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Abstract

Trypanosoma cruzi parasites are the causative agents of Chagas disease. These parasites

infect cardiac and gastrointestinal tissues, leading to local inflammation and tissue damage.

Digestive Chagas disease is associated with perturbations in food absorption, intestinal traffic

and defecation. However, the impact of T. cruzi infection on the gut microbiota and metabo-

lome have yet to be characterized. In this study, we applied mass spectrometry-based meta-

bolomics and 16S rRNA sequencing to profile infection-associated alterations in fecal

bacterial composition and fecal metabolome through the acute-stage and into the chronic

stage of infection, in a murine model of Chagas disease. We observed joint microbial and

chemical perturbations associated with T. cruzi infection. These included alterations in conju-

gated linoleic acid (CLA) derivatives and in specific members of families Ruminococcaceae

and Lachnospiraceae, as well as alterations in secondary bile acids and members of order

Clostridiales. These results highlight the importance of multi-‘omics’ and poly-microbial stud-

ies in understanding parasitic diseases in general, and Chagas disease in particular.

Author summary

Host-parasite interactions are usually studied as a binary system, without considering the

role of the host microbiota. This work integrates microbiome research into the study of

gastrointestinal Chagas disease. We show that T. cruzi infection perturbs the fecal micro-

biome and metabolome, indicating functional changes affecting the gastrointestinal

lumen. Our results support further investigation into the role of the microbiota-parasite

interaction in gastrointestinal Chagas disease pathogenesis.
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Introduction

Trypanosoma cruzi are protozoan parasites endemic to Central and South America. They

cause a range of cardiac and gastrointestinal manifestations collectively known as Chagas dis-

ease. With increasing travel and immigration, infected individuals are also now found world-

wide. Six to seven million people are T. cruzi-positive, thirty to forty percent of which will

develop symptomatic disease decades after their initial exposure to the parasite. Cardiac symp-

toms are the most common; these include conduction abnormalities, arrhythmias, aneurysms,

and heart failure leading to death. Clinically apparent gastrointestinal Chagas disease is less

prevalent; gastrointestinal Chagas disease is associated with enlargement of the esophagus

and/or colon (megaesophagus, megacolon), leading to pain, dysphagia, altered intestinal tran-

sit, altered nutrient intake, and constipation [1].

Research on cardiac Chagas disease progression has focused mainly on heart tissue. How-

ever, studies in murine models using luminescent T. cruzi cell lines showed recirculation of

parasites from gastrointestinal tissues to the heart and propose a model in which gastrointesti-

nal sites function as a reservoir for parasites to re-invade heart tissue and cause cardiac damage

[2, 3]. These suggest an important role for intestinal T. cruzi infection beyond megasyndrome

pathogenesis. Gastrointestinal sites may also be a major source of parasites during post-treat-

ment recrudescence [4].

Gastrointestinal Chagas disease has a strong geographic association; most cases represent

infections acquired in Bolivia, Brazil, Argentina and Chile. Disease tropism has been strongly

tied to T. cruzi strain [5], but diet may also play a role [6]. T. cruzi infection is associated with

parasite dose-dependent recruitment of inflammatory cells to the colon and colon damage [7],

all of which could perturb the intestinal microbiota. Conflicting results comparing infection

outcomes in germ-free and conventional mice have been reported, with one study showing sim-

ilar survival [8], and another study showing differential survival [9]. The impact of T. cruzi
infection on the gut microbiome and metabolome composition in immunocompetent animals

has yet to be assessed. Such a system is more representative of human infection than germ-free

models that show significant immunological defects [10]. This work applies 16S amplicon

sequencing and mass spectrometry-based metabolomics on fecal pellets to characterize the

functional bacterial changes associated with T. cruzi infection, in an immunocompetent murine

model of Chagas disease. This joint approach enabled us to identify correlated microbiome and

metabolome changes, and paves the way for further investigation of the T. cruzi-microbiota

interaction in the context of Chagas disease pathogenesis.

Methods

Ethics statement

All vertebrate animal studies were performed in accordance with the USDA Animal Welfare

Act and the Guide for the Care and Use of Laboratory Animals of the National Institutes of

Health. Euthanasia was performed by isoflurane overdose followed by cervical dislocation. The

protocol was approved by the University of California San Diego Institutional Animal Care

and Use Committee (protocol S14187).

In vivo experimental sample and data collection

Male C3H/HeJ mice were purchased from Jackson laboratories and allowed to acclimatize to

our vivarium for 2 weeks before the start of experimentation. At day 0, mice were infected by

intraperitoneal injection with 1,000 red-shifted luciferase-expressing T. cruzi strain CL Brener
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culture-derived trypomastigotes [2] (20 mice across four cages) or left uninfected (injected

with DMEM media only, 20 mice divided in four cages), and initial fecal pellets collected. Para-

site burden was measured bi-weekly during the acute stage of infection by bioluminescence

imaging following D-luciferin injection using an In vivo Imaging System (IVIS) Lumina LT

Series III (Perkin Elmer). Total body luminescence, cardiac region luminescence, and abdomi-

nal luminescence were determined using Living Image 4.5 software. Fecal pellets were col-

lected by monitoring the mice until they defecated naturally, at which point the freshly

excreted pellets were immediately collected and snap-frozen in liquid nitrogen. Fecal pellets

were collected bi-weekly in the acute stage of disease; imaging and fecal collection were per-

formed every 2–3 weeks during the chronic stage of disease. Each time point was analyzed

individually; no samples were pooled.

No visual changes were observed at any time point for fecal pellets from infected mice com-

pared to fecal pellets from uninfected mice. Infected mice showed no overt disease symptoms

except slight decrease in weight at the last two collection timepoints (days 64 and 90, p<0.05,

Mann-Whitney, FDR-corrected) (S1A Fig), although four mice were found dead over the

course of the experiment (days 20, 63, 79 and 90 post-infection) (S1B Fig). Hematoxylin-eosin

(H&E) staining of colon samples did not show any apparent tissue damage or inflammatory

infiltrate in infected mice compared to uninfected mice (S1D Fig). However, parasite distribu-

tion through the gastrointestinal tract is highly localized during chronic stage of infection with

luminescent CL Brener [2], and we cannot rule out the possibility that other colon regions

were altered by infection.

UHPLC-MS/MS analysis

Weighed fecal pellets were homogenized in 50% methanol spiked with 2 μM sulfachloropyri-

dazine using a Qiagen TissueLyzer at 25 Hz for 5 min [11], at a constant concentration of 50

mg feces / 1000 μL of extraction solvent, followed by overnight incubation at 4˚C. Samples

were then centrifuged at 16,000g for 10 min. Equal volumes of centrifugation supernatant

were dried in a vacuum concentrator and frozen at -80˚C. For LC-MS/MS analysis, samples

were resuspended in 50% methanol spiked with 2 μM sulfadimethoxine and analyzed on a

Maxis Impact HD QTOF mass spectrometer (Bruker Daltonics) coupled to an UltiMate 3000

UHPLC system (Thermo Scientific). A given infected or uninfected mouse was randomly

assigned to one of eight 96 well plates, alternating infected and uninfected samples. Time-

course samples were plated left to right in the 96 well plates, while run order was top to bottom.

Controls included blanks (resuspension solvent) and pooled QC controls every 16 samples,

and a standard mix of six compounds (sulfamethazine, sulfamethizide, sulfachloropyridazine,

sulfadimethoxine, amitryptiline and coumarin) with known retention time at the beginning of

the run and between each plate, to monitor for retention time shifts.

Liquid chromatography separation was performed on a 1.7 μm C18 (50 × 2.1 mm) UHPLC

column (Phenomenex) heated to 40˚C, with water + 0.1% formic acid as mobile phase A and

acetonitrile + 0.1% formic acid as mobile phase B, at a constant flow rate of 0.5 mL/min. The

LC gradient was: 0–1 min, 5% B; 1–9 min linear ramp up to 100% B; 9–11 min hold at 100% B;

11–11.5 min ramp down to 5% B; 11.5–12.5 min hold at 5% B.

Ions were generated by electrospray ionization and MS spectra acquired in positive ion

mode with the following instrument parameters: nebulizer gas pressure, 2 Bar; Capillary volt-

age, 3,500 V; ion source temperature, 200˚C; dry gas flow, 9.0 L/min; spectra rate acquisition,

3 spectra/s. MS/MS data was collected by fragmentation of the five most intense ions, in mass

range 50–1,500 m/z, with active exclusion after 2 spectra and release after 30s. Mass ranges rep-

resenting common contaminants and the lock masses were also excluded (exclusion list

Fecal microbiome and metabolome in Chagas disease
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144.49–145.49, 621.00–624.10, 643.80–646.00, 659.78–662.00, 921.00–925.00, 943.80–946.00,

959.80–962.00). Ramped collision-induced dissociation energy parameters ranged from 10–50

eV. Daily calibration was performed with ESI-L Low Concentration Tuning Mix (Agilent

Technologies). Hexakis(1H,1H,3H-tetrafluoropropoxy)phosphazene (Synquest Laboratories),

m/z 922.009798, was present throughout the run and used as internal calibrant (lock mass).

UHPLC-MS/MS data analysis

LC-MS/MS raw data files were lock mass-corrected and converted to mzxml format using Com-

pass Data analysis software (Bruker Daltonics). MS1 feature identification was performed using

an OpenMS-based [12] workflow (Optimus version 1.1.0 https://github.com/alexandrovteam/

Optimus, see S1 Table for parameters), restricting to features with MS2 data available. Feature

abundance was normalized to the sulfachloropyridazine extraction control. Principle coordinates

analysis (PCoA) was performed on the normalized data with our in-house tool ClusterApp using

the Bray-Curtis-Faith dissimilarity metric [13, 14], and visualized in EMPeror [15]. Molecular

networking was performed on the Global Natural Products Social Molecular Networking plat-

form (GNPS) [16], with the following parameters: parent mass tolerance 0.02 Da, MS/MS frag-

ment ion tolerance 0.02 Da, cosine score 0.6 or greater, at least 4 matched peaks, maximum

analog mass shift, 200 Da. Molecular networks and correlation networks were visualized with

Cytoscape 3.4.0 [17]. Most metabolites were identified to levels 2/3 according to the 2007 meta-

bolomics standards initiative (putatively annotated compounds or compound classes [18]).

Additional putative annotations were performed using the LIPID MAPS m/z search tool [19].

Linoleic acid/conjugated linoleic acid (LA/CLA) were identified with higher confidence by reten-

tion time and spectral matching to authentic standards (Spectrum Chemical/Sigma Aldrich; level

one annotation [18]). Random forest analysis over 5,000 trees was performed in R [20].

16S rRNA sequencing

DNA extraction, 16S library preparation and sequencing were performed according to standard

protocols from the Earth Microbiome project (http://www.earthmicrobiome.org/protocols-

and-standards/ [21]). Briefly, DNA extraction was performed using the MO BIO PowerSoil

DNA Isolation Kit (MoBio Laboratories). PCR amplification targeting the V4 region of the 16S

rRNA bacterial gene was performed with barcoded primers 515F/806R as described in [22].

Equal amounts of amplicons from each sample were pooled in equal concentration and cleaned

with the MoBio UltraClean PCR Clean-Up Kit. Library was PhiX-spiked and sequenced on the

UC San Diego Institute for Genomic Medicine Illumina MiSeq2000 platform.

16S marker gene data analysis and joint microbiome-metabolome analyses

Raw FASTQ data files were demultiplexed using Qiita (https://qiita.ucsd.edu, study ID 10767)

with the following parameters: maximum barcode errors: 1.5; sequence maximal ambiguous

bases: 0; maximal bad run length: 3; Phred quality threshold: 3. This resulted in 12,307,767

high-quality reads with a median of 24,578 sequences per non-blank sample. Closed-reference

Operational Taxonomic Unit (OTU) picking was performed in Qiita with 97% sequence iden-

tity using sortmeRNA [23] as the clustering algorithm. Subsequent data analysis was per-

formed using the QIIME1 pipeline [24], rarefying to 8,500 reads per sample. PCoA plots were

generated using the weighted UniFrac distance metric [25] and visualized in EMPeror [15].

Random forest analysis over 5,000 trees [20] was performed in R using jupyter notebooks [26].

Procrustes analyses [27, 28] were performed using the QIIME1 [24] scripts beta_diversity.

py to generate the weighted UniFrac distance matrix (16S data) or Bray-Curtis-Faith distance

matrix (LC-MS data), followed by principal_coordinates.py to perform principal coordinates

Fecal microbiome and metabolome in Chagas disease
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analysis. PCoA outputs were used as input for transform_coordinate_matrices.py (Procrustes),

with 1000 random permutations. The output of this analysis was visualized EMPeror [15].

Groups of bacteria and metabolites correlated with infection status were identified by

Weighted Correlation Network Analysis (WGCNA) analysis. Average hierarchical clustering

using the WGCNA R package in combination with soft-thresholded Pearson correlation was

performed to independently cluster highly correlated microbes and metabolites into modules

[29]. Data was pre-filtered using the goodSampleGenes function of the WGCNA package to

remove metabolites or OTUs with>50% missing values. Remaining outlier samples were

removed using the cutreeStatic function, with a minimum size of 10. Soft thresholding power

was determined using the pickSoftThreshold function and set to 4 for metabolites and for 30

microbiome data. Minimum module size was 30 for OTUs and 10 for metabolite features;

threshold for merging modules was 0.25. Using this approach, 49 metabolite modules and

three microbial modules were obtained. Microbial and chemical modules were independently

correlated with parasite burden using Pearson correlation. Since we were interested in identi-

fying the changes in gut ecosystem due to parasite infection specifically, only the modules that

were significantly correlated with parasite burden were retained for downstream analysis (Stu-

dent asymptotic p-value <0.01; positive correlation coefficient). This represented nine metab-

olite modules and one microbial module. We performed pairwise Pearson correlation between

these modules, which yielded six positively correlated microbe-metabolite module pairs (Stu-

dent asymptotic p-value <0.01). Finally, we performed pairwise Pearson correlations between

microbial and chemical components of these strongly correlated module pairs to obtain candi-

date microbial-metabolite associations relevant to T. cruzi infection in mice (positive correla-

tion, p<0.05). These metabolites were then compared with molecular networking results to

identify common members of chemical families. Correlations between the members of these

families and bacterial OTUs were plotted using Cytoscape 3.4.0 [17].

Results and discussion

T. cruzi infection perturbs the fecal microbiome and metabolome

To determine the impact of T. cruzi infection on the fecal metabolome and microbiome, we

followed C3H/HeJ mice infected with a bioluminescent T. cruzi strain for 3 months post-infec-

tion. In this system, abdominal parasite burden peaked at 35 days post-infection (Fig 1A).

Fecal samples were collected twice a week during the acute stage and every 2–3 weeks during

the chronic stage of disease. Fecal bacterial operational taxonomic units (OTUs) were identi-

fied by sequencing of the V4 hypervariable region of the 16S rRNA genes [30]. Untargeted

mass spectrometric analysis of the collected fecal pellets was performed by liquid chromatogra-

phy-mass spectrometry followed by molecular networking for metabolite identification [16].

Detected identifiable metabolites include known products specifically from gastrointestinal

microbes (secondary bile acids, tryptophan metabolites. . .), metabolites that can be found in

the diet and/or modified by gut microbes (e.g. conjugated linoleic acid and derivatives gener-

ated from dietary linoleic acid) as well as common host and microbial metabolites (amino

acids, phospholipids. . .). Overall bacterial composition was strongly affected by parasite bur-

den (Fig 1B), as was the overall fecal metabolome (Fig 1C). Interestingly, infected to unin-

fected average distances reached their maximum before peak parasite burden (S2 Fig), with

the best discriminatory ability between infected and uninfected samples at day 21 post-infec-

tion for both metabolome and microbiome (Fig 1D and 1E).

Fecal microbiome and metabolome in Chagas disease
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Synchronized changes in the fecal microbiome and metabolome during

experimental Chagas disease

Gut microenvironments are influenced by dietary components and by bacterial and host

metabolism, all of which could affect parasite nutritional availability and antiparasitic immune

responses [31]. Likewise, chemical changes in the gut microenvironment would influence bac-

terial growth and composition [32]. We therefore investigated the integration between the

microbial and chemical changes we observed during experimental T. cruzi infection by per-

forming Procrustes analysis [27, 28]. Separation between infected and uninfected fecal

Fig 1. Infection with T. cruziperturbs the fecal microbiome and metabolome. (A) Intestinal parasite burden progression during the acute and chronic stage of

the disease. Parasite signal peaked at day 35 post-infection and decreased into the chronic stage of the disease. (B, C) Principal coordinates analysis (PCoA)

showing clustering of high parasite burden samples (dotted oval) compared to uninfected and low parasite burden samples for fecal microbiome (B, weighted

UniFrac distance metric) and fecal metabolome (C, Bray-Curtis-Faith distance metric). Each sphere represents a single sample from one mouse at a given

timepoint. Spheres are colored by intestinal parasite burden, with darkest spheres coming from samples collected at the peak of infection, when parasite burden is

highest. Samples collected prior to infection are shown by large spheres, with all other samples represented by small spheres. (D,E) Random forest classification

error between infected and uninfected samples using microbiome (D) and metabolome (E) datasets. Classifier is unable to distinguish between infected and

uninfected samples initially. Classification accuracy improves over the acute stage of infection, with near-perfect classification 21 days post-infection. Error then

increases during the chronic disease stage, although classification accuracy remains better than pre-infection.

https://doi.org/10.1371/journal.pntd.0006344.g001
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microbiome and metabolome samples jointly was observed at days 21 and 90 post-infection

but not at day 0 (Fig 2A, S2 Table).

To determine the nature of these joint changes, we performed weighted gene co-expression

network analysis (WGCNA) [29, 33] on microbial and chemical data. Metabolites and microbes

were individually clustered into modules, and microbial and chemical modules correlated with

abdominal parasite burden (abdominal luminescence) were identified (significance cutoffs: Stu-

dent asymptotic p-value<0.01; correlation coefficients> 0). Only one module of 1954 bacterial

OTUs (out of three bacterial modules) was correlated with parasite burden (Pearson correlation

coefficient, 0.19; Student asymptotic p-value, 3e-05), S3 Fig). Nine metabolite modules (out of

49 metabolite modules) were correlated with parasite burden (Student asymptotic p-value

<0.01, Pearson correlation coefficient 0.13–0.33, S4 Fig). Pair-wise correlation was then per-

formed between these burden-correlated microbial and chemical modules, six of which showed

statistically significant correlation (Student asymptotic p-value<0.01, Pearson correlation coef-

ficient 0.13–0.52, S5 Fig). Metabolite feature to OTU pair-wise comparisons were then per-

formed within each metabolite-microbe module pair (cutoffs: positive correlation, p<0.05).

Within these six correlated module pairs, almost all the metabolite features positively corre-

lated with parasite burden were from different molecular subnetworks, suggesting that they

are part of different chemical families [16]. Strikingly however, eleven metabolite features

from the most strongly correlated metabolite module (Pearson correlation coefficient 0.33, p-

value, 3e-13) were from the same molecular subnetwork of linoleic acid derivatives (Table 1,

S6A and S7 Figs). Dietary linoleic acid (LA) is modified in the gut environment by bacteria

from the genera Lactobacillus, Bifidobacterium and Enterococcus into conjugated linoleic acid

(CLA) and further derivatives [34, 35]. Conjugated linoleic acid can also be taken up in the

diet and further modified in the gastrointestinal tract [34–36]. m/z 281.251 RT 485s was con-

firmed as LA or CLA by retention time and accurate mass matching to authentic LA/CLA

standards (level one annotation according to the 2007 metabolomics standards initiative [18];

S6B Fig). Our chromatography conditions do not enable clear differentiation of LA and CLA.

Specific members of the orders Bacteroidales and Clostridiales, including members of the fam-

ilies Ruminococcaceae and Lachnospiraceae can hydrogenate CLA [37, 38], and indeed we

observed the strongest correlation (Pearson correlation coefficient >0.4) between members of

the order Clostridiales and m/z 283.266 RT 435s, putatively identified as vaccenic acid (Fig 2B,

S3 Table). Microbial hydration of linoleic acid by members of the Pediococcus and Lactobacil-
lus genera has also been reported [35, 37, 39–41]. Molecular networking indicates that m/z
299.261 RT 336s and m/z 317.271 RT 336s could represent single and double hydration prod-

ucts of linoleic or conjugated linoleic acid; they were correlated with specific Ruminococcaceae
and Lachnospiraceae family members (Fig 2B, S3 Table). CLA absorption in the colon is lim-

ited; bacterial metabolites of linoleic acid therefore primarily exert their effects locally [42].

Linoleic acid metabolism products alter gut inflammatory responses, by promoting regulatory

T cell recruitment [43], decreasing TNF receptor expression [39] and TNFα production [44],

and increasing the anti-inflammatory cytokine TGFβ in the colon [44]. These metabolites

could therefore promote gut microenvironments favoring T. cruzi persistence and gastrointes-

tinal reservoir function.

An additional group of 5 co-modulated features networked with cholic acid (Table 2, S8

Fig). m/z 357.281 RT 337s, m/z 357.281 RT 371s and m/z 375.291 RT 393s are identified as dif-

ferent close isomers or adducts of deoxycholic acid (level two annotation according to the

2007 metabolomics standards initiative [18]). Host-produced primary bile acids such as cholic

acid are conjugated to taurine or glycine in the liver. Further modifications of primary bile

salts are specifically performed in the gastrointestinal environment: members of the gut micro-

biota deconjugate primary bile salts and remove the 7-hydroxy group to form secondary bile

Fecal microbiome and metabolome in Chagas disease
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Fig 2. Joint microbial and chemical alterations during experimental Chagas disease. (A) Procrustes analysis of microbiome and metabolome

data, showing similar overall trends for microbiome and metabolome: lack of segregation between infected and uninfected samples at day 0, and

clear separation at day 21. Less separation was observed 90 days post-infection. Connected spheres came from the same sample. Black lines indicate

metabolome data and red lines microbiome data. (B) Network of correlated CLA derivatives (outer perimeter) and bacterial OTUs (central circles

and V shapes), as identified by WGCNA analysis (correlation coefficients> 0, p-value<0.05). Known metabolizing bacterial genera are V-shaped,
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acids such as deoxycholic acid. Bacteroides, Bifidobacterium, Clostridium, Lactobacillus and Lis-
teria genera deconjugate bile acids, which are then dehydroxylated by Clostridium and Eubac-
terium genera [45]. Indeed, one member of the Clostridium genus, Clostridium celatum (OTU

ID 4315688) was correlated with m/z 357.281 RT 337s (Pearson correlation coefficient

0.21028, p-value = 0.00000426), and weakly correlated with m/z 357.281 RT 371s and m/z
358.285 RT 371s (respective correlation coefficient, 0.09079 and 0.09770; respective p-values,

0.049161208 and 0.034207271) (S4 Table). Likewise, two members of the Bifidobacterium
genus were correlated with m/z 357.281 RT 371s and m/z 375.291 RT 393s, and five members

of the Lactobacillus genus were correlated with m/z 357.281 RT 371s, m/z 358.285 RT 371s and

m/z 375.291 RT 393s (S4 Table). Further modifications can be performed by these genera and

by Escherichia, Egghertella, Fusobacterium, Peptococcus, Peptostreptococcus, Ruminococcus gen-

era [45], several of which were also correlated with our infection-modulated secondary bile

acids (Fig 2C). The OTUs most strongly correlated with these secondary bile acids in our

experiment (correlation coefficient >0.4) were also members of the order Clostridiales, either

from the genus Oscillospira or from unidentified genera (S4 Table). Bile acid metabolism by

the gut microbiota has been tied to local colon inflammation and general health [45], all of

which could affect Chagas disease pathogenesis.

Several of these microbiome changes have been associated with other gastrointestinal dis-

eases. Lactobacillus genus in particular is increased in obese individuals, while genus Bifidobac-
terium is decreased [46]. Members of the Lactobacillus genus and some Bifidobacterium
species are increased in ileal Crohn’s disease, while members of order Clostridiales and family

Lachnospiraceae are decreased [46]. Large-scale perturbations are also observed in these dis-

eases, such as for example a trend for increased Firmicutes to Bacteroidetes ratio in obese indi-

viduals compared to lean individuals [46]. The observed microbial and metabolic

perturbations in T. cruzi-infected animals may be a consequence of parasite-mediated modula-

tions of local gastrointestinal microenvironments, such as nutrient depletion, or an off-target

all other OTUs are represented by circles. OTU nodes are colored based on corresponding bacterial order, to highlight members of the

Bacteroidales, Bifidobacteriales, Clostridiales, Lactobacillales orders. (C) Network of correlated cholic acid derivatives and bacterial OTUs, as

identified by WGCNA analysis (correlation coefficients> 0, p-value<0.05). Known metabolizing bacterial genera are V-shaped, all other OTUs are

represented by circles. OTU nodes are colored based on corresponding bacterial order.

https://doi.org/10.1371/journal.pntd.0006344.g002

Table 1. Conjugated linoleic acid-related molecules correlated to parasite burden.

m/z Retention time

(sec)

Mass difference

to CLA

Putative identification Known bacterial producers Correlated bacteria from known

producing families

Ref.

263.241 422 -18 - - - -

281.250 355 0 (isomer 2) LA/CLA isomer - - -

281.251 336 0 (isomer 1) LA/CLA isomer - - -

281.251 383 0 (isomer 3) LA/CLA isomer - - -

283.266 435 +2 vaccenic acid Order Bacteroidales, Clostridiales (families

Ruminococcaceae and Lachnospiraceae)
Several members of order

Clostridiales

[37, 38]

299.261 336 +18 LA/CLA single

hydration product

Pediococcus and Lactobacillus genera Ruminococcaceae and

Lachnospiraceae family members

[35, 37,

39–41]

313.276 402 +32 - - - -

317.271 336 +36 LA/CLA double

hydration product

Pediococcus and Lactobacillus genera Ruminococcaceae and

Lachnospiraceae family members

[35, 37,

39–41]

331.287 374 +50 - - - -

331.287 384 +50 - - - -

365.234 384 +84 - - - -

https://doi.org/10.1371/journal.pntd.0006344.t001
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effect of anti-parasitic immune responses. Parasite control is associated with reactive oxygen

and nitrogen species [47], which are known to affect the gut microbiome composition by kill-

ing bacterial species sensitive to oxidative stress while promoting the growth of species that use

nitrate as a terminal electron acceptor for respiration [48]. Significant bacterial and metabolic

changes become apparent by day 14 post-infection (Figs 1D and 1E and S2), which coincides

with induction of adaptive immune responses to T. cruzi [49], suggesting an immune-medi-

ated role in this disruption.

Given the anti-inflammatory roles of the hydrated linoleic acid metabolites we found

altered by infection [39, 43, 44], the gut microbiome and metabolome changes we observed

may be promoting long-term parasite gastrointestinal persistence and enabling the gastroin-

testinal tract to serve as a parasite reservoir. Microbiota perturbation may also contribute to

the nutrient malabsorption and constipation observed in megasyndromes [50]. Modulating

the infection-associated changes in the gut microbiome and its metabolism may prove to be an

effective way to mitigate disease symptoms, nifurtimox gastrointestinal side effects or prevent

parasite dissemination from the gastrointestinal tract to the heart. Modifying the levels of anti-

inflammatory conjugated linoleic acid metabolites may be particularly useful in this context.

Finally, although production of bile acid metabolites is performed in the gut environment by

the local microbiota, these metabolites can be re-absorbed and circulate throughout the body,

with far-ranging effects [51]. Bile acid metabolites may therefore also affect cardiac Chagas dis-

ease pathogenesis. Future work will directly investigate these possibilities, by testing whether

the gut microbiome perturbations and the metabolites identified in this study are associated

with Chagas disease severity, and assessing whether microbiome perturbation affects Chagas

disease progression.

Conclusions

Research on Chagas disease pathogenesis has focused on the interaction between the mamma-

lian host and the parasite. Our results indicate that infection modulates the fecal microbiome,

suggesting that host-microbe interaction research in the context of Chagas disease should also

include the microbiota and not just T. cruzi. By integrating microbiome with metabolome

data, we show that these microbial alterations are associated with functional changes in the gut

chemical environment that could be affecting host inflammatory responses. These results sup-

port additional investigation into the T. cruzi-microbiota connection and into the role of the

microbiota in Chagas disease pathogenesis. Given new evidence on the role of gastrointestinal

persistence in parasite recrudescence [4], and our limited understanding of gastrointestinal

Chagas disease compared to cardiac Chagas disease, such studies are essential to identify treat-

ment strategies able to achieve sterile cure. Microbiota- and microbial metabolism-modulating

therapies are now actively being developed for other cardiovascular diseases [52, 53]. Our

results demonstrate that such approaches are likely to be beneficial in cardiovascular Chagas

disease. Modulation of the gut microbiota or its metabolism may also be a promising strategy

Table 2. Cholic acid/deoxycholic acid-related molecules correlated with parasite burden.

m/z Retention time (sec) Putative identification Correlated bacteria examples

357.281 337 deoxycholic acid ([M+H-2H2O]), or close isomer Clostridium celatum, order Clostridiales members

357.281 371 deoxycholic acid ([M+H-2H2O]), or close isomer Clostridium celatum, Bifidobacterium spp., Lactobacillus spp.

358.285 371 - Clostridium celatum, Lactobacillus spp.

358.285 387 - -

375.291 393 deoxycholic acid ([M+H-H2O]) Bifidobacterium spp., Lactobacillus spp.

https://doi.org/10.1371/journal.pntd.0006344.t002
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for megasyndrome patient management, or to slow progression of asymptomatic individuals

to symptomatic disease.

Supporting information

S1 Methods. Supplemental methods and references.

(DOCX)

S1 Table. Optimus feature finding parameters.

(DOCX)

S2 Table. Statistics for procrustes analysis of microbiome and metabolome datasets with

1,000 Monte Carlo permutations.

(DOCX)

S3 Table. Pairwise correlation of parasite burden-correlated microbial OTUs and LA/CLA

metabolite features.

(CSV)

S4 Table. Pairwise correlation of parasite burden-correlated microbial OTUs and second-

ary bile acid metabolite features.

(CSV)

S1 Fig. Disease progression. (A) Weight change. �, p<0.05 (Mann-Whitney, FDR-corrected).

(B) Mortality. (C) Luminescence. (D) Representative hematoxylin-eosin staining of colon seg-

ments from uninfected (top) and infected (bottom) mice.

(DOCX)

S2 Fig. Within-group and between-group distances. (A) Microbiome dataset (weighted Uni-

Frac). (B) Metabolome dataset (Bray-Curtis-Faith). �, p<0.05 (Mann-Whitney, FDR-cor-

rected).

(DOCX)

S3 Fig. Microbial module correlation with abdominal parasite burden. Values in parenthe-

ses indicate Student asymptotic p-value for the correlation.

(DOCX)

S4 Fig. Metabolite module correlation with abdominal parasite burden. Values in parenthe-

ses indicate Student asymptotic p-value for the correlation.

(DOCX)

S5 Fig. Parasite burden-associated microbial and metabolite module correlation. Values in

parentheses indicate Student asymptotic p-value for the correlation.

(DOCX)

S6 Fig. Linoleic acid/conjugated linoleic acid identification. (A) LA/CLA Molecular net-

work. (B) CLA isomers. Extracted ion chromatogram for m/z 281.200–281.260 (green). Num-

bers indicate CLA isomers with similar MS/MS fragmentation and arrow indicates sample

peak matched to linoleic acid/conjugated linoleic acid authentic standard (red/blue). (C) Mir-

ror plot showing spectral match of experimental spectrum (top, black) to library reference for

CLA (bottom, green). (D) Overall comparable levels of LA/CLA between infected and unin-

fected samples. �, p<0.01 (Mann-Whitney, FDR-corrected).

(DOCX)

Fecal microbiome and metabolome in Chagas disease

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006344 March 12, 2018 11 / 15

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006344.s001
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006344.s002
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006344.s003
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006344.s004
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006344.s005
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006344.s006
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006344.s007
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006344.s008
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006344.s009
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006344.s010
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006344.s011
https://doi.org/10.1371/journal.pntd.0006344


S7 Fig. Co-modulated LA/CLA derivatives. (A) m/z 263.241 RT 422s. (B) m/z 281.250 RT

355s. (C) m/z 281.251 RT 336s. (D) m/z 281.251 RT 383s. (E) m/z 283.266 RT 435s. (F) m/z
299.261 RT 336s. (G) m/z 313.276 RT 402s. (H) m/z 317.271 RT 336s. (I) m/z 331.287 RT 374s.

(J) m/z 331.287 RT 384s. (K) m/z 365.234 RT 384s. �, p<0.05 (Mann-Whitney, FDR-corrected).

(DOCX)

S8 Fig. Co-modulated cholic acid derivatives. (A) Mirror plot showing spectral match of

experimental spectrum (top) to cholic acid [M+H-3H2O] library reference (bottom). (B) Cho-

lic acid molecular network. (C) Comparable cholic acid levels in infected and uninfected mice.

(D) m/z 357.281 RT 337s. (E) m/z 357.281 RT 371s. (F) m/z 358.285 RT 371s. (G) m/z 358.285

RT 387s. (H) m/z 375.291 RT 393s. �, p<0.05 (Mann-Whitney, FDR-corrected).

(DOCX)

S9 Fig. Pre-infection fecal microbiome composition. (A) Phylum level. (B) Class level. (C)

Order level. (D) Family level. Each bar represents a given mouse.

(DOCX)

S10 Fig. Principal coordinates analysis of metabolomics samples and controls. Various

views and principal coordinates of PCoA plots with samples, blanks and pooled QC samples

(A) and with only samples and pooled QC (B). Blank samples are distinctly different from all

other samples, while pooled QC are in the middle of the PCoA. Distinct clustering of high par-

asite burden samples is highlighted with dotted oval, where permitted by the viewing angle.

(DOCX)

Acknowledgments

We would like to thank Dr. John Kelly, London School of Hygiene & Tropical Medicine and

Dr. Bruce Branchini, Connecticut College, for the red-shifted luciferase-expressing T. cruzi
strain CL Brener used in these experiments. We would also like to thank Brian M. Suzuki,

Diane Thomas and Sharon Johnson (UCSD) for fecal sample collection; Greg Humphrey, Kar-

enina Sanders, Lindsay DeRight Goldasich, Tara Schwartz and Caitriona Brennan (UCSD) for

DNA extraction, PCR and sequencing library preparation; Gail Ackermann (UCSD) for assis-

tance with metadata and EMBL-EBI submission; and Dr. James H. McKerrow (UCSD) for

mentorship.

Author Contributions

Conceptualization: Laura-Isobel McCall, Jair L. Siqueira-Neto.

Formal analysis: Laura-Isobel McCall, Anupriya Tripathi.

Funding acquisition: Laura-Isobel McCall.

Investigation: Laura-Isobel McCall, Jair L. Siqueira-Neto.

Methodology: Laura-Isobel McCall, Anupriya Tripathi, Fernando Vargas, Rob Knight, Pieter

C. Dorrestein, Jair L. Siqueira-Neto.

Resources: Rob Knight, Pieter C. Dorrestein, Jair L. Siqueira-Neto.

Software: Anupriya Tripathi, Rob Knight, Pieter C. Dorrestein.

Writing – original draft: Laura-Isobel McCall.

Writing – review & editing: Laura-Isobel McCall, Anupriya Tripathi, Fernando Vargas, Rob

Knight, Pieter C. Dorrestein, Jair L. Siqueira-Neto.

Fecal microbiome and metabolome in Chagas disease

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006344 March 12, 2018 12 / 15

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006344.s012
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006344.s013
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006344.s014
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006344.s015
https://doi.org/10.1371/journal.pntd.0006344


References
1. Rassi A, Jr., Rassi A, Marin-Neto JA. Chagas disease. Lancet. 2010; 375(9723):1388–402. Epub

2010/04/20. https://doi.org/10.1016/S0140-6736(10)60061-X PMID: 20399979.

2. Lewis MD, Fortes Francisco A, Taylor MC, Burrell-Saward H, McLatchie AP, Miles MA, et al. Biolumi-

nescence imaging of chronic Trypanosoma cruzi infections reveals tissue-specific parasite dynamics

and heart disease in the absence of locally persistent infection. Cellular Microbiology. 2014. Epub

2014/04/10. https://doi.org/10.1111/cmi.12297 PMID: 24712539.

3. Lewis MD, Francisco AF, Taylor MC, Jayawardhana S, Kelly JM. Host and parasite genetics shape a

link between Trypanosoma cruzi infection dynamics and chronic cardiomyopathy. Cellular microbiology.

2016. https://doi.org/10.1111/cmi.12584 PMID: 26918803.

4. Francisco AF, Lewis MD, Jayawardhane S, Taylor MC, Chatelain E, Kelly JM. Limited Ability of Posaco-

nazole To Cure both Acute and Chronic Trypanosoma cruzi Infections Revealed by Highly Sensitive In

Vivo Imaging. Antimicrobial Agents and Chemotherapy. 2015; 59(8):4653–61. https://doi.org/10.1128/

AAC.00520-15 PubMed PMID: WOS:000362952000040. PMID: 26014936

5. McCall LI, McKerrow JH. Determinants of disease phenotype in trypanosomatid parasites. Trends in

Parasitology. 2014; 30(7):342–9. Epub 2014/06/21. https://doi.org/10.1016/j.pt.2014.05.001 PMID:

24946952.

6. Nagajyothi F, Weiss LM, Zhao D, Koba W, Jelicks LA, Cui MH, et al. High fat diet modulates Trypano-

soma cruzi infection associated myocarditis. PLoS neglected tropical diseases. 2014; 8(10):e3118.

https://doi.org/10.1371/journal.pntd.0003118 PMID: 25275627; PubMed Central PMCID:

PMCPMC4183439.

7. Vazquez BP, Vazquez TP, Miguel CB, Rodrigues WF, Mendes MT, de Oliveira CJF, et al. Inflammatory

responses and intestinal injury development during acute Trypanosoma cruzi infection are associated

with the parasite load. Parasites Vectors. 2015; 8:206. https://doi.org/10.1186/s13071-015-0811-8

PubMed PMID: PMC4399205. PMID: 25889515

8. Duarte R, Silva AM, Vieira LQ, Afonso LCC, Nicoli JR. Influence of normal microbiota on some aspects

of the immune response during experimental infection with Trypanosoma cruzi in mice. Journal of medi-

cal microbiology. 2004; 53(8):741–8. https://doi.org/10.1099/jmm.0.45657–0 PubMed PMID:

WOS:000223528600005.

9. Silva ME, Evangelista EA, Nicoli JR, Bambirra EA, Vieira EC. American trypanosomiasis (Chagas’ dis-

ease) in conventional and germfree rats and mice. Revista do Instituto de Medicina Tropical de São

Paulo. 1987; 29:284–8. PMID: 3136530

10. Lundberg R, Toft MF, August B, Hansen AK, Hansen CHF. Antibiotic-treated versus germ-free rodents

for microbiota transplantation studies. Gut Microbes. 2016; 7(1):68–74. https://doi.org/10.1080/

19490976.2015.1127463 PubMed PMID: PMC4856451. PMID: 26744774

11. Want EJ, Masson P, Michopoulos F, Wilson ID, Theodoridis G, Plumb RS, et al. Global metabolic profil-

ing of animal and human tissues via UPLC-MS. Nat Protoc. 2013; 8(1):17–32. https://doi.org/10.1038/

nprot.2012.135 PMID: 23222455.

12. Sturm M, Bertsch A, Gropl C, Hildebrandt A, Hussong R, Lange E, et al. OpenMS—an open-source

software framework for mass spectrometry. Bmc Bioinformatics. 2008; 9:163. https://doi.org/10.1186/

1471-2105-9-163 PMID: 18366760; PubMed Central PMCID: PMCPMC2311306.

13. Bray JR, Curtis JT. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecological

Monographs. 1957; 27(4):326–49. https://doi.org/10.2307/1942268

14. Faith DP, Minchin PR, Belbin L. Compositional dissimilarity as a robust measure of ecological distance.

Vegetatio. 1987; 69(1):57–68. https://doi.org/10.1007/bf00038687

15. Vazquez-Baeza Y, Pirrung M, Gonzalez A, Knight R. EMPeror: a tool for visualizing high-throughput

microbial community data. Gigascience. 2013; 2(1):16. https://doi.org/10.1186/2047-217X-2-16 PMID:

24280061; PubMed Central PMCID: PMCPMC4076506.

16. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation

of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol.

2016; 34(8):828–37. https://doi.org/10.1038/nbt.3597 PMID: 27504778; PubMed Central PMCID:

PMCPMC5321674

17. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environ-

ment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11):2498–504.

Epub 2003/11/05. https://doi.org/10.1101/gr.1239303 PMID: 14597658; PubMed Central PMCID:

PMCPmc403769.

18. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting

standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards

Fecal microbiome and metabolome in Chagas disease

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006344 March 12, 2018 13 / 15

https://doi.org/10.1016/S0140-6736(10)60061-X
http://www.ncbi.nlm.nih.gov/pubmed/20399979
https://doi.org/10.1111/cmi.12297
http://www.ncbi.nlm.nih.gov/pubmed/24712539
https://doi.org/10.1111/cmi.12584
http://www.ncbi.nlm.nih.gov/pubmed/26918803
https://doi.org/10.1128/AAC.00520-15
https://doi.org/10.1128/AAC.00520-15
http://www.ncbi.nlm.nih.gov/pubmed/26014936
https://doi.org/10.1016/j.pt.2014.05.001
http://www.ncbi.nlm.nih.gov/pubmed/24946952
https://doi.org/10.1371/journal.pntd.0003118
http://www.ncbi.nlm.nih.gov/pubmed/25275627
https://doi.org/10.1186/s13071-015-0811-8
http://www.ncbi.nlm.nih.gov/pubmed/25889515
https://doi.org/10.1099/jmm.0.456570
http://www.ncbi.nlm.nih.gov/pubmed/3136530
https://doi.org/10.1080/19490976.2015.1127463
https://doi.org/10.1080/19490976.2015.1127463
http://www.ncbi.nlm.nih.gov/pubmed/26744774
https://doi.org/10.1038/nprot.2012.135
https://doi.org/10.1038/nprot.2012.135
http://www.ncbi.nlm.nih.gov/pubmed/23222455
https://doi.org/10.1186/1471-2105-9-163
https://doi.org/10.1186/1471-2105-9-163
http://www.ncbi.nlm.nih.gov/pubmed/18366760
https://doi.org/10.2307/1942268
https://doi.org/10.1007/bf00038687
https://doi.org/10.1186/2047-217X-2-16
http://www.ncbi.nlm.nih.gov/pubmed/24280061
https://doi.org/10.1038/nbt.3597
http://www.ncbi.nlm.nih.gov/pubmed/27504778
https://doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
https://doi.org/10.1371/journal.pntd.0006344


Initiative (MSI). Metabolomics. 2007; 3(3):211–21. https://doi.org/10.1007/s11306-007-0082-2 PMID:

24039616; PubMed Central PMCID: PMCPMC3772505.

19. Fahy E, Sud M, Cotter D, Subramaniam S. LIPID MAPS online tools for lipid research. Nucleic Acids

Res. 2007; 35(Web Server issue):W606–12. https://doi.org/10.1093/nar/gkm324 PMID: 17584797;

PubMed Central PMCID: PMCPMC1933166.

20. Breiman L. Random forests. Machine Learning. 2001; 45(1):5–32. https://doi.org/10.1023/

A:1010933404324 PubMed PMID: WOS:000170489900001.

21. Gilbert JA, Jansson JK, Knight R. The Earth Microbiome project: successes and aspirations. BMC Biol.

2014; 12(1):69. https://doi.org/10.1186/s12915-014-0069-1 PMID: 25184604

22. Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved Bacterial

16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Micro-

bial Community Surveys. mSystems. 2016; 1(1). https://doi.org/10.1128/mSystems.00009-15 PMID:

27822518

23. Kopylova E, Noe L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatran-

scriptomic data. Bioinformatics. 2012; 28(24):3211–7. Epub 2012/10/17. https://doi.org/10.1093/

bioinformatics/bts611 PMID: 23071270.

24. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows

analysis of high-throughput community sequencing data. Nat Methods. 2010; 7(5):335–6. https://doi.

org/10.1038/nmeth.f.303 PMID: 20383131; PubMed Central PMCID: PMCPMC3156573.

25. Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative beta diversity measures

lead to different insights into factors that structure microbial communities. Appl Environ Microbiol. 2007;

73(5):1576–85. Epub 2007/01/16. https://doi.org/10.1128/AEM.01996-06 PMID: 17220268; PubMed

Central PMCID: PMCPmc1828774.
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