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ABSTRACT
Background  Immune checkpoint inhibitor (ICI)-related 
pneumonitis is the most frequent fatal immune-related 
adverse event associated with programmed cell death 
protein-1/programmed death ligand-1 blockade. The 
pathophysiology however remains largely unknown, owing 
to limited and contradictory findings in existing literature 
pointing at either T-helper 1 or T-helper 17-mediated 
autoimmunity. In this study, we aimed to gain novel 
insights into the mechanisms of ICI-related pneumonitis, 
thereby identifying potential therapeutic targets.
Methods  In this prospective observational study, single-
cell RNA and T-cell receptor sequencing was performed on 
bronchoalveolar lavage fluid of 11 patients with ICI-related 
pneumonitis and 6 demographically-matched patients 
with cancer without ICI-related pneumonitis. Single-cell 
transcriptomic immunophenotyping and cell fate mapping 
coupled to T-cell receptor repertoire analyses were 
performed.
Results  We observed enrichment of both CD4+ 
and CD8+ T cells in ICI-pneumonitis bronchoalveolar 
lavage fluid. The CD4+ T-cell compartment showed an 
increase of pathogenic T-helper 17.1 cells, characterized 
by high co-expression of TBX21 (encoding T-bet) and 
RORC (ROR-γ), IFN-G (IFN-γ), IL-17A, CSF2 (GM-CSF), 
and cytotoxicity genes. Type 1 regulatory T cells and 
naïve-like CD4+ T cells were also enriched. Within the 
CD8+ T-cell compartment, mainly effector memory T 
cells were increased. Correspondingly, myeloid cells 
in ICI-pneumonitis bronchoalveolar lavage fluid were 
relatively depleted of anti-inflammatory resident alveolar 
macrophages while pro-inflammatory ‘M1-like’ monocytes 
(expressing TNF, IL-1B, IL-6, IL-23A, and GM-CSF receptor 
CSF2RA, CSF2RB) were enriched compared with control 
samples. Importantly, a feedforward loop, in which 
GM-CSF production by pathogenic T-helper 17.1 cells 
promotes tissue inflammation and IL-23 production by 
pro-inflammatory monocytes and vice versa, has been well 
characterized in multiple autoimmune disorders but has 
never been identified in ICI-related pneumonitis.

Conclusions  Using single-cell transcriptomics, we 
identified accumulation of pathogenic T-helper 17.1 
cells in ICI-pneumonitis bronchoalveolar lavage fluid—a 
phenotype explaining previous divergent findings on 
T-helper 1 versus T-helper 17 involvement in ICI-
pneumonitis—,putatively engaging in detrimental 
crosstalk with pro-inflammatory ‘M1-like’ monocytes. This 
finding yields several novel potential therapeutic targets for 
the treatment of ICI-pneumonitis. Most notably repurposing 
anti-IL-23 merits further research as a potential efficacious 
and safe treatment for ICI-pneumonitis.

BACKGROUND
Immune checkpoint inhibitors (ICIs) have 
been approved for the treatment of many 
tumor types in various disease stages, offering 
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	⇒ Immune checkpoint inhibitor (ICI)-pneumonitis 
is a frequent serious adverse event of cancer im-
munotherapy hinging on a cell-mediated immune 
response, though the exact pathophysiology is cur-
rently unknown.

WHAT THIS STUDY ADDS
	⇒ Single-cell transcriptomics identifies enrichment of 
pathogenic (TBX21, RORC, IFNG, IL-17A, CSF2 ex-
pressing) T-helper 17.1 cells and pro-inflammatory 
(TNF, IL-1B, IL-6, IL-23A expressing) monocytes in 
ICI-pneumonitis bronchoalveolar lavage fluid, puta-
tively engaging in a feedforward inflammatory loop.
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	⇒ The data yield several novel potential therapeutic 
targets for ICI-pneumonitis. Notably anti-IL-23 holds 
promise as an efficacious and safe treatment for ICI-
pneumonitis that deserves further research.
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more durable responses and better tolerability compared 
with conventional cytotoxic treatments.1 However, with 
the expanding use of ICIs, clinicians are increasingly 
confronted with immune-related adverse events (irAEs). 
While most of these side effects present with mild symp-
toms, some patients experience severe immune-mediated 
toxicity and require immunosuppressive therapy.2 ICI-
related pneumonitis (ICI-pneumonitis), most often 
occurring in patients with non-small cell lung cancer 
(NSCLC) treated with programmed cell death protein-
1/programmed death ligand-1 (PD-1/PD-L1) blockade, 
is an irAE deserving special consideration. Its real-world 
incidence is up to 19%,3 and it is the most frequent fatal 
adverse event in this patient population, responsible for 
35% of iatrogenic deaths.4 This reflects how difficult it 
remains to diagnose and effectively treat ICI-pneumonitis, 
as a result of the scarcity of available pathophysiological 
knowledge.5 6

Using flow cytometry, Suresh et al analyzed immune 
perturbations within the ICI-pneumonitis alveolar 
compartment, comparing bronchoalveolar lavage 
fluid (BALF) of 12 patients with ICI-pneumonitis to 
6 ICI-treated patients without ICI-pneumonitis. They 
predominantly observed an increase of T cells in BALF. 
Particularly, CD4+ central memory T cells were increased, 
which on in vitro stimulation displayed increased tumor 
necrosis factor alpha (TNF-α) and interferon-gamma 
(IFN-γ) secretion, suggesting a T-helper 1 (TH1)-mediated 
immune response to underlie ICI-pneumonitis. More-
over, they observed that regulatory T cells (TREG) had 
decreased immunoregulatory capacity, leading them to 
speculate that diminished immunosuppression by TREG 
might trigger an exuberant TH1 immune response in ICI-
induced pneumonitis. Myeloid cells also gained a more 
inflammatory phenotype in this study, expressing high 
levels of interleukin (IL)-1β and TNF-α.7 In contrast, 
Wang et al profiled by flow cytometry longitudinally-
collected peripheral blood mononuclear cells of 13 
patients with ICI-pneumonitis and proposed a different 
mechanism. Particularly, they observed an increase in 
circulating T-helper 17 cells (TH17), as well as an increase 
in the levels of IL-17 in plasma and BALF, suggesting an 
important role of TH17 in mediating ICI-pneumonitis.8 A 
recent bulk transcriptomic study on surgical biopsies of 
eight ICI-pneumonitis lesions on the other hand, reported 
a predominant increase of CD8+ T cells and B cells.9 
Finally, two series of case reports in total encompassing 
five patients with ICI-pneumonitis reported a significant 
overlap between the T-cell receptor (TCR) repertoire of 
clonally-expanded BALF and tumor-infiltrating T cells, 
suggesting that antigens shared by the tumor and lung 
elicit the autoimmune response in ICI-pneumonitis.10 11

In summary, while the involvement of T cells in ICI-
pneumonitis is clear, little is known about the contri-
bution of specific T-cell subsets and the immune cells 
that modulate the T-cell response. This knowledge gap 
has direct clinical consequences, resulting in a lack 
of rational targeted therapies. To gain better insights 

into the mechanisms underlying ICI-pneumonitis, we 
performed deep immune profiling using single-cell RNA 
(scRNA-seq) and T-cell receptor sequencing (scTCR-seq) 
of ICI-pneumonitis BALF, and comparatively analyzed 
the bronchoalveolar immune landscape across patients 
with (lung) cancer with and without ICI-pneumonitis.

METHODS
We prospectively collected BALF from 11 patients (10 
patients with NSCLC and 1 patient with melanoma) 
receiving anti-PD-1/PD-L1 treatment and developing ICI-
pneumonitis. Diagnosis of ICI-pneumonitis was based on 
clinical, laboratory, radiographic and (invasive) micro-
biological findings. Grade was moderate to severe in all 
patients (grade 2–3 according to Common Terminology 
Criteria for Adverse Events (V.5.0), with only two patients 
requiring supplemental oxygen, and all patients received 
first-line treatment according to European Society for 
Medical Oncology guidelines.2 Importantly, BALF was 
collected prior to the start of this treatment. We also 
analyzed BALF data from six control patients. These 
patients were demographically matched and underwent 
bronchoalveolar lavage of an unaffected (contralateral) 
lobe, solely for research purposes, during bronchoscopy 
with transbronchial biopsy of a newly diagnosed lung 
tumor. Detailed inclusion criteria as well as demographic 
and clinical data of the patient cohort are summarized 
in table  1, online Supplementary Table S1 and in the 
Supplementary Methods section.

Immediately after collecting BALF, cells were subjected 
to single-cell profiling using the 5’ scRNA-seq kit from 
10x Genomics. After quality control and filtering (online 
supplemental methods), we obtained ~775 million unique 
transcripts from 141,056 cells. Dimensionality reduction 
and clustering was performed using Seurat V.4.1.0.12 
Main cell types were annotated according to established 
marker gene panels (figure 1A,B). There was no evidence 
of clustering bias (ICI-pneumonitis vs control, or across 
individual patients; online supplemental figure S1).

To refine our subclustering efforts, we used additional 
samples profiled by scRNA-seq. Specifically, we pooled 3’ 
scRNA-seq data of eight early-stage NSCLC tissue samples 
(~338 million unique transcripts from 72,170 cells) and 
seven normal lung samples (~134 million unique tran-
scripts from 29,616 cells; online supplemental figure 
S2A).13 Assignment of main cell types was done in a 
similar fashion as for the BALF data, without evidence 
of batch effects (NSCLC vs normal lung, or across indi-
vidual patients; online supplemental figure S2B–D). 
Subsequently, data from each main cell type (derived 
from BALF, NSCLC and normal lung samples) were inte-
grated separately using canonical correlation analysis, as 
described previously, without signs of batch effects across 
sequencing technologies, data sets or individual patients 
(online Supplemental figure S3).14 After integration, 
subclustering of main cell types was done based on differ-
ential expression of marker genes.
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To gain information on clonotype distribution and 
dynamics, we performed scTCR-seq on these samples and 
considered all productive TCRs, which we defined as T 
cells with TCRs that can be joined in a reading frame by 
V(D)J recombination without premature stop codons, 
enabling assessment of a complete TCR α or β chain 
for downstream analysis. Relative clonotype richness 
was defined as the number of unique TCRs divided by 
the total number of cells with a unique TCR. Clonotype 
evenness was assessed by calculating the inverse Simpson 
index divided by the number of unique clonotypes. Gini 
coefficient, a summary metric of inequality of clonotype 
distribution within a repertoire, was calculated using the 
‘Gini’ function from the DescTools R package.15 16

We used the CellRank algorithm to functionally char-
acterize CD4+ T-cell state transitions, based on transcrip-
tional similarity between cells and RNA velocity.17

A detailed workflow of downstream analyses is provided 
in the online supplemental methods section.

RESULTS
T cells dominate the bronchoalveolar space in ICI-
pneumonitis
After quality control and filtering (online supplemental 
methods), we obtained 141,056 cells of which 85,481 were 
derived from ICI-pneumonitis BALF and 55,575 from 
demographically-matched control BALF. We identified 
several clusters, which we linked to cell types (figure 1A) 
based on canonical marker gene expression (figure 1B), 
and we then evaluated differences in immune cell propor-
tions (figure 1C). T cells made up more than half of all 
immune cells in ICI-pneumonitis BALF, a striking four-
fold increase compared with control BALF. Conversely, 
we observed a clear relative depletion of monocytes/
macrophages in ICI-pneumonitis BALF, while dendritic 
cells (DCs) were threefold increased. For B cell, neutro-
phil and mast cell abundance, no statistically significant 
differences between ICI-pneumonitis and control BALF 
were observed.

Table 1  Demographics and characteristics of study cohort

ICI-pneumonitis (n=11) Control (n=6) P value

Age, years 68.5 (61.7–72.8) 65.7 (53.0–75.9) 0.96

Sex – – 0.86

 � Men 5 (45.5) 3 (50.0)

 � Women 6 (54.5) 3 (50.0)

Smoking status – – 0.11

 � Never 1 (9.1) 3 (50)

 � Former 9 (81.8) 2 (33.3)

 � Active 1 (9.1) 1 (16.7)

COPD 3 (27.3) 2 (33.3) 0.79

Underlying malignancy

 � NSCLC 10 (90.9) 6 (100) 0.45

 � Melanoma 1 (9.1) 0 (0)

Immunotherapy regimen NA

 � Pembrolizumab 6 (54.5) NA

 � Nivolumab 1 (9.1) NA

 � Durvalumab 3 (27.3) NA

 � Atezolizumab 1 (9.1) NA

Prior systemic therapy* 8 (72.7) NA NA

Prior radiotherapy† 5 (45.5) NA NA

Time from symptom onset to sampling (days) 17.0 (9.0–19.0) NA NA

Grade‡ NA

 � 2 9 (81.8) NA

 � 3 2 (18.2) NA

Data are median (IQR) or n (%). The p values are from Mann-Whitney U test for continuous data and Pearson’s χ2 for non-ordered categorical 
data, all based on a two-sided hypothesis.
*Last administration of chemotherapy at least 4 months prior to sampling.
†Radiotherapy completed at least 3 months prior to sampling.
‡Grading according to Common Terminology Criteria for Adverse Events V.5.0.
COPD, chronic obstructive pulmonary disease; ICI, immune checkpoint inhibitor ; NSCLC, non-small cell lung cancer.
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Altogether, these broad immune cell typing efforts 
confirm previous reports highlighting prominent T-cell 
involvement in ICI-pneumonitis, but they fail to point 
towards neutrophil or B cell involvement.7 9 Furthermore, 
we describe enrichment of DCs as a novel characteristic 
of BALF from ICI-induced pneumonitis.

Pathogenic CD4+ TH17.1 and effector memory CD8+ T cells in 
ICI-pneumonitis BALF
To better characterize the T-cell response, we subclus-
tered all 65,293 T cells and performed an in-depth anal-
ysis of T-cell subclusters. Overall, we identified seven 
CD4+ T-cell subtypes; naïve-like (TN; with CCR7, LEF1 and 
TCF7 as marker genes), effector memory (TEM;ANXA1, 
CXCR4, IL-2), T follicular helper (TFH; BCL6, CXCR5, 
ICA1), two clusters of TREG and two clusters of CD4+ 
T cells with both (TH17-like; RORC, IL-23R, CCR6) and 
(TH1-like; TBX21, IFNG, CXCR3) properties, termed TH17.1 

cells (figure 2A,B; online supplemental figure S4A). TREG 
consisted of a FOXP3+ TREG cluster (TREG; FOXP3, IL-2RA, 
IL-1R2) and FOXP3– regulatory type 1 T-cell cluster (TR1; 
CRTAM, IL-10, LAG3), which derive from T-helper, CD4+ 
naïve or memory T cells in inflamed peripheral organs 
where they induce tolerance, mainly by producing IL-10 
and by selective killing of antigen-presenting cells (APCs) 
through granzyme B and perforin secretion.18 Indeed, the 
cytotoxic capacity of these CD4+ T cells explains why they 
cluster in close proximity to CD8+ T cells on the Uniform 
Manifold Approximation and Projection plot (online 
supplemental figure S4B). TH17.1 cells finally constituted 
a large cluster, termed TH17.1_RORC cells, with balanced 
expression of TH1-related and TH17-related genes, and a 
smaller cluster, termed TH17.1_TBX21 cells, with a pronounced 
pathogenic phenotype evidenced by retained TH17-related 
gene expression (RORC, CCR6, IL-17A, IL-23R), but 

Figure 1  Cell composition of ICI-pneumonitis and control patients’ bronchoalveolar lavage fluid (BALF). (A) UMAP plot of 
141,056 cells present in ICI-pneumonitis and control BALF. (B) Heatmap of canonical marker gene expression used for main 
cell type annotation. (C) Comparison of relative cell type abundance, revealed accumulation of T cells and dendritic cells in 
ICI-pneumonitis BALF, while other myeloid cells (monocytes/macrophages) were relatively depleted. Wilcoxon rank-sum test 
was used; significance is shown as *p<0.05. DC, dendritic cell; ICI, immune checkpoint inhibitor; UMAP, Uniform Manifold 
Approximation and Projection.
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upregulation of TH1-related (TBX21, IFNG), cytotoxicity-
related (GZMB, PRF1, GNLY), exhaustion-related 
(PDCD1, CTLA4, LAG3) and monocyte activation-related 
genes (CSF2, encoding granulocyte-macrophage colony-
stimulating factor (GM-CSF)).19

Next, we identified seven CD8+ T-cell subtypes, namely 
(TN; CCR7, LEF1, TCF7), (TEM; GZMK, GZMM, CXCR4), 
resident-memory (ZNF683, ITGAE, ITGA1), recently 
activated effector memory (CX3CR1, FGFBP2, FCGR3A) 
and experienced (co-expressing effector markers GZMB, 
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Figure 2  T-cell phenotypes and relative abundance in ICI-pneumonitis and control bronchoalveolar lavage fluid. (A) Uniform 
Manifold Approximation and Projection plot of 65,293 T cells, (B) annotated according to canonical marker gene expression 
of CD4+ (left panel) and CD8+ T cells, MAIT, and NK-cells (right panel). (C) A comparison of relative T-cell subtype abundance, 
revealed accumulation of CD4+ T-helper 17.1 cells with a pathogenic phenotype (TH17.1_TBX21) in ICI-pneumonitis, as well 
as enrichment of CD4+ regulatory type 1 T cells (TR1), CD4+ naïve-like T cells (TN), and CD8+ effector memory (TEM) T cells. 
Wilcoxon rank-sum test was used; significance is shown as *p<0.05. (D) Volcano plot showing differentially expressed genes 
in T cells comparing ICI-pneumonitis and control T cells. P values were obtained by the model-based analysis of single-cell 
transcriptomics (MAST) test and Bonferroni-corrected (see online supplemental table S1 for all differentially expressed genes). 
(E) Differential gene set enrichment analysis (DGSEA) on differentially expressed genes for ICI-pneumonitis versus control T 
cells using the R package hypeR. Only significant genes (adjusted p value<0.05) and genes with a log-fold change higher than 
0.5 or lower than −0.5 were used (see online supplemental tables S2 and S3 for all differentially expressed gene sets in ICI-
pneumonitis and control T cells, respectively). CD4_N, CD4+ naïve-like T cells; CD4_EM, CD4+ effector memory T cells; CD4_
TR1, CD4+ regulatory type 1 T cells; CD4_Th17.1_RORC, CD4+ T-helper 17.1 lymphocytes with predominant non-pathogenic 
features; CD4_Th17.1_TBX21, CD4+ T-helper 17.1 lymphocytes with predominant (pathogenic) T-helper 1-like features; 
CD4_FH, CD4+ follicular helper T-cells; CD4_REG, CD4+ regulatory T cells; CD8_N, CD8+ naïve-like T cells; CD8_EM, CD8+ 
effector memory T cells; CD8_RM, CD8+ resident memory T cells; CD8_EMRA, CD8+ recently activated effector memory T 
cells; CD8_EX, CD8+ exhausted T cells; CD8_gd, CD8+ gamma delta T cells; DGEA, differential gene expression analysis; FDR, 
false discovery rate; ICI, immune checkpoint inhibitor; MAIT, mucosal associated invariant T cells; NK, natural killer; NK_cyto, 
cytotoxic NK-cells; NK_infla, inflammatory NK-cells.
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PRF1, GNLY, IFNG and inhibitory checkpoint molecules 
HAVCR2, CTLA4, LAG3) CD8+ T cells, as well as the 
innate-like lymphoid gamma delta T cells (Tγδ; TRDC, 
KIR3LD2, KIR3LD4) and mucosal associated invariant T 
cells (TMAIT; RORC, IL-23R, SLC4A10). Finally, we found 
two natural killer (NK) cell populations, namely inflam-
matory and cytotoxic NK-cells marked by immune cell 
recruitment (NCAM1, NCR1, XCL1, XL2) and cytotoxic 
functions (PRF1, FCGR3A, CX3CR1, FGFBP2), respectively.

When comparing the relative proportions of T-cell 
subtypes in ICI-pneumonitis and control BALF, CD4+ 
TH17.1 cells were most frequent, accounting for one-
third of all T cells in both conditions. Particularly, CD4+ 
TH17.1 cells corresponded to 13% of all immune cells in 
ICI-pneumonitis versus 3% in control BALF. Within 
CD4+ TH17.1 cells, we noticed no significant differences 
between ICI-pneumonitis and control BALF for TH17.1_

RORC cells, but a fourfold increase in pathogenic (IFNG-
high, CSF2high) TH17.1_TBX21 cells (figure 2C). TH17.1 cells are 
increasingly recognized for their role in autoimmune 
processes, for example, sarcoidosis and inflammatory 
bowel disease (IBD), in which their capacity for IFN-γ 
secretion correlates to disease severity.20 21 More recently, 
it has become clear that also GM-CSF secretion by these 
T-helper cells is a critical regulator of auto-inflammation, 
for example, in multiple sclerosis where IFN-γ+ GM-CSF+ 
T-helper cells license myeloid cells for tissue destruction.19

CD4+ TN cells were also more abundant in ICI-
pneumonitis BALF, as were (IL-10high) CD4+ TR1 cells. The 
latter have been shown to arise during TH17.1-mediated 
inflammation as a negative feedback mechanism, and 
the abundance of TR1 cells indeed was higher in patients 
with ICI-pneumonitis showing resolution of radiographic 
abnormalities after first-line treatment compared with 
patients with persistent abnormalities (online supple-
mental figure S4C).22 Finally, a slight increase in CD4+ 
TFH abundance, although not significant (p=0.18), was 
observed in ICI-pneumonitis BALF, which correlates with 
previous observations in a patient with inherited PD-1 defi-
ciency, developing severe autoimmune pneumopathy.23 
No statistically significant differences were observed 
regarding the relative abundance of other CD4+ T-cell 
subtypes. In the CD8+ T-cell compartment, we found 
enrichment of CD8+ TEM in ICI-pneumonitis compared 
with control BALF; a T-cell subset with an activated pheno-
type (high expression of CD27 and CD69; low expression 
of inhibitory checkpoints HAVCR2, TIGIT, CTLA4) that 
contributes to an inflammatory tissue response (GZMK, 
GZMA, TNF).24 No significant differences were seen for 
other conventional CD8+ T-cell subtypes, nor for Tγδ, 
TMAIT or NK-cells.

Interestingly, an unbiased differential gene expression 
analysis (DGEA) coupled to differential gene set enrich-
ment analysis (DGSEA) on all T cells (figure  2D,E), 
confirmed the presence of a highly activated T-cell 
compartment in ICI-pneumonitis BALF (upregula-
tion of co-stimulatory receptor CD27; MHC class II 
genes HLA-DRB1, HLA-DRB5, HLA-DPB1; ITM2A) 

with pro-inflammatory and cytotoxic features (NF-κB 
(NFKBIA, TNFAIP3) and AP-1 (JUN) signaling; CCL4; 
GZMK; GNLY), and marked upregulation of genes related 
to interferon signaling (IFI6, ISG20, IFITM3, RGS1).

Overall, these scRNA-seq analyses showed massive T-cell 
accumulation in ICI-pneumonitis BALF, of which TH17.1 
cells made up the largest fraction. Comparing relative 
T-cell subtype abundance within the T-cell compartment, 
identified preferential enrichment of IFNGhigh, CSF2high 
TH17.1_TBX21 cells in ICI-pneumonitis. This finding provides 
an explanation for previous contradictory T-cell pheno-
typing efforts in ICI-pneumonitis, in which presumably 
these hybrid TH17.1 cells were named either TH1 or TH17 
cells.7 8 In line with prior studies, we observed accumula-
tion of CD8+ TEM, likely contributing to the excessive type 
1 immune response, and CD4+ TN, that via CD62L (SELL) 
could possibly be recruited to the site of inflammation.7 
Finally, we observed a slight enrichment of IL-10high TR1 
cells, a regulatory cell type relying mainly on IL-10 secre-
tion and APC killing to exert its function, suggesting they 
represent a negative feedback mechanism counterbal-
ancing TH17.1-mediated inflammation. Indeed, although 
enrichment of an IL-10 secreting regulatory cell type 
may seem counterintuitive, increased systemic levels of 
IL-10 during ICI-pneumonitis development have been 
reported previously.25 26

Cell fate mapping and TCR analysis reveals pathogenic 
phenotype shift of T-helper cells
The above analyses suggested a central role for a patho-
genic subset of TH17.1 cells in ICI-pneumonitis pathophys-
iology. To more comprehensively characterize the TH17.1 
immune response, we performed single-cell fate mapping 
and continuous gene expression analysis by running the 
CellRank algorithm on CD4+ T cells.17 This algorithm 
ranks individual cells based on similarity in gene expres-
sion and RNA velocity along probabilistic state-change 
trajectories. It allows to study and compare relatedness 
and gene expression dynamics of cell subtypes between 
different conditions in a continuous manner. After we 
excluded TREG from these analyses given their distinct 
developmental paths,27 we identified a trajectory in 
which TEM were connected to the TH17.1_RORC cluster, which 
then branched into either TH17.1_TBX21 or TR1 as terminal 
states, or formed a terminal state itself (figure 3A,B). We 
confirmed this trajectory by independent TCR reper-
toire analysis, showing the highest degree of TCR sharing 
between connected cell states (online supplemental 
figure S4D,E).

We next plotted key marker and functional genes, as 
well as the relative abundance of cells in ICI-pneumonitis 
and control samples, along the TH17.1_TBX21 trajectory 
(figure  3C,D). This analysis showed progressive down-
regulation of naïve state genes (TCF7, IL-7R, lymph node 
homing receptor CCR7) and upregulation of TH17-related 
genes (RORC, CCR6, IL-23R) early in the trajectory. 
At this stage, where cell density is still high for control 
samples, we observed co-expression of non-pathogenic 

https://dx.doi.org/10.1136/jitc-2022-005323
https://dx.doi.org/10.1136/jitc-2022-005323
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transcription factors, for example, ZFX (driving a TH17 self-
renewal program) and FOXO1 (downregulating inflam-
matory cytokine secretion), coupled to expression of 
mostly non-pathogenic surface molecules and cytokines; 

PROCR (which negatively regulates pro-inflammatory 
cytokine secretion), IL-1RN (encoding IL-1 receptor 
antagonist, unexpectedly co-expressed with IL-1 receptor 
IL-1R1), IL-6R (which ‘stabilizes’ non-pathogenic TH17-like 

Figure 3  Cell fate mapping and T-cell receptor repertoire analysis of CD4+ T cells in ICI-pneumonitis and control 
bronchoalveolar lavage fluid. (A) Uniform Manifold Approximation and Projection plot of 11,570 CD4+ T cells with cell fate 
trajectories and (B) latent time as calculated by the CellRank algorithm, showing TEM were connected to the TH17.1_RORC cluster, 
which branched into either TH17.1_TBX21 or TR1 as terminal states, or formed a terminal state itself. (C) Continuous gene expression 
profiling along the TH17.1_TBX21 trajectory. (D) Barplot of relative cell abundance in ICI-pneumonitis and control bronchoalveolar 
lavage fluid (BALF) along the TH17.1_TBX21 trajectory. (E) Line graph of the Gini coefficient for ICI-pneumonitis and control BALF 
T-cell receptor repertoire along the TH17.1_TBX21 trajectory, as calculated by the DescTools algorithm. CD4_N, CD4+ naïve-like T 
cells; CD4_EM, CD4+ effector memory T cells; CD4_TR1, CD4+ regulatory type 1 T cells; CD4_Th17.1_RORC, CD4+ T-helper 
17.1 lymphocytes with predominant non-pathogenic features; CD4_Th17.1_TBX21, CD4+ T-helper 17.1 lymphocytes with 
predominant (pathogenic) T-helper 1-like features; CD4_FH, CD4+ follicular helper T cells; ICI, immune checkpoint inhibitor.
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cells), IL-10, and IL-10RA (encoding IL-10 receptor).28–31 
Further along the trajectory, transcription factors associ-
ated with a pathogenic phenotype are upregulated, most 
notably TBX21 (inducing a.o. IFN-γ secretion) and PRDM1 
(encoding BLIMP-1, a transcription factor promoting a.o. 
GM-CSF secretion). As a result, pro-inflammatory chemo-
kines (CCL4, CCL5), cytotoxicity genes (GZMB, GNLY), 
and especially key genes mediating TH17.1 pathogenicity, 
namely IFNG and CSF2, are progressively upregulated 
near the end of the TH17.1 trajectory, where cell density 
peaks for ICI-pneumonitis BALF samples.32 33

In a similar fashion, we comparatively examined 
T-cell clonality along the TH17.1_TBX21 trajectory, obtaining 
11,570 CD4+ T cells with a TCR sequence. To assess clono-
type diversity and distribution, we calculated TCR richness 
and evenness as well as the Gini coefficient (figure  3E; 
online supplemental figure S4F). While low TCR richness 
indicates a limited number of T-cell specificities, low even-
ness marks a skewed distribution of these specificities. 
The Gini coefficient is a summary metric of inequality 
of clonotype distribution within a repertoire, such that a 
high Gini coefficient and low TCR richness and evenness 
reflect clonal expansion of specific T-cell clones following 
cognate antigen recognition.15 We observed a progressive 
increase of the Gini coefficient, and a decline of TCR 
richness and evenness, along the TH17.1_TBX21 trajectory in 
ICI-pneumonitis, which was not seen in control BALF. 
This suggests strong antigen-driven clonal proliferation 
of TH17.1_TBX21 cells, another established feature of patho-
genic TH17.1 cells.33

Overall, cell fate mapping coupled to single-cell TCR 
repertoire analysis unraveled the plasticity of TH17.1 cells in 
ICI-pneumonitis and control BALF. These cells are skewed 
towards a pathogenic IFNGhigh CSF2high phenotype in ICI-
pneumonitis BALF, regulated by transcription factors 
TBX21 and PRDM1, respectively. Importantly, T-cell clon-
ality analyses showed pronounced antigen-driven clonal 
expansion of this phenotype, further supporting the 
notion that these are not just bystander activated T cells 
but central players in ICI-pneumonitis pathophysiology.33

Crosstalk between pathogenic TH17.1 cells and pro-
inflammatory monocytes
We next wondered how innate immune cells are involved in 
ICI-pneumonitis immunopathology, and subclustered all 
63,330 monocytes and macrophages (figure 4A–C). First, 
monocytes were separated from macrophages based on 
differential canonical monocyte (FCN1, LILRB2, LILRA5) 
or macrophage marker gene expression (PPARG, FABP4, 
MARCO), respectively. Monocytes were then subclus-
tered into classical FCN1high (FNC1, S100A8, S100A9) and 
inflammatory IL-1Bhigh monocytes (IL-1B, CCL20, IL-6). 
Within the macrophages, we identified monocyte-derived 
(expressing LGMN, CHI3L1 and MERTK) and tissue-
resident FABP4high alveolar macrophages (FABP4, PPARG, 
MARCO), which formed a non-proliferating and a prolif-
erating subcluster (MKI67, TOP2A, CDK1). We observed 
a significant decrease of anti-inflammatory alveolar 

macrophages in ICI-pneumonitis BALF, and a corre-
sponding increase of monocyte-derived macrophages 
and pro-inflammatory IL-1Bhigh monocytes (figure 4D).

Besides IL1B, these pro-inflammatory monocytes show 
high expression of other pro-inflammatory genes, most 
notably TNF (encoding TNF-α), IL-6, IL-23A, CSF2RA, 
CSF2RB, CCL20 and the interferon-induced chemokines 
CXCL9/10. CXCL9/10 and CCL20 are potent chemoat-
tractants of CXCR3+ and CCR6+ cells, respectively, with 
presence of both chemotaxis receptors defining TH17.1 
cells.34 IL-1 and IL-23 moreover are critical cytokines 
inducing pathogenic features (notably GM-CSF secre-
tion) in TH17.1 cells.19 Reciprocally, GM-CSF signaling 
through the GM-CSF receptor (CSF2RA, CSF2RB) is 
known to induce this pro-inflammatory monocyte pheno-
type.19 DGEA and DGSEA across all monocytes/macro-
phages comparing ICI-pneumonitis and control BALF, 
confirmed that pro-inflammatory IL-1Bhigh monocytes 
are involved in the innate immune response in ICI-
pneumonitis (figure  4E,F). Specifically, expression of 
pro-inflammatory ‘M1-like’ genes (CCL3, CCL4, IL1B, 
TNF, NFKBIA) was upregulated in ICI-pneumonitis mono-
cytes/macrophages, while anti-inflammatory ‘M2-like’ 
genes (IGF1, MARCO) were relatively enriched in control 
monocytes/macrophages.

We also analyzed the DC compartment in a similar 
fashion, as these cells have a central role in directing T-cell 
phenotypes. Subclustering of DCs revealed classical type 
I DCs (CLEC9A, XCR1, CPNE), type II DCs (CLEC10A, 
FCGR2B, FCER1G), plasmacytoid DCs (LILRA4, CLEC4C, 
IRF7), and migratory DCs (CCR7, LAMP3, FSCN1) 
(figure 5A,B). Although DCs were overall enriched in ICI-
pneumonitis BALF, we observed no significant differences 
for DC subtype abundance between ICI-pneumonitis and 
control BALF (figure  5C). Hence, the role of DCs in 
shaping the ICI-pneumonitis immune response remains 
unclear. Our data do suggest, however, that myeloid cells, 
specifically pro-inflammatory monocytes, might not only 
directly mediate tissue damage in ICI-pneumonitis but 
also sustain tissue inflammation by recruiting and shaping 
pathogenic TH17.1 cells under the influence of GM-CSF.19

DISCUSSION
Here, we shed light on the mechanisms underlying pneu-
monitis occurring in patients with cancer during anti-
PD-1/PD-L1 therapy. These findings are important, as 
they are a necessary first step to identifying immunomod-
ulatory treatments effectively targeting the root cause of 
ICI-pneumonitis. These are currently lacking, making 
ICI-pneumonitis the most frequent fatal anti-PD-1/PD-L1-
related adverse event.4 For the first time, we present a 
single-cell transcriptomic atlas of the bronchoalveolar 
immune landscape in ICI-pneumonitis, comparing the 
relative abundance of immune cell types as well as their 
precise phenotype and clonotype distribution to those in 
BALF of demographically-matched controls.

https://dx.doi.org/10.1136/jitc-2022-005323
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First and foremost, we confirm that T-cell accumula-
tion, of both CD4+ and CD8+ T cells, is a hallmark of ICI-
pneumonitis. T cells constitute about 10% of immune 
cells in control BALF (in line with historical findings in 
healthy BALF),35 whereas they make up more than half 

of all immune cells in ICI-pneumonitis BALF. TH17.1 cells, 
which are TH17 cells that have gained TH1 features such 
as expression of transcription factor T-bet (encoded by 
TBX21) and IFN-γ (IFNG), make up the bulk of T cells 
in both ICI-pneumonitis and control BALF (which 
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Figure 4  Macrophage and monocyte phenotypes and relative abundance in ICI-pneumonitis and control bronchoalveolar 
lavage fluid. (A) Uniform Manifold Approximation and Projection plot of 63,330 macrophages and monocytes, (B) annotated 
according to canonical marker gene expression. (C) Heatmap of functional gene expression patterns in macrophages 
and monocytes, showing pro-inflammatory/anti-inflammatory and antigen presentation-related gene expression patterns. 
(D) Comparison of relative cell subtype abundance, showing a relative enrichment of monocyte-derived macrophages (Mac_
Md) and IL-1Bhigh pro-inflammatory monocytes (Monocyte_IL-1B) and a relative depletion of alveolar resident macrophages 
(Mac_Alveolar) in ICI-pneumonitis bronchoalveolar lavage fluid. Wilcoxon rank-sum test was used; significance is shown as 
*p<0.05. (E) Volcano plot showing differentially expressed genes in monocytes/macrophages comparing ICI-pneumonitis and 
control samples. P values were obtained by the model-based analysis of single-cell transcriptomics (MAST) test and Bonferroni-
corrected (see online supplemental table S4 for all differentially expressed genes). (F) Differential gene set enrichment analysis 
(DGSEA) on differentially expressed genes for ICI-pneumonitis versus control monocytes/macrophages using the R package 
hypeR. Only significant genes (adjusted p value<0.05) and genes with a log-fold change higher than 0.5 or lower than −0.5 
were used (see online supplemental table S5 and S6 for all differentially expressed gene sets in ICI-pneumonitis and control 
monocytes/macrophages, respectively). DGEA, differential gene expression analysis; FDR, false discovery rate; ICI, immune 
checkpoint inhibitor; IL, interleukin; Macrophage_Md_LGMN monocyte-derived macrophage.

https://dx.doi.org/10.1136/jitc-2022-005323
https://dx.doi.org/10.1136/jitc-2022-005323
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corresponds to a fourfold increase of the ratio of TH17.1 
cells over all immune cells in ICI-pneumonitis). More 
importantly we show, both by subclustering and by fate 
mapping of TH17.1 cells coupled to TCR repertoire analysis, 
that they display a more pathogenic phenotype evidenced 
by higher expression of IFNG, CSF2 (encoding GM-CSF) 
and cytotoxicity genes and by strong antigen-driven 

clonal proliferation. This cell type is increasingly being 
recognized in autoimmune processes, such as IBD, 
multiple sclerosis and sarcoidosis, previously thought to 
have been mediated by TH1 cells.33 The type 1 immune 
response conveyed by TH17.1 cells is probably strength-
ened by CD8+ effector memory T cells, which were more 
abundant in ICI-pneumonitis BALF. Earlier studies on 
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Figure 5  Dendritic cell phenotypes and relative abundance in ICI-pneumonitis and control bronchoalveolar lavage fluid. 
(A) Uniform Manifold Approximation and Projection plot of 2642 dendritic cells, (B) annotated according to canonical marker 
gene expression. (C) A comparison of relative dendritic cell subtype abundance showed no statistically significant differences 
between ICI-pneumonitis and control bronchoalveolar lavage fluid. Wilcoxon rank-sum test was used. cDC1, classical type 
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ICI-pneumonitis also observed prominent lymphocy-
tosis, with higher abundance of TNF-αhigh CD8+ T cells,7 
but contradictory findings were reported on TH1 versus 
TH17 involvement. We argue this might be due to limited 
flow cytometry panels used in these studies (compared 
with whole-transcriptome scRNA-seq data) that did not 
include the canonical TH17 transcription factor antibody 
anti-RORγ, hence precluding the identification of a 
hybrid TH17.1 phenotype.7 8

Second and somewhat unexpectedly, we observed 
a higher abundance of FOXP3– IL-10high TR1 in ICI-
pneumonitis BALF. In preclinical models, it has been 
shown that in pro-inflammatory conditions, in the pres-
ence of TGF-β/IL-6/IL-23, TH17 cells are skewed towards 
a pathogenic TH17.1 phenotype but that a small proportion 
of these TH17.1 cells gives rise to TR1 cells, in line with our 
findings.22 Indeed, while IL-10 is the prototypical anti-
inflammatory IL, increased serum IL-10 levels have been 
reported during ICI-pneumonitis.25 26

How innate immune cells interact with TH17.1 cells in 
ICI-pneumonitis remains speculative, but our scRNA-seq 
data provide a solid basis for hypothesis generation. First, 
we show that anti-inflammatory phagocytosing alveolar 
resident macrophages are depleted, while monocyte-
derived macrophages and pro-inflammatory IL-1Bhigh 
monocytes are relatively enriched in ICI-pneumonitis 
BALF. A detrimental feedforward loop in which patho-
genic T-helper cell-derived GM-CSF instructs GM-CSF 
receptor expressing monocytes to orchestrate tissue 
inflammation (TNF-α, IL-6) and tissue damage (reactive 
oxygen species) while sustaining pathogenic T-helper cells 
(through IL-23 secretion, intensified by IL-1β secretion), 
is a well-established mechanism of auto-inflammation, 
best characterized in multiple sclerosis but also discerned 
in one patient with inherited PD-1 deficiency.19 23 36 
In line with this mechanism, is a prior study in which 
elevated levels of GM-CSF at baseline and early during 
ICI treatment were found to predict severe irAEs.37 In 
addition, the pro-inflammatory monocytes might recruit 
CXCR3- and CCR6-expressing TH17.1 cells through expres-
sion of the chemoattractants CXCL9/CXCL10 and CCL20, 
respectively.38 39 Notably, an increase of serum CXCL9/10 
concentrations after anti-PD-1/PD-L1 therapy, was shown 
to predict occurrence of irAEs.40

Lastly, we expected a role for DCs in instructing 
pathogenic TH17.1 cells, based on their known role as 
orchestrators of adaptive immunity and their increased 
abundance in ICI-pneumonitis BALF. However, subclus-
tering analysis did not reveal a clear phenotypic shift of 
DCs. As such, our data do not provide insights into the 
role of DCs in ICI-pneumonitis pathophysiology. Possibly, 
profiling of regional lymph nodes is necessary to reveal 
relevant DC/T-cell interactions, as was the case for IL-23-
producing DCs residing in mesenteric lymph nodes of 
patients with IBD.41

Our findings bear important potential to improve the 
care of patients with anti-PD-1/PD-L1 treated cancer 
experiencing ICI-pneumonitis. Although 70–80% of 

symptomatic ICI-pneumonitis cases resolve with corti-
costeroid treatment,42 it cannot be formally excluded 
that corticosteroids negatively impact tumor control.43 
Moreover, second-line treatment for steroid-refractory 
ICI-pneumonitis lacks a clear scientific rationale and 
success rates are therefore modest.42 Our findings advo-
cate clinical trials with agents targeting crosstalk between 
pathogenic TH17.1 cells and pro-inflammatory monocytes. 
Although GM-CSF emerges as the master regulator, it 
has important homeostatic functions in the lungs and 
its role in antitumor immunity is ambiguous.44 Anti-IL-6 
and anti-TNF-α therapy tackles monocyte-mediated tissue 
inflammation, and has indeed shown efficacy and safety 
as second-line treatment for steroid-refractory irAEs in 
limited case series,45 but does not disrupt the interplay 
between pathogenic TH17.1 cells and pro-inflammatory 
monocytes. Based on our data, we speculate that repur-
posing anti-IL-1 and especially anti-IL-23 risankizumab 
might improve response rates without negatively affecting 
tumor control.45

A potential limitation of the study is that all recruited 
patients with ICI-pneumonitis had limited grade pneu-
monitis and did not require second-line immunosup-
pressive therapy. As such, we cannot exclude that distinct 
disease processes take place in high grade or steroid-
refractory ICI-pneumonitis. Second, while the control 
cohort of patients was demographically matched to the 
study cohort (also with regards to smoking status, lung 
disease and the presence of a thoracic malignancy, 
importantly), these patients did not receive prior anti-
PD-1/PD-L1 treatment. All BALF samples were taken 
during routine bronchoscopy so we could minimize 
patients’ exposure to the risks of this invasive procedure, 
knowing that anti-PD-1/PD-L1 does not seem to induce 
changes in the immune compartment of non-inflamed 
organs.7 46 While scRNA-seq and scTCR-seq data allowed 
us to put forward several interesting mechanistic hypoth-
eses, further research is needed to validate these hypoth-
eses. Finally, our data cannot provide an answer to the 
question why some patients develop ICI-pneumonitis 
and others do not. Indeed, while we provide data on the 
TCR repertoire in ICI-pneumonitis BALF, larger studies 
combining in-silico TCR repertoire with in vitro TCR 
reactivity data (examining (cross-)reactivity of T cells in 
ICI-pneumonitis lesions) are presumably key to identify 
the substrate of the immune reaction in ICI-pneumonitis. 
In parallel, genomic studies (eg, examining IL-23R or 
IL-10R polymorphisms) will help to uncover susceptibility 
factors to the development of irAEs.47

In conclusion, we use scRNA-seq and scTCR-seq to 
perform a deep immune profiling effort and charac-
terize the immune response in ICI-pneumonitis, thereby 
yielding novel pathophysiological insights. We offer a 
clear rationale for a novel targeted treatment approach 
for ICI-pneumonitis to improve outcome of this poten-
tially fatal irAE while maintaining tumor control.
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