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A B S T R A C T

In this paper, we demonstrate the feasibility and performance of deep residual neural networks for volumetric
segmentation of irreversibly damaged brain tissue lesions on T1-weighted MRI scans for chronic stroke patients.
A total of 239 T1-weighted MRI scans of chronic ischemic stroke patients from a public dataset were retro-
spectively analyzed by 3D deep convolutional segmentation models with residual learning, using a novel zoom-
in&out strategy. Dice similarity coefficient (DSC), average symmetric surface distance (ASSD), and Hausdorff
distance (HD) of the identified lesions were measured by using manual tracing of lesions as the reference
standard. Bootstrapping was employed for all metrics to estimate 95% confidence intervals. The models were
assessed on a test set of 31 scans. The average DSC was 0.64 (0.51–0.76) with a median of 0.78. ASSD and HD
were 3.6 mm (1.7–6.2 mm) and 20.4 mm (10.0–33.3 mm), respectively. The latest deep learning architecture
and techniques were applied with 3D segmentation on MRI scans and demonstrated effectiveness for volumetric
segmentation of chronic ischemic stroke lesions.

1. Introduction

Stroke is one of the leading causes of long-term adult disability
worldwide (Mozaffarian et al., 2015). Recent studies show that 36% to
71% of post-stroke survivors had a disability after at least five years
(Hankey et al., 2002; Hardie et al., 2004; Jönsson et al., 2014; Yang
et al., 2016) . Rehabilitation is crucial for long-term functional re-
covery. The effectiveness of rehabilitation varies, however, because
functional and structural changes in the brain differ among patients.
Identifying the damaged brain network in patients would help clin-
icians to predict functional outcomes in response to targeted re-
habilitation, which benefits patients by optimizing treatment resources
and providing personal and efficient care (Burke Quinlan et al., 2015;
Marie-Héléne and Cramer, 2008; Riley et al., 2011) . T1-weighted
(T1W) magnetic resonance imaging (MRI) is the most common resource
used in research for chronic stroke lesions because lesions are visible on
T1W images after a month and the produced images have high re-
solution. Tracing these lesions manually, however, is time intensive and
prone to errors (Fiez et al., 2000).

Many approaches have been proposed for automatic segmentation
of chronic lesions on T1W MRIs after a stroke (Seghier et al., 2008;
Wilke et al., 2011; Mitra et al., 2014; Pustina et al., 2016; Detante and
Dojat, 2017; Yang et al., 2019; Qi et al., 2019; Zhou et al., 2019; Fadi
et al., 2020). Compared to research on automatic segmentation of acute
stroke lesions, however, methods for chronic lesion segmentation are
underdeveloped. One major difference between acute and chronic le-
sions in terms of image segmentation is that the former utilize diffu-
sion—and/or perfusion—weighted imaging, while the latter typically
use high-resolution T1W imaging. Methods developed for acute stroke
lesion segmentation are not readily applicable to chronic stroke analysis
due to the different characteristics of these MRI pulse sequences and the
high-resolution data of T1W MRIs.

Recently, convolutional neural networks (CNNs) have achieved
expert-level performance in various radiology image analysis tasks
(Larson et al., 2017; Tomita and Cheung, 2018; Becker et al., 2018; Liu
et al., 2019) . Three-dimensional (3D) CNNs are deep learning archi-
tectures that can extract 3D spatial features. Since diagnosing stroke
lesions by neuroradiologists requires analysis of a lesion and its
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surrounding area (Crinion et al., 2013), 3D CNNs are suitable for this
task. This is because 3D CNNs incorporate the contextual information of
voxels (i.e., volumetric pixels) into analysis by capturing both low-level
local features (i.e., edges and corners) and high-level global features
(i.e., the anatomy of brains).

In this study, we developed an effective deep learning model for 3D
segmentation to identify areas of infarcted brain tissue on MRI images.
To develop our method, we utilized a public dataset of T1W MRI scans
from patients with chronic stroke lesions.

2. Materials and methods

2.1. Data source

To develop and evaluate our algorithm in this study, we used a
publicly available dataset of volumetric MRI scans of patient brains
with anatomical tracings of lesions after stroke (ATLAS) (Liew et al.,
2017). In the ATLAS dataset, a total of 304 MRI scans were collected.
Stroke lesions on T1-weighted MRI images were manually traced and
established by trained students and research fellows under the super-
vision of an expert tracer and a neuroradiologist. The collection of the
ATLAS dataset and the subsequent sharing of the data were approved
by the study’s Institutional Review Board (IRB). Informed consent was
obtained from all subjects before data collection. We used a subset of
the ATLAS dataset, which consists of 239 scans normalized to MNI-152
space (Liew et al., 2017). The size of scans is 197 × 233 × 189 mm3

and the canonical size of a voxel is 1 mm3. Lesion size in the dataset
ranges from 10 mm3 to 2.8 × 105 mm3. Demographic data of the da-
taset is not available. The statistics of the dataset are summarized in
Tables E1, E2, E3, and E4 in the Supplementary Material.

2.2. 3D segmentation using a deep convolutional neural network

For the 3D brain lesion segmentation task, we use a 3D U-Net (Çiçek
et al., 2016), which is the state-of-the-art deep learning architecture for
volumetric segmentation tasks. U-Net architecture has characteristic
internal skipping connections between layers to propagate information
from earlier layers (encoder) to later layers (decoder). Fig. 1 shows the
overview of our 3D U-Net model in this study. We extended the 3D U-
Net architecture to accommodate our task and we detailed the mod-
ification in the Supplementary Material, Appendix E1. Our objective
function L is an affine combination of the binary cross entropy (BCE)
loss function and the Dice loss function (Milletari et al., 2016), which
we describe in detail in the Supplementary Material, Appendix E2.

2.3. Zoom-in&out training strategy

To efficiently train our models1, we used a two-stage zoom-in&out
strategy to first train them on small volumes, and then we finetuned the
models on larger volumes. This two-stage training has multiple ad-
vantages. First, training models with smaller volumes can have a reg-
ularizing effect due to performing data augmentation by randomly
extracting diverse sub-volumes from original volumes. Second, a
“zoom-in” step is a computationally inexpensive option and can utilize
sub-optimal graphic processing units (GPUs) for the task. By feeding
smaller volumes to older but more accessible GPUs, models can be
trained in parallel, and, as a result, are faster. Finally, the “zoom-out”
stage involves showing models larger volumes to learn from the broader
context of input images and improves the robustness of the model.

2.4. Experimental settings

The dataset was split into training, development, and test sets,
containing 182; 26; and 31 MRI exams, respectively. In Table 1, we
summarized the details and selected hyperparameters for the zoom-in&
out stages of the optimization. During evaluation, we cropped out a
center volume (144 × 172 × 168 mm3) from the whole MRI scans and
fed it to the network to make predictions. All the voxels outside of the
cropping window were automatically classified as negative. In addition
to our final model at the 150th epoch of finetuning, we built a snapshot
ensemble of models at the 50th, 100th, and 150th epoch of the zoom-
out stage (Huang et al., 2017). 3D-ResU-Net and 3D-ResU-Net-E denote,
respectively, the final model and the snapshot ensemble model. For
reproducibility, the complete list of subject IDs in each split is shown in
Table E5 in the Supplementary Material.

2.5. Evaluation metrics

We evaluated the performance of our segmentation methods on the
test set by computing the Dice similarity coefficient (DSC), maximal
DSC (mDSC), Hausdorff distance (HD), average symmetric surface
distance (ASSD), true positive rate (TPR), and precision for each MRI
scan. DSC, HD, and ASSD were computed using a surface distance
computation library (DeepMind, 2018). TPR and precision were com-
puted by using the scikit-learn package version 0.21.1 (Pedregosa et al.,
2011), and mDC was implemented according to the algorithm (Chen
et al., 2018). To estimate 95% confidence intervals, we employed
bootstrapping with 1000 iterations for all metrics.

3. Results

3.1. Prediction performance

Evaluation metrics of our model are summarized in Table 2. 3D-
ResU-Net yields an average DSC of 0.64 (0.51–0.74), maximal DSC of
0.66 (0.54–0.76), HD of 20.4 mm (10.0–33.3 mm), ASSD of 3.6 mm
(1.7–6.2 mm), TPR of 0.81 (0.68–0.90), and precision of 0.62
(0.48–0.74). For 3D-ResU-Net-E, the performance is an average DSC of
0.64 (0.51–0.76), maximal DSC of 0.65 (0.53–0.77), HD of 21.5 mm
(10.0–33.9 mm), ASSD of 3.7 mm (1.6–6.3 mm), TPR of 0.79
(0.67–0.89), and precision of 0.63 (0.48–0.75). Human inter-rater
scores are also presented in the last row in Table 2 as a reference.
Unlike previous work (Huang et al., 2017), the ensemble of our snap-
shots did not improve the model’s performance. Following these results,
we used 3D-ResU-Net for further experiments.

3.2. Comparison with existing methods

We identified recent studies of automatic segmentation that were
conducted on the ATLAS dataset and summarized them in Table 3. X-
Net (Qi et al., 2019), D-UNet (Zhou et al., 2019), CLCI-Net (Yang et al.,
2019), and our 3D-ResU-Net use specific subsets of the ATLAS data to
train and test their models, while Multi-path 2.5D-CNN (Fadi et al.,
2020) was trained with two other datasets and tested on the ATLAS
dataset. All the models are based on either 2D or 3D U-Net architecture.
Among the 3D U-Net based models, our 3D-ResU-Net model uses sig-
nificantly larger input volume than that of D-UNet. Although Multi-path
2.5D-CNN takes much larger volume as input than 3D-ResU-Net does,
the model does not fully utilize context information in 3D space since
the model analyzes input data in 2D and aggregates the results from
each slice in the axial plane through post-processing. Besides zoom-in&
out, our model leverages recent technical advancement in both training
strategy (i.e., a combination of loss functions and cosine learning rate
annealing) and network architecture (i.e., 3D fully convolutional neural
networks and group normalization).

1 The code for this study is publicly available at https://github.com/BMIRDS/
3dMRISegmentation.
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3.3. Qualitative analysis

We visualized our automatic segmentation results on the test set by
projecting voxel-wise predicted scores onto the original MRI volumes.
Fig. 2 shows the visualization of reference standard labels and model

output viewed from the front-left and front-right side of faces. Visua-
lizations from other samples are also available in Fig. E1 in the
Supplementary Material. The trained model accurately locates the
chronic stroke lesions. Notably, while most of reference standard labels
have an uneven structure on the surface, possibly due to the variability
of manual human annotations, the predicted lesions tend to have
smooth surfaces, which is a realistic assumption for such lesions. We
hypothesize that the model has learned this continuous surface from
data by internally averaging out marginal voxels of all the training
cases and successfully removing variability in human annotation.

3.4. Lesion size and model performance

We further analyzed the performance of our model in relation to the

size of target lesions. Fig. 3 plots the number of positive voxels in the
reference standard and a computed DSC of prediction for each sample
in the test set. We observe a trend (R2 = 0.34; p-value< 0.05) in which
a sample with a large size of tracing has been predicted with a high DSC
score. The median DSC is 0.75, which is 0.11 higher than the average.

Fig. 1. Overview of our 52-layer segmentation model. (a) The network consists of residual blocks (in green), down-sampling blocks (in blue), and up-sampling blocks
(in yellow). (2) Our 3D residual block uses a group-normalization (gn) layer to stabilize optimization for a small mini-batch. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 1
The details and hyperparameters for the model optimization in our experi-
ments. Additional details about the input volume selection are available in
Appendix E3.

Optimization Stage Zoom-In Stage Zoom-Out Stage

Input volume size
(mm3)

128 × 128 × 128
(24% sub-volume)

144 × 172 × 168
(48% sub-volume)

Training Length 1200 epochs 150 epochs
Initial learning rate 1.00E−03 1.00E−04
Optimizer Adam optimizer and cosine annealing with warm restart

scheduler (Pustina et al., 2016; Qi et al., 2019)
GPU Nvidia Titan Xp

with 12 GB memory
Nvidia Titan RTX
with 24 GB memory

Deep learning
framework

PyTorch (Paszke et al., 2017)

Table 2
Summary of evaluation metrics. A higher rate is better for DSC, mDSC, TPR, and Precision. For distance metrics (HD and ASSD), a smaller number is better. Best
scores are marked in bold. The inter-rater scores are calculated based on tracing of five brain MRIs by 11 non-expert individuals trained by an expert neuroradiologist
(Liew et al., 2018). The model’s performance, based on the primary stroke locations and the vascular territories, is available in the Supplementary Material, Tables E6
and E7.

Methods DSC mDSC HD
(mm)

ASSD
(mm)

TPR Precision

3D-ResU-Net 0.64
(0.51–0.76)

0.66
(0.54–0.76)

20.4
(10.0–33.3)

3.6
(1.7–6.2)

0.81
(0.68–0.90)

0.62
(0.48–0.74)

3D-ResU-Net-E 0.64
(0.51–0.76)

0.65
(0.53–0.77)

21.5
(10.0–33.9)

3.7
(1.6–6.3)

0.79
(0.67–0.89)

0.63
(0.48–0.75)

Trained human tracer 0.73
(0.53–0.93)

– 22.6
(1.2–43.9)

– – –
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Table 4 shows a performance summary of the model given a subset of
test samples where each subset is composed of a quarter of percentiles
when samples are rank-ordered by the number of positive lesion voxels.
For example, the first group includes test samples with the size of lesion
voxels being smaller than the 25th percentile of the whole test set. The
model achieves the highest DSC (0.74–0.84) and TPR (0.79–0.95) on
samples with larger positive lesions (75%–100%). In the distance me-
trics, the model also achieves the lowest mean HD of 13.6 mm
(2.8–35.2 mm) and mean ASSD of 1.8 mm (0.5–2.8 mm) for this group.
We confirmed that segmentation performance in both voxel-based and
surface-based metrics improves as the size of the lesion to be classified
gets larger. The same trend is reported in Vorontsov et al. (2019) and
Ito et al. (2018). Of note, in our dataset, the median size of primary
lesions is 3947 mm3 (interquartile range - IQR: [767 mm3,
21,639 mm3]). The median size of lesions, including secondary lesions,
is 801 mm3 (IQR: [123 mm3; 6,049 mm3]). The median size of lesions
that are aggregated per patient is 4,170 mm3 (IQR: [886 mm3;
21,639 mm3]).

3.5. Effectiveness of zoom-in&out strategy

To further validate our methodology, we investigated the impact of
our zoom-in&out training strategy on the performance of our model by
evaluating models with and without finetuning on large volumes. In
addition to the metrics we used for our main experiment, we computed
the micro-average of DSC (microDSC), which is a global statistic used to
evaluate the per-voxel performance of our model, and is less susceptible
to the size of lesions. Here, 3D-ResU-Net-F denotes the model without
the finetuning step, distinguished from the 3D-ResU-Net model. Table 5
summarizes this ablation study. Through finetuning, the per-voxel and
per-sample segmentation performances are improved by 6% and 4%,
respectively. The surface distances between the manual tracing and
automatic segmentation measured by HD and ASSD are closer by
14.7 mm and 4.0 mm, respectively. Except for TPR, the model with
larger volumes after finetuning shows higher performance across all
metrics. Of note, training 3D-ResU-Net-F was converged after 1200
epochs with an annealed learning rate, thus we are confident that an
additional 150 epochs of training does not improve the performance of
the model without increasing the size of input volumes. Also, training
models for 1200 epochs with the zoom-in&out method takes about
5 days, while training entirely with large volumes takes more than
3 weeks. Thus, the zoom-in&out strategy is an effective and viable
option for training 3D segmentation models of large 3D T1W MRI
images.

4. Discussion

Identifying lesions and irreversible brain tissue damage on patient
MRI scans after a stroke is challenging, especially when the amount of
time and resources are limited. In this study, we developed a deep
learning model for 3D segmentation of chronic stroke lesions to assist
neuroradiologists in this task and further provide personalized re-
habilitation for patients to achieve effective recovery. On the test set,
the average symmetric surface distance of lesions identified by our
segmentation model was 3.6 mm. The average Dice similarity coeffi-
cient score of our model was 0.64, with a median of 0.78. The overall
performance of our model indicates that a 3D deep neural network is a
promising method for volumetric segmentation of chronic stroke le-
sions on T1W MRI scans.

Our technical contribution in this study is twofold. First, we have
established another baseline on the ATLAS dataset using the latest deep
learning architecture and techniques to further encourage research in
MRI analysis of chronic stroke patients. Second, we have presented a
novel zoom-in&out strategy for effectively training 3D segmentation
models on high-resolution volumes.

Recently, a patch-to-image training framework was proposed forTa
bl
e
3

Su
m
m
ar
y
of

di
ff
er
en

t
ap

pr
oa

ch
es

on
th
e
A
TL

A
S
da

ta
se
t.
LR

:l
ea
rn
in
g
ra
te
;H

:h
ei
gh

t;
W
:w

id
th
;D

:d
ep

th
;
SG

D
:s

to
ch

as
ti
c
gr
ad

ie
nt

de
sc
en

t.
“–
”
de

no
te
s
th
at

th
e
co

rr
es
po

nd
in
g
in
fo
rm

at
io
n
is

no
t
av

ai
la
bl
e.

M
et
ho

ds
X
-N

et
(Q

i
et

al
.,
20

19
)

M
ul
ti
-p
at
h
2.
5D

-C
N
N

(F
ad

i
et

al
.,
20

20
)

D
-U

N
et

(Z
ho

u
et

al
.,
20

19
)

C
LC

I-
N
et

(Y
an

g
et

al
.,
20

19
)

3D
-R
es
U
-N

et
(o
ur
s)

Tr
ai
ni
ng

da
ta

so
ur
ce

A
TL

A
S

K
F
&

M
C
W

A
TL

A
S

A
TL

A
S

A
TL

A
S

A
TL

A
S
sp
lit

ra
ti
o
(t
ra
in
,
va

lid
at
io
n,

te
st
)
(%

)
5-
fo
ld

cr
os
s-
va

lid
at
io
n

(0
,0

,1
00

)
(8
0,

20
,0

)
(5
5,

18
,2

7)
(7
6,

11
,1

3)
Ba

se
ar
ch

it
ec
tu
re

2D
U
-N

et
2D

U
-N

et
w
it
h
3D

po
st
-p
ro
ce
ss
in
g

3D
U
-N

et
2D

U
-N

et
3D

U
-N

et
R
eg

ul
ar
iz
at
io
n
la
ye

rs
Ba

tc
h
no

rm
al
iz
at
io
n

Ba
tc
h
no

rm
al
iz
at
io
n

Ba
tc
h
no

rm
al
iz
at
io
n

Ba
tc
h
no

rm
al
iz
at
io
n

G
ro
up

no
rm

al
iz
at
io
n

Tr
ai
ni
ng

st
ra
te
gy

A
da

m
op

ti
m
iz
er
,
re
du

ce
LR

on
pl
at
ea
u

SG
D

op
ti
m
iz
er
,e

xp
on

en
ti
al

LR
de

ca
y

SG
D

op
ti
m
iz
er
,c

on
st
an

t
LR

A
da

m
op

ti
m
iz
er
,c

on
st
an

t
LR

A
da

m
op

ti
m
iz
er
,c

os
in
e
an

ne
al
in
g

Lo
ss

fu
nc

ti
on

D
ic
e
lo
ss

&
C
ro
ss

En
tr
op

y
D
ic
e
lo
ss

D
ic
e
lo
ss

&
Fo

ca
l
lo
ss

D
ic
e
lo
ss

D
ic
e
lo
ss

&
C
ro
ss

En
tr
op

y
In
pu

t
si
ze

(W
×

H
×

D
)

19
2
×

22
4
×

1
19

2
×

22
4
×

19
2

19
2
×

4
×

19
2

17
6
×

23
3
×

1
14

4
×

17
2
×

16
8

R
ep

or
te
d
D
SC

0.
49

(–
)

0.
54

(–
)

0.
54

(0
.2
6–

0.
81

)
0.
58

(–
)

0.
64

(0
.5
1–

0.
76

)

N. Tomita, et al. NeuroImage: Clinical 27 (2020) 102276

4



segmentation of 2D fundus photographs. In that approach, a model is
trained on extracted small patches from images in a dataset, and then it
is finetuned on full-size images (Sekou et al., 2019). This procedure can
be considered as a special case of our zoom-in&out strategy, where the
previous work chose to feed the full-size input image at the zoom-out
stage, while our method does not require the full-size input at the zoom-
out stage, providing more flexibility in comparison to feeding the full
images. Particularly, our approach is more suitable and essential for 3D

image analysis that has an enormous GPU memory demand for training
deep learning models. Using full-size input in the zoom-out stage would
lose spatial variations in input samples and thus could lead to over-
fitting in model training, especially for 3D segmentation models with a
large number of parameters. Conversely, randomly-extracted cropped
images in our approach maintain the spatial variation of input and
stabilize the training as they contribute as a regularizer in training 3D
segmentation models. Of note, volumes in the zoom-out stage only
account for 48% of the original scan size. MRI scans in our dataset are
well-positioned and stretched in the normalized space; thus, our
random crops still maintain spatial variation in foreground objects.

Of note, in our preliminary study, we explored the effect of the
zoom-in stage’s input size on the model’s performance by considering
16 × 16 × 16 mm3 and 32 × 32 × 32 mm3 input volumes. The va-
lidation performance of the models trained with these smaller input
volumes was not encouraging. Therefore, we considered larger input
regions in training our model for post-stroke lesion segmentation. While
we did not apply any random rotation as data augmentation in our
study, training with small rotation may further benefit the model’s
performance. In addition, we ran our model on test set samples strati-
fied by scanners to investigate the effect of scanner variations on the
model’s performance, and we could not see a statistical difference in the
performance of our model based on scanner type.

This study has some limitations. Since the dataset is relatively small,
further validations on external datasets of chronic stroke MRI scans are
required to verify the generalizability of the model’s segmentation
performance. We plan to investigate the generalizability of our model

Fig. 2. Visualization of reference standard labels (in blue) and lesion predictions by our model (in red). The higher the predicted value is at a voxel, the brighter in
red the voxel is. Two groups of samples are shown: large reference labels in (a) and small labels in (b). For each group, the first column is a computed DSC value and
the rest are visualized reference standards and predictions, from left-front and right-front views. Three typical samples are shown in a row in each group (best viewed
in color). The visualization of segmentation results in axial slices is also available as videos in the Supplementary Material, Video E1. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. DSC scores and the total number of positive lesion voxels (in base-10 log
scale) are computed and plotted for each sample in the test set. The R2 value of
this distribution is 0.34.

Table 4
Comparison of evaluation metrics with respect to the subsets of test set samples. Test samples are sorted by the number of positive lesion voxels in increasing order
and grouped in four ranges, shown in the first column. DSC, HD, ASSD, TPR, and precision are computed for each group. Best scores are marked in bold.

Percentile in per-sample lesion size distribution DSC HD
(mm)

ASSD
(mm)

TPR Precision

0–25% 0.41
(0.07–0.78)

23.4
(3.7–51.1)

4.9
(0.7–13.2)

0.74
(0.30–0.99)

0.39
(0.01–0.81)

25–50% 0.72
(0.59–0.82)

18.0
(1.8–35.6)

3.8
(0.5–7.2)

0.78
(0.64–0.91)

0.71
(0.53–0.83)

50–75% 0.62
(0.42–0.80)

26.1
(2.3–58.0)

4.1
(0.6–8.8)

0.82
(0.53–0.96)

0.60
(0.39–0.79)

75–100% 0.80
(0.74–0.84)

13.6
(2.8–35.2)

1.8
(0.8–2.6)

0.87
(0.79–0.95)

0.75
(0.64–0.84)
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and its inter-scanner variance using larger multi-institutional datasets
and scanner agnostic configurations in future work. The dataset used in
this study contains only scans of embolic stroke, which accounts for the
majority of strokes, however, further validation with other types of
stroke is worthwhile. In addition, our method experienced the same
problem as the previous work, in which segmentation performance
degraded on volumes with small stroke lesions (Vorontsov et al., 2019;
Ito et al., 2018). Small lesions are reasonably challenging to locate
because the features of such lesion are subtle and hard to characterize.
Notably, missing small lesions of primary stroke would result in a near-
zero DSC score because the contribution of each positive voxel is much
higher than that of cases with large lesions, and thus leads to having a
much lower average DSC than median DSC score. We further measured
per-patient lesion size characteristics for both the test and training sets.
Interestingly, we found out the median lesion size of the test set
(3328 mm3 [IQR: 730 mm3, 7888 mm3]) is smaller than that of the
training set (4343 mm3 [995.5 mm3; 24,680.5 mm3]). Therefore, the
test set with smaller lesions is a more challenging dataset to use for the
evaluation of our model in comparison to cross-validation, in which the
distributions of lesion size in the training and test sets are identical,
validating the high performance of our model. Lastly, our error analysis
shown in Fig. E2 (see Supplementary Material) demonstrates that a few
MRI scans in the dataset have visual inconsistencies, possibly in-
troduced at the time of original scanning or during image-processing
steps in data curation. Our method does not require input scans to be in
MNI-152 standard space and is applicable to datasets in native T1
space. However, we expect larger training sets are required for datasets
without normalization to maintain the robustness of the trained models.

Currently, we are considering several avenues for extending our
work. From a clinical perspective, lesion segmentation is a part of the
clinical pipeline for providing rehabilitation service for stroke survi-
vors. To fully extend the potential of current research for actionable
clinical practice, we plan on building an application that 1) performs
segmentation of chronic stroke lesions, 2) identifies disabled function-
alities, and 3) predicts the effectiveness of rehabilitation for each
neurological deficit, simultaneously. The first task provides evidence
for the second task, and the second task forms a basis for the third task.
This pipeline can provide a practical tool that aids clinical decision
making. We expect 3D convolutional segmentation architectures are
extendable to perform all three tasks. There is evidence that a multi-
task model would learn robust features and achieve better performance
than models that are trained for a single task (Fang et al., 2019; Samala
et al., 2017) . To this end, another dataset that records the current
status of disabilities, rehabilitation, and recovery of patients would be
necessary, in addition to the MRI scans and segmentation masks, for our
future work. We expect that our study will establish a standard in this
domain and will promote further research to advance current state-of-
the-art methodologies for volumetric segmentation of chronic ischemic
stroke lesions on T1W MRI scans.
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