand side of Fig. 4 shows an example. Nodes in the graph represent instances of
data (depicted as ellipses) and executions of operations (rectangles), while the
edges represent inputs and outputs of these tools, shown as green and red arrows,
respectively. In addition, labels on the edges represent the order in which they
are given as arguments to the tools. This graph provides the trace information
that is needed to create the workflow in another language.

The APE API provides a set of functions to aid the interaction with the
graph structure (see class SolutionWorkflow in Fig. 3). The workflow inputs can
simply be retrieved using the corresponding function of the SolutionWorkflow
class, which returns it as a list of TypeNodes. Generally, each TypeNode comprises
a (possibly empty) tool node that generated it as an output, a (possibly empty)
list of tools that used it as an input, and a concrete data Type that identifies it.
Further, the SolutionWorkflow class provides a function for retrieving the tools
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Fig. 4. Workflow in APE’s native format (left) and corresponding CWL (right).

used in the workflow as list of ModuleNodes (sorted according to their order of
execution), making it easy to iterate over all tools used in the workflow. Each
ModuleNode provides information about the next and the previous ModuleNode
in the sequence, the TypeNodes used as inputs and generated as outputs by
the tool, as well as information about the actual tool (executable script, see
class Module) that provides the information needed for its execution. Finally, the
workflow outputs are provided in the same format as the initial inputs. Note that
for this example the first proposed solution from Fig. 3 was artificially extended
with additional inputs and outputs (depicted as gray ellipses) for illustrative
purposes.

4.2 Translation to CWL

The Common Workflow Language2 (CWL) [4] has recently emerged as an open
standard for describing scientific workflows across platforms. It is increasingly
adopted by the scientific community, with CWL support being added to popu-
lar scientific workflow management systems like, for example, Galaxy [10] and

2 https://www.commonwl.org/.

https://www.commonwl.org/
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Toil [28]. CWL is a declarative language that focuses on workflows composed
from command line tools. Basically, it describes a set of steps and dependencies
between those steps. CWL has its roots in “make” and similar tools, and like
them it determines the order of execution based on these dependencies between
tasks, i.e. if there is a required order of the operations or if they can even be
executed concurrently. Conveniently, the main CWL structure is quite similar
to the APE workflow structure. A basic workflow (see right-hand side of Fig. 4)
comprises a configuration header, a list of workflow inputs, steps to be performed
and workflow outputs. The input/output dependencies have to be explicitly
defined, again in line with our data trace workflow representation. The tools
in CWL usually include a command field, explicitly defining the corresponding
command line operation. In addition, they can be configured to run tools from
Docker containers automatically, allowing for more flexible and scalable workflow
implementations.

However, as the fully automatic configuration for execution is not always
feasible, the upcoming CWL version 1.2 will introduce abstract workflows.
These workflows use descriptive containers instead of directly executable opera-
tions, and require additional (manual) configuration to become executable. The
abstract containers are represented using the intent label (see Fig. 4). Given that
functional description of tools is sufficient for workflow discovery with APE, the
abstract CWL workflows match well with APE’s own workflow representation.
Furthermore, the bio.tools registry used as source for the tool annotations in
the aforementioned bioinformatics case study is a typical example of such a set
of tools. The repository contains the semantic annotations of the tools, but still
might require some additional work from the user in order to execute the tool
itself. Hence APE discovers workflows composed of tools that are not neces-
sarily available on the local system, potentially requiring the installation and
configuration of the tools on the execution system first.

To translate and APE workflow into CWL format, it is sufficient to 1)
describe the original inputs, 2) iterate through the tools in the workflow sequence
and specify the inputs used and outputs generated, and finally 3) specify the
workflow output list. The right-hand side of Fig. 4 shows the CWL representa-
tion of the APE workflow on the left. To create it, first, the list of input objects is
translated into a list of inputs that are annotated using their formats (see Label
workflow in). This means that some information about the data get lost in the
translation (specifically the type description). However, as at runtime the format
is sufficient to perform the execution, this is not a problem. Second, each tool
in the sequence is described. The description involves a definition of the inputs,
outputs and tool execution specification (mappings are annotated using labels
tool in, tool out and tool info, respectively). The most important part of the
step is to keep track of the exact source of the tool inputs as well as to provide
sufficient tool description that would allow for its execution. The input infor-
mation is already part of the formalism, as APE keeps track of data flow traces
for each data instance. The only requirement is to properly use the identifiers
provided when creating the mappings to CWL. Regarding the tool descriptions,
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as long as the provided tool annotation file contains sufficient information, it can
be translated into CWL. Third, the final workflow outputs need to be specified
based on the given solution description (see Label workflow out).

5 Applications and Lessons Learned

The development of APE was accompanied by three concrete application sce-
narios for automated workflow composition: 1) The proteomics case study men-
tioned earlier in this paper [25], 2) a case study on cartographic map genera-
tion [16], and 3) geospatial data transformations in the QuAnGIS project [18,26].
The experiences from these applications, in particular the feedback from the
involved domain experts, influenced the design decisions that we took during
the development of the APE CLI and API. While initial versions of all three
application scenarios have been created with PROPHETS, they have meanwhile
been migrated to APE completely and are publicly available3.

Naturally, the quality of the workflows obtained through APE essentially
depends on the quality of the semantic domain model (ontologies and func-
tional tool annotations). Hence it is crucial to involve domain experts in the
domain modeling process, or to rely on sources that have been created by expert
communities, such as the EDAM ontology and bio.tools registry that we use
in bioinformatics applications of APE. Essentially, the idea is that the domain
model is provided and maintained by a small group of domain experts, and used
by a larger and broader audience to automatically compose workflows. As a pos-
itive side effect on domain modeling, using APE for the systematic generation
and evaluation of workflows from varying specifications proved to be helpful to
revise and improve ontologies and annotations.

Initially we used a tabular format for the tool annotations, like the one shown
in Table 1, because spreadsheets are easy to discuss with collaborators, and the
corresponding CSV files easy to process programmatically. However, this app-
roach quickly turned out to be insufficient to adequately capture non-trivial tool
annotations. In the proteomics case study, we annotated tools’ inputs and out-
puts with both data type and format terms from EDAM. As the tools have
varying numbers of inputs and outputs, however, they could not be properly
annotated in the tabular format with a fixed number of columns. To increase
the expressiveness of APE’s tool annotation template, but at the same time
reuse an existing formalism, we decided to adopt the JSON-based tool annota-
tion schema used in the bio.tools registry [2], which includes a well-defined and
flexible mechanism for functional tool annotation. This has of course extremely
simplified the setup of bioinformatics domain models based on bio.tools, but it
has also shown to be easy to use in the other application domains.

The APE CLI and API aim to be easy-to-use, but clearly target a tech-
savvy audience with a certain level coding and/or scripting confidence. To reach
a broader audience, an intuitive interface that can be used without technical
experience or specific training is required. As a proof of principle, we recently
3 https://github.com/sanctuuary/APE UseCases.

https://github.com/sanctuuary/APE_UseCases
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developed Burke (a Bio-tools and edam User interface foR automated worK-
flow Exploration4). Preconfigured to the domain model of the proteomics case
study, it provides the automated workflow composition functionality of APE
through a browser-based graphical interface. Users can select input and output
data types and formats, as well as constraint templates and their instantiations,
from drop-down menus that are filled with the relevant EDAM terms. They
can configure and run APE’s synthesizer from the interface, and subsequently
inspect the results, which are presented in a convenient tabular format. Feed-
back on Burke by APE novices has been very positive, hence we plan to develop
a more sophisticated web interface for APE in the scope of future work on the
framework.

A graphical interface has also the potential to overcome another limitation
of the framework: Currently it is a tedious process to compare the different pos-
sible workflows generated by APE. This is however needed to make an informed
decision about which of the potentially many possible workflows to select for
implementation and execution. A graphical interface provides more possibili-
ties for dynamically filtering, aggregating and displaying workflow candidates
according to different criteria. Which criteria would actually provide meaningful
information for workflow selection is currently an open question. This is another
challenge that we are going to work on in the future.

6 Conclusion

We believe that automated workflow composition will take the work with scien-
tific workflows to the next level. On top of today’s comprehensive eScience infras-
tructure, it enables the automated generation of possible workflows for a given
specification. In this paper we introduced APE v1.0 (the Automatic Pipeline
Explorer), a command line tool and API that automates the exploration of sci-
entific workflows. APE is under active development and continuously improving
through the experiences and feedback from applications.

Future work on the APE framework will address different remaining chal-
lenges of usability and scalability. We are going to work on more end user-
oriented interfaces that support better the whole life cycle of specifying, syn-
thesizing, comparing, selecting, implementing and benchmarking computational
pipelines. With growing domain models, the runtime performance of the under-
lying synthesis algorithm is likely to become a bottleneck. We have started to
work on domain-specific search heuristics to improve synthesis performance and
allow the approach to scale.
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