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Memory has an essential function in human life as it helps individuals

remember and recognize their surroundings. It is also the major form of

cognition that controls behavior. As memory is a function that is highly

characteristic of humans, how it was established is of particular interest.

Recent progress in the field of neurosciences, together with the technologi-

cal advancement of genome-wide approaches, has led to the accumulation

of evidence regarding the presence and similar/distinct mechanisms of

memory among species. However, the understanding of the evolution of

memory obtained utilizing these genome-wide approaches remains unclear.

The purpose of this review was to provide an overview of the literature on

the evolution of the memory system among species and the genes involved

in this process. This review also discusses possible approaches to study the

evolution of memory systems to guide future research.

Memory is the ability to store and retrieve information

over time [1]. The capability to remember and recognize

people, places, and things in daily life is the major form of

cognition that controls behavior [2]. Thus, memory is

characteristic of higher organisms. Because of its impor-

tance, memory is one of the most intensively researched

subjects in the field of neuroscience. In humans, memory

is one of the fundamental functions of all learning and

studying processes. The importance of memory extends to

child development as it helps children remember skills

that they learned previously, including reading, writing,

and motor skills. Nonhuman animals can also use mem-

ory for controlling their behavior in terms of social inter-

actions, foraging behavior, and remembering predators

that should be avoided in the future [3]. Therefore, it is of

particular interest to understand the evolutionary process

of memory systems in humans. Advancements in the field

of neuroscience research have shed light on the molecular

mechanisms involved in memory systems. Figure 1 shows

the phylogenetic relationship of animals and the evolution

of the nervous system. Ryan and Grant, 2009 [4] have

addressed the evolution of the nervous system, as shown

in Fig. 1; however, research on the evolution of memory

is limited. In this review, we provide an overview of the

evolution of memory based on genes involved in the mem-

ory system.

Representative neurobiological
models of memory

The memory function has three necessary stages: encod-

ing, storage, and retrieval of information [5]. Encoding

refers to the initial learning of information after perceiv-

ing it, storage is defined as the maintenance of the infor-

mation over time, and retrieval refers to the ability to

access and recall the information when needed [6].

According to Atkinson and Shiffrin (1971), memory

involves three components: sensory register (sensory
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memory), short-term memory (STM), and long-term

memory (LTM) [7]. Sensory memory is responsible for

detecting information using the senses, that is, hearing,

sight, taste, smell, and touch, which are directly linked to

the nervous system. The storage capacity of sensory

memory is large and has a short duration of few seconds

[7]. STM refers to the ability to store information for a

short period. The storage capacity of STM is approxi-

mately 7 � 2 “chunks” of items [8], and it has a short

duration of approximately 18–20 s [9] or 15–30 s [10].

The third type of memory is LTM. Compared with sen-

sory memory and STM, LTM has unlimited capacity to

store information and lasts for a very long time [7,11]. At

the cellular level, LTM requires gene expression (tran-

scription), protein synthesis (translation), and the cre-

ation of a new synaptic connection, in contrast to STM,

which does not require the synthesis of new proteins [12].

Neuroscientists have argued about how memory is stored

in the brain and have proposed several models and theo-

ries of memory. For example, some researchers agree

with the synaptic theory of memory, whereas others

believe a theory known as Hebb’s theory of learning and

memory. In this review, we provide an overview of both

theories as being representative of memory.

Synaptic theory of memory

In the synaptic theory of memory, memory synapses are

considered as specialized synapses with a particular sup-

plement of receptor complexes, active zone proteins,

synaptic adhesion-related proteins, and scaffold proteins,

which determine the specific characteristic of the synapses

that support memories [13]. Many neuroscientists agree

that alterations in the strength of the synaptic connection

between neurons encode memories [14,15]. Neural diver-

sity to express various molecules is essential for distin-

guishing characteristics of different neurons, and it allows

variations in neuronal synapses [16–18]. In fact, various

molecular complexes allow the differentiation of synapses,

including gamma-aminobutyric acid (GABA) receptor

complexes [19], N-methyl-D-aspartate (NMDA) receptors

[20–23], and a variety of a-amino-3-hydroxy-5-methyl-4-

isoxazole propionic acid (AMPA) receptor complexes [13].

Some studies have provided support for the synaptic

theory of memory. Memory synapses can be erased by

inhibiting reconsolidation [13]. In Aplysia, the use of

protein synthesis inhibitors to block reconsolidation

after recalling led to the loss of behavioral sensitiza-

tion [24,25]. Furthermore, memory synapses are erased

with the use of pharmacological agents. Chelerythrine

and zeta inhibitory peptides are pharmacological

agents that were shown to erase behavioral sensitiza-

tion and long-term facilitation (LTF), increase the

strength of synapses in sensory-motor neuronal cul-

tures in Aplysia [26], and disrupt long-term potentia-

tion (LTP) in vertebrates [27–29]. LTP is defined as

the continued increase in the strength of synapses fol-

lowing the activation of chemical synapses [30]. Pro-

tein synthesis inhibitors have been used after learning

to distinguish among different types of memory

synapses experimentally. The addition of these inhibi-

tors after learning blocks the formation of memory

synapses between dentate gyrus neurons and entorhi-

nal cortex neurons while maintaining the increase in

the connections between dentate gyrus engram neurons

and the CA3 area [13]. Thus, it was expected that the

formation of memory synapses in these neural connec-

tion systems would be different [13].

Fig. 1. Phylogenetic relationship and

evolution of the nervous system. The

nodes on the phylogenetic tree indicate

the points of divergence of several clades

and are indicated as colored circles. The

blue node represents the last common

ancestor of the bilaterians. The small black

circle represents the last common

ancestor of synapses (ursynapse). Beside

each node, the divergence time range is

given in millions of years (mya). This figure

was modified from Ryan and Grant, 2009

[4].
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Hebb’s theory of memory

In 1949, Hebb proposed that the neurophysiological

alterations during learning and memory occur over

three stages: (a) synaptic changes; (b) cell assembly

formation, known as “a set of neurons and the path-

ways connecting them”; and (c) a phase sequence that

is the neural connection between cell assemblies [31].

An increase in the efficacy of synapses resulting in the

subsequent activity of neural cell assemblies represent-

ing the primary building blocks of learning, memory,

and cognitive approaches has been reported [32].

Moreover, a phase sequence formed by the connection

of synapses in cell assemblies can be altered by experi-

ence. The reactivation of the sets of neurons leads to

the recalling of memory stored in the altered synaptic

connection [33–35].
The neurobiological basis of memory comprises a

group of specific synaptic molecular and biochemical

alterations, such as de novo protein synthesis, protein

phosphorylation, upregulation of the expression of

synaptic receptors, and the growth of synapses

between and within cell assemblies, resulting in the

efficacy of long-term synaptic changes [36–39]. It has

been shown that changes in synapses are the primary

step in the formation of the cell assembly and phase

sequences and that together they form a memory [31].

At present, there is no conclusive evidence that

memories remain at synapses [40]. In this review, we

favor Hebb’s theory and discuss the underlying molec-

ular mechanisms in the next section.

Evolutionary perspective of memory
formation

Evolution of memory and the hippocampus

Previous studies of functional neuroimaging and

patients with neurological deficits have shown that epi-

sodic memory, which is a type of LTM, crucially relies

on the integrity of the hippocampus [41–44] as well as

cortical areas, including the prefrontal cortex and

adjoining parahippocampal region [45,46].

The hippocampus plays an essential role in storing

memories in the mammalian brain [47]. It has been evo-

lutionarily conserved and is present across various spe-

cies, including mammals (such as humans, pigs,

rodents, and bats) [48,49], birds [50–52], reptiles (medial

cortex) [53], and teleost fish (dorsolateral telencephalon)

[53,54]. Functional and neurobiological evidence highly

suggests the existence of a homologous structure of the

hippocampus across species. For example, birds possess

a hippocampus, which has originated from a similar

structure in mammals [51,52,55]. Moreover, areas that

are homologous to the hippocampus are present in rep-

tiles and teleost fish [56].

The function of the hippocampus in memory forma-

tion is evolutionarily conserved among different spe-

cies. Inhibition of the formation of the hippocampus

greatly impairs recognition and spatial memory in

humans [57,58] and spatial memory in rodents [59,60].

Functionally, the mammalian hippocampus is compa-

rable to the avian hippocampus. Lesions in the avian

hippocampus also reveal disruption of spatial memory

in birds [61,62]. Similarly, they impair memory in gold-

fish and turtles [53]. Besides, the hippocampus,

parahippocampal region, and prefrontal cortex play an

essential role in episodic memory. These structures

form a neural system that was believed to underlie the

capacities of episodic memory in humans. However,

this circuit has been detected across mammals, and a

similar circuit has been found in the avian brain as

well [56]. After considering structure–function similari-

ties and the evolutionary history of episodic memory,

it was hypothesized that episodic memory in humans

shares the ancestral protoepisodic memory with other

species, including birds and mammals. Moreover, the

capability of this type of memory emerged before the

divergence of mammals and reptiles [56].

Evolution of memory in vertebrates

Working memory (WM) has been defined in three dif-

ferent ways: as STM employed during cognitive tasks,

as attention utilization to control STM, and as

multiple-component systems that manipulate and hold

information in STM [63]. Previous research has found

that the primary structure of WM is homologous

across all mammals [64]. Experimental work using ani-

mals has shown that the limits of WM may fall within

the human range [64]. For example, a serial recall test

of position was performed on a macaque monkey,

which successfully remembered the first three objects

in a sequence [65]. It was also shown that monkeys

could follow three to four objects of food placed con-

secutively into one or two opaque containers and were

able to differentiate between containers, including two

vs. three items and three vs. four items [66]. The exper-

iment also revealed a similar profile of latency and

other impacts commonly observed in humans, imply-

ing that both species utilize a homologous mechanism

of WM, with comparable limits [64]. A similar test

that was conducted in horses showed that they could

discriminate containers into which two or three apples

had been placed and failed to differentiate between

containers carrying four and six apples [67]. Therefore,
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the identification of three to four items most likely

reflects their pure WM retention ability [64].

Episodic memory is a type of LTM that is defined as

the ability to recall individual past experiences [56].

Clayton and Dickinson [68] studied memory in birds.

They examined an individual’s ability to remember

information about an event and its contents, such as

what, where, and when. For instance, scrub jays could

remember what food they stored, where it was located,

and the time at which they cached it [68]. Similar evi-

dence has been obtained for other bird species, such as

magpies [69] and black-capped chickadees [70]. The

ability to remember what, where, and when regarding

past events has also been demonstrated in several mam-

malian species, such as mice [71], rats [72,73], pigs [74],

meadow voles [75], nonhuman primates [76,77], and

humans [78,79]. Therefore, the core characteristics of

episodic memory are common among mammals and

some species of birds [56]. The emergence of episodic

memory has been speculated to have occurred parallel

with the formation of the hippocampus, especially

before the divergence of mammals and reptiles. Alterna-

tively, it may have emerged from convergent evolution;

however, additional evidence from reptiles and birds is

necessary to address this alternative hypothesis [56].

Evolution of memory among invertebrates

Studies of learning and memory have been conducted

using invertebrates as well. The learning and memory

process has been extensively studied in Drosophila

(fruit flies), focusing on the genetic approach to eluci-

date the cellular, biochemical, and behavioral path-

ways underlying learning and memory [80], [81]. In

addition, learning and memory processes have been

studied at the molecular and cellular levels in C. ele-

gans [82]. Furthermore, previous studies have reported

the ability of Aplysia to form LTM [83,84]. In addi-

tion, preliminary experiments conducted in planarians

suggested that they exhibit learning and memory

responses [85]. Shomrat and Levin [86] studied mem-

ory in planarians using an environmental familiarity

protocol. They reported that individuals could remem-

ber a familiar environment for at least 14 days using a

fully automated training apparatus. Though it should

need further discussion, Dugesia japonica was sug-

gested as one of the earlier species to possess memory.

Molecular mechanisms and genes
involved in memory

LTP is the process that is used to identify the molecu-

lar mechanisms underlying memory storage [87].

Experimental data regarding the link between memory

storage and synaptic changes have revealed activity-

dependent long-term changes in synaptic efficacy [40].

These involve LTP, which is commonly studied in

mammalian synapses and expressed as changes in

presynaptic and postsynaptic elements [88], as well as

LTF, usually studied in invertebrate synapses and dis-

played as both pre- and postsynaptic changes [89].

LTP is a form of synaptic plasticity that is not unique

to the vertebrate nervous system as it is also expressed

in the nervous system of invertebrates [40]. There is a

striking mechanistic similarity in LTP between inverte-

brates and vertebrates, suggesting that LTP was highly

conserved during evolution [40]. The behavioral func-

tion of LTP has also been evolutionarily conserved

[40]. For example, NMDA receptor-dependent LTP

plays a crucial role in classical conditioning at the sen-

sorimotor synapses that mediate the defensive with-

drawal reflex in Aplysia [90,91]. However, no direct

experimental evidence of a link has been found

between LTP and learning [90]. Furthermore, the LTP

of the octopus vertical lobe has been shown to be

involved in LTM acquisition; nevertheless, it remains

unknown whether similar cellular and molecular mech-

anisms drive the activity of synaptic enhancement [92].

Explicit spatial memory formation in the mouse hip-

pocampus and implicit memory in Aplysia has com-

mon molecular mechanisms that were highly conserved

during evolution [93]. Molecular and cellular studies of

different types of memories have proposed that an

alteration in the structure and synaptic strength is the

major mechanism by which these memories are

encoded and stored in the brain [93]. In fact, the stor-

age of explicit and implicit STM requires different sig-

naling pathways. In contrast, the storage of explicit

and implicit LTM utilized common signaling path-

ways, such as cAMP-response element-binding protein

1 (CREB-1), mitogen-activated protein kinase

(MAPK), and protein kinase A (PKA) pathways [94].

Moreover, in explicit and implicit memory, the transi-

tion from STM to LTM is regulated via inhibitory

constraints [94]. Here, we provide an overview of the

molecular mechanisms underlying memory in verte-

brates and invertebrates (Fig. 2).

Molecular mechanism underlying memory

formation in vertebrates

The formation of explicit memory in mice occurs

throughout LTP. Two stages of memory formation

take place during hippocampal LTP: early LTP

(E-LTP) and late LTP (L-LTP) [94]. E-LTP-like STM

is produced via signal stimulation of the slice and does
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not require new protein synthesis [94]; instead, it

induces the modification of pre-existing proteins, lead-

ing to the modification of the pre-existing synaptic

connection, which in principle is similar to short-term

facilitation (STF) in Aplysia [94]. In contrast, L-LTP-

like LTM requires multiple repetitions of stimulation,

transcription, translation, and generation of new

synaptic connections, similar to LTF in Aplysia [94].

The molecular mechanism underlying memory for-

mation in mammalian hippocampal neurons in mice is

as follows [94]. E-LTP initiates a single train of action

potentials, leading to the activation of the NMDA

receptor. The influx of Ca2+ into postsynaptic neurons

leads to the binding of the NMDA receptor to

calmodulin; this complex then activates second mes-

sengers. L-LTP is induced by repeating the trains of

action potentials. The calcium/calmodulin complex

binds to adenylyl cyclase (AC), which increases the

cAMP level and induces PKA activation [94]. Dopa-

mine signals can also activate AC. The catalytic sub-

units of PKA can stimulate MAPK and then move to

the nucleus to phosphorylate CREB [94]. CREB is a

transcription factor that can be activated by the PKA,

MAPK, and CaM kinase pathways [95]. CREB acti-

vates the immediate early genes (IEGs, regulators, and

effectors that act directly on the cell to enhance plastic

changes), such as the CCAAT enhancer-binding pro-

tein beta (C/EBPB), tissue plasminogen activator

(tPA), and brain-derived neurotrophic factor (BDNF)

genes [94]. Protein synthesis occurs at the active

synapses, leading to the growth and generation of new

synapses [93].

Fig. 2. Memory system-related genes in vertebrates and their roles. Learning induces the release of neurotransmitters such as glutamate

and neuronal growth factors such as BDNF, which activate various receptor families and allow the recruitment of several intracellular

signaling pathways, including second messengers and protein kinases. These signaling pathways control the following processes: 1)

posttranslational modifications such as phosphorylation of postsynaptic glutamatergic receptors; 2) activation of the CREB-mediated gene

cascade, which triggers the expression of target genes such as IEGs (Zif268, c-Fos, and C/EBP), thereby regulating the expression of late

response genes, which are essential for long-term structural and functional neuronal changes. The expression of these genes is regulated

by many posttranscriptional and translational mechanisms, for example, the mTOR pathway, as well as by epigenetic mechanisms involving

DNA methylation and histone methylation (M) and/or acetylation. This figure was modified from Alberini et al., 2017 [101].
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Molecular mechanism of memory formation in

invertebrates

One form of learning in Aplysia is sensitization, a

type of implicit memory. Sensitization refers to the

learning process of responding to a stimulus in ani-

mals [94]. In a previous study, the tail shock was

replaced with the application of serotonin (5-HT), a

transmitter that is usually released in animals by sen-

sitizing stimuli [96]. A single application of 5-HT pro-

duced STF in synaptic efficiency [93]. 5-HT binds to

the 5-HT receptor on sensory neurons and activates

the AC enzyme, which converts ATP to cAMP [94].

Subsequently, cAMP binds to the regulatory subunits

of cAMP-dependent PKA, leading to the separation

of the subunits from the free catalytic subunits. These

subunits can highly phosphorylate channels and

induce exocytosis in the presynaptic terminals [94],

leading to the reduction in K+ current, induction of

ca2+ influx, increased action potential, and enhanced

release of transmitters (glutamate) in sensory neurons

to the follower cells [97].

In contrast, repeating the application of 5-HT

induces LTF, which can last for more than 1 week

[93]. The cAMP level increases after repeated stimula-

tion. The catalytic subunits move to the nucleus and

activate MAPK. Within the nucleus, both MAPK and

PKA stimulate and phosphorylate CREB and inhibit

the action of CREB-2, which is a CREB-1 inhibitor.

CREB-1 stimulates some of the IEGs, such as an ubiq-

uitin hydrolase that is required for regulating the pro-

teolysis of the regulatory subunits. The cleavage of the

regulatory subunits induces the persistence activity of

PKA and consequently allows continued phosphoryla-

tion of PKA [94]. C/EBP is the second IEG that is

stimulated by CREB-1. C/EBP functions as a heterodi-

mer and a homodimer together with activity factor

(AF) to activate downstream genes (effector genes for

growth), such as elongation factor 1 alpha (EF1alpha),

which guide the growth of the connections of new

synapses [94].

Evolution of genes related to memory
formation

As described above and in Fig. 2, many genes are

involved in memory formation including (MAPK,

PKA, BDNF, C/EBP, c-Fos, and CREB). C/EBP pro-

teins are characterized by the presence of a highly con-

served basic-leucine zipper (bZIP) domain [98].

Jindrich and Degnan have studied the evolution of

bZIPs [99], suggesting that the bZIP family of C/EBP

underwent more diversification and duplicated before

bilaterian speciation. Further, BDNF was detected to

be highly conserved in gene function and structure

during the evolution of vertebrates and have an essen-

tial role in synaptic plasticity and during brain devel-

opment [94]. In addition, Wang et al. [100] examined

the evolution of the ATF/CREB family and found

that it probably emerged in the early metazoan and

expanded in vertebrate lineages. CREB controls gene

regulation in response to the cAMP concentration.

However, it is unclear whether CREB contributed to

memory from its emergence, similar to other genes.

As memory is a system that involves many genes

(Fig. 2), it is difficult to understand the evolution of

the memory “system” from a single gene. In the case

of CREB, it regulates so-called IEGs such as c-fos and

BDNF. Moreover, CREB participates in the cAMP

network; thus, it is linked to cAMP-related genes such

as PKA. Therefore, a comprehensive study of memory-

related genes is needed to understand the origin and

evolution of memory.

Conclusion

The physiological characteristics of memory have

been extensively studied, indicating that the memory

function is conserved among mammals, birds, reptiles,

and fishes and is present even in invertebrate species.

However, it is difficult to elucidate the evolution of

memory based on only physiological data. We then

discussed the necessity of the comprehensive research

of memory-related genes to study the evolution of the

memory system. The study of molecular evolution is

a promising approach to examine evolution using

genes; however, evolutionary history is not uniform

among genes. Therefore, it must be able to handle all

genes related to memory at once. It is essential to

understand the evolution of memory based on

memory-related genes because of the accumulation of

genome sequences and related data. Further research

on the evolution of memory focusing on a genomics

approach may help understand humans and their

evolution.
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