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Abstract
Predicting unplanned rehospitalizations has traditionally employed logistic regression models. Machine learning (ML) methods have
been introduced in health service research and may improve the prediction of health outcomes. The objective of this work was to
develop a ML model to predict 30-day all-cause rehospitalizations based on the French hospital medico-administrative database.
This was a retrospective cohort study of all discharges in the year 2015 from acute-care inpatient hospitalizations in a tertiary-care

university center comprising 4 French hospitals. The study endpoint was unplanned 30-day all-cause rehospitalization. Logistic
regression (LR), classification and regression trees (CART), random forest (RF), gradient boosting (GB), and neural networks (NN)
were applied to the collected data. The predictive performance of themodels was evaluated using the H-measure and the area under
the ROC curve (AUC).
Our analysis included 118,650 hospitalizations, of which 4127 (3.5%) led to rehospitalizations via emergency departments. The RF

model was the most performant model according to the H-measure (0.29) and the AUC (0.79). The performances of the RF, GB and
NN models (H-measures ranged from 0.18 to 0. 29, AUC ranged from 0.74 to 0.79) were better than those of the LR model (H-
measure=0.18, AUC=0.74); all P values <.001. In contrast, LR was superior to CART (H-measure=0.16, AUC=0.70), P< .0001.
The use of ML may be an alternative to regression models to predict health outcomes. The integration of ML, particularly the RF

algorithm, in the prediction of unplanned rehospitalization may help health service providers target patients at high risk of
rehospitalizations and propose effective interventions at the hospital level.

Abbreviations: AME = Aide Médicale d’Etat, APHM = Assistance Publique –Hôpitaux de Marseille, AUC = area under the curve,
CART = classification and regression trees, CMU = Couverture Maladie Universelle, DT = decision tree, GB = gradient boosting,
LOS= length of stay, LR= logistic regression, MDG=mean decrease in Gini, ML=machine learning, NN= neural networks, PMSI=
Programme de Médicalisation des Systèmes d’Information, RF = random forest, ROC = receiving operating characteristic, VI =
variable importance.
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1. Introduction
Reducing 30-day rehospitalizations is a priority of health care
policies in Western countries.[1,2] Unplanned rehospitalizations
are common[3,4] and costly,[4,5] reflecting poor quality inpatient
care,[6–8] and poorly coordinated transitions between hospitals
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and homes.[9] Despite the growing literature on this issue,
unplanned rehospitalizations are still poorly understood and
controlled.[3] We need to better identify patients at high risk of
rehospitalization to improve the quality of care and reduce
rehospitalizations and associated health care costs.[10]
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In a recent work,[11] we developed an easy-to-use predictive
rehospitalization risk score of unplanned 30-day all-cause
rehospitalization using a logistic regression (LR) model based
on 13 variables from the French hospital medico-administrative
database (Programme de Médicalisation des Systèmes d’Infor-
mation - PMSI). This predictive rehospitalization risk score
yielded better discriminatory properties than the LACE index
score[12] (c-statistic=0.74 vs 0.66, respectively). The LACE index
score is one of the most widely used predictive tools in the world
and the current instrument recommended by the French Health
Authority. Despite this improvement, this new score presented
moderate discriminative ability and needs to be more accurate.
The other prediction models in the literature present similar
properties, with c-statistics of approximately 0.70 (e.g., hospital
score=0.72 [13]). The common point among the prior work is to
use traditional statistical methods such as logistic regression (LR)
models. Recently, machine learning (ML) methods have been
introduced in health service research and have shown a better
level of prediction than traditional statistical approaches in
several domains.[14–21] ML methods offer key benefits over
traditional statistical approaches because they account for
nonlinear relationships between the outcome and the predictors
and yield more stable predictions.[22] ML methods account for
interactions between predictors which relaxes the homogeneity
assumption that there are no interactions among predictors. To
our knowledge,MLmethods have rarely been applied to improve
the prediction of all-cause rehospitalization. A recent study[23]

developed models using an ML approach to predict 30-day all-
cause rehospitalization in patients hospitalized for heart failure
but without prediction improvement when compared to LR
models (c-statistics<0.61). Another recent study[24] reported
that automated ML better predicted readmissions than com-
monly used readmission scores in 3 US hospitals (n=16.649).
Thus, the objective of this work was to compare the predictive

performance of traditional logistic and ML models to predict 30-
day all-cause rehospitalizations on a large population-based
study from the French hospital medico-administrative database,
based on the following 2 criteria: the area under the receiving
operating characteristic curve and the H-measure. For this
purpose, we selected the best ML methods: random forest (RF),
neural networks (NN) and gradient boosting (GB),[25] which we
compared with 2 reference methods: LR and classification and
regression trees (CART) methods.
2. Methods

2.1. Study design

This was a retrospective cohort study of all acute-care inpatient
hospitalization cases discharged from January 1 to December 31,
2015, from the largest university health center in south France
(Assistance Publique – Hôpitaux de Marseille, APHM). All data
were collected from the French Hospital database (PMSI -
Programme de Médicalisation des Systèmes d’Information).[26]

The PMSI is the French medico-administrative database for all
hospitalizations based on diagnosis-related groups that we could
group into significant diagnostic categories. Research on such
retrospective data are excluded from the framework of the French
Law Number 2012–300 of March 5, 2012 relating to the
research involving human participants, as modified by the Order
Number 2016–800 of June 16, 2016. Neither the French
competent authority (Agence Nationale de Sécurité du Médica-
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ment et des Produits de Santé, ANSM) approval nor the French
ethics committee (Comités de Protection des Personnes, CPP)
approval is required in this context.
2.2. Study setting and inclusion criteria

The APHM is a public tertiary-care center comprising 4 hospitals
(La Timone, La Conception, Sainte-Marguerite, and North) with
3400 beds and 2000 physicians. Approximately 300,000
hospitalizations are recorded every year at the APHM, involving
approximately 210,000 patients. All acute-care hospitalizations
were included in this study. We excluded hospitalizations in the
ambulatory care unit (i.e., ambulatory surgery, radiotherapy,
dialysis, chemotherapy, and transfusions) as well as in-hospital
mortalities.
2.3. Study outcome

The study outcome was unplanned 30-day all-cause rehospitali-
zation (a binary variable where positive rehospitalization is coded
y=1), defined as any cause of readmission via emergency
departments in any acute care wards within 30 days of discharge.
To calculate this outcome, a unique and individual PMSI
identifying variable was used to track rehospitalizations, 30 days
following discharge. No more than 1 rehospitalization for
each discharge was taken into account. Readmission via the
emergency department was employed to identify unplanned
rehospitalizations.[27]
2.4. Collected data

The dataset collected from the PMSI used 29 predictor variables
based on a previous work:[11]
�
 sociodemographic characteristics: age, gender, state-funded
medical assistance (Aide Médicale d’Etat, AME) (i.e., health
coverage for undocumented migrants), and free universal
health care (Couverture Maladie Universelle, CMU) (i.e.,
universal health coverage for those not covered by employ-
ment/business-based schemes);
�
 clinical characteristics: category of disease based on the 10th
revision of the International Statistical Classification of
Diseases, disease severity (no or low severity, moderate – high
severity or not determined for short hospitalizations) based on
an algorithm issued from the PMSI and 17 comorbidities from
the Charlson comorbidity index[28] (supplementary file 4,
http://links.lww.com/MD/F248);
�
 hospitalization characteristics: patient origin (home or other
hospital institution), hospitalization via emergency depart-
ments, LOS, destination after hospital discharge (home or
transfer to other hospital institution), and hospitalization via
emergency departments in the previous 6 months.

2.5. Statistical models

Five distinct types of predictive models were fitted to the data: LR
considered as the reference, CART, RF, GB, and 1 hidden-layer
NN. These models have been explained elsewhere in detail[29]; a
brief summary is presented here.
LR is a linear model of the exponential family such that

ln p
1�p

� � ¼ wTx, where p=P(y=1jx) andw is the weight vector to
be estimated from the data.

http://links.lww.com/MD/F248
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CART[30] is a binary decision tree (DT) method that involves
segmenting the predictor space into a number of simple regions.
CART can be applied to both regression and classification
problems, as in our study. A DT is constructed through an
iterative process by applying a binary splitting rule. For each
variable xj in the data, a rule of the form xj<a (a ∈ R is a
threshold) is used to split the initial set of observations (denoted
t0, the root of the tree) into 2 subsets tl and tr (the sibling nodes).
Each observation falling in those regions is then predicted by the
highest frequency class. The best split is defined as the one
minimizing a loss function (i.e., the Gini index). Once the best
split has been defined, the same process is applied to the 2 nodes tl
and tr and repeated until a predefined minimum number of
observations is reached. Then, a pruning algorithm can be used to
search for an optimal tree, given a penalty criterion (complexity
parameter) applied to the objective function. A DT can be
represented graphically and thus can be directly interpretable,
given its simple structure.
RF[31] is an ensemble learning method based on aggregating

ntree trees similar to the ones constructed with CART, each one
grown from a bootstrap sample of the original data set. Each tree
in the forest uses only a random subset ofmtry predictors at each
node. The trees are not pruned. Each value predicted by RF is the
average of the values predicted by the ntree trees.
GB[32] is also an ensemble learning method based on DT but

does not involve bootstrap sampling. Given a loss function (i.e.,
squared error for regression) and a weak learner (i.e., regression
trees), the GB algorithm seeks to find an additive model that
minimizes the loss function. It is initialized with the best guess of
the response (i.e., the mean of the response in regression), then the
gradient (i.e., residual) is calculated, and a model is then fit to the
residuals to minimize the loss function. The current model thus
obtained is added to the previous model, adjusted by a shrinkage
parameter, and the procedure continues for a user-specified
number of iterations, leading to a n.trees total number of trees, a
tree depth equal to interaction.depth and a given minimum
number of observations in the trees terminal nodes, n.
minobsinnode.
NN[33] are nonlinear statistical models for regression or

classification. They are structured in layers of “neurons” where
the input layer is made of the predictor variables, the output layer
contains asmany neurons as there are classes (2 in our study), and
one to many intermediate (size) layers of “weights” called hidden
layers. Each neuron is a linear combination of the neurons of the
previous layer, to which is applied an activation function,
typically the sigmoid function: gðxÞ ¼ 1

1þexpð�xÞ. The weights are
the parameters of the model and they are estimated through a
back-propagation algorithm called gradient descent. The loss
function used is the cross-entropy to which a decay penalty is
applied.

2.6. Statistical analyses

The statistical unit of the data was hospitalization. Descriptive
analyses for the sociodemographic, clinical, and hospitalization
data were expressed as frequencies and percentages. Chi-squared
tests were employed to compare sociodemographic, clinical, and
hospitalization data between unplanned 30-day all-cause
rehospitalized (y=1) and nonrehospitalized patients (y=0).
To train and evaluate the different models (i.e., LR, CART, RF,

NN, and GB), the dataset was split into a 70% training sample
and a 30% test sample, stratified on the outcome variable. On the
3

training set, we performed a 5-fold cross validation repeated 5
times to tune the hyperparameters. We kept the optimal
hyperparameter values for which the loss was minimum. The
tuning process and the values of the optimal hyperparameters are
presented in supplementary file 2, http://links.lww.com/MD/
F246. On the test set, we assessed the performance of each model
using the optimal hyperparameters.We randomly split the test set
in 2 parts: 70% of the sample as a training set and 30% of the
sample as a test set. This procedure was repeated 100 times and
we computed the average of H-measure and AUC for eachmodel.
Since we evaluate different classification rules and the outcome
distribution is unbalanced, we used the H-measure, which has the
advantage of being classifier-independent and is relevant for
heavily unbalanced datasets.[34] The area under the receiving
operating characteristic (ROC) curve (AUC) was also used
because it is threshold independent and is a widely used measure.
The H-measure and the AUC of each prediction model were
compared using a paired t test.
Finally, we presented variable importance (VI) (i.e., the most

important discriminators between classes) for LR and the
optimal prediction model (i.e., RF). VI for the LR is given by
the reduction in the deviance each variable brings to the null
model. For the RF algorithm, VI is calculated by the mean
decrease in Gini (MDG) over all themtry trees for each variable.
We applied a corrected feature importance measure to consider
categorical variables with a large number of categories which
can bias RF models.[35] The changes in Gini are aggregated for
each variable and normalized.[31] A high value of the aggregate of
the changes indicates great variable importance. All analyses
were implemented with R (version 3.5.0) using the caret R
(version 6.0.80), hmeasure (version 1.0) and pROC packages
(version 1.12.1).
3. Results

3.1. Rates of unplanned 30-day all-cause rehospitalization

A total of 289,358 hospitalizations (112,662 patients) were
recorded in the year 2015 at this French University Hospital.
After excluding mortalities and hospitalizations for ambulatory
surgery, radiotherapy, and dialysis, 118,650 hospitalizations
(82,862 patients) were included. Themost common diseases were
digestive disease, nervous system conditions, and cardiovascular
and pulmonary diseases. In total, 4127 (3294 patients) (3.5%)
hospitalizations resulted in rehospitalizations via emergency
departments 30 days after discharge. Rehospitalization rates
according to sociodemographic, clinical, and hospitalization
characteristics are presented in supplementary file 1, http://links.
lww.com/MD/F245.
3.2. Predictive model performance

The predictive performance of eachmodel is presented in Table 1,
and the comparison of each models H-measure and AUC is
presented in Table 2. The RF model was the most performant
model with the highest H-measure (0.290) and AUC (0.794),
superior to all the other models (all P values <.0001). The
performance of the RF, GB, and NNmodels (H-measures ranged
from 0.184 to 0.290, AUC ranged from 0.741 to 0.794) was
superior to that of the LR model (H-measure=0.184, AUC=
0.740); all P values <.0001. In contrast, LR was superior to
CART (H-measure=0.162, AUC=0.707), P< .0001.

http://links.lww.com/MD/F246
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Table 1

Predictive performance for LR, CART, RF, GB, and NN models.

H (95%CI) AUC (95%CI)

LR 0.1838 (0.1822;0.1854) 0.7398 (0.7387;0.7408)
CART 0.1551 (0.1536;0.1566) 0.7010 (0.6999;0.7021)
RF 0.3653 (0.3630;0.3675) 0.7688 (0.7675;0.7701)
GB 0.2193 (0.2175;0.2210) 0.7626 (0.7615;0.7636)
NN 0.1846 (0.1830;0.1862) 0.7408 (0.7397;0.7418)

95%CI = 95% confidence interval, AUC = area under the ROC curve, CART = classification and
regression trees, GB = gradient boosting, H = H-measure, LR = logistic regression, NN = neural
networks, RF = random forest.
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From the optimal cut-point estimated for RF model, the
specificity was high (0.99) and the sensitivity was low (0.18).
3.3. Variable importance

The variable importance is presented for the RF and LRmodels in
Figures 1 and 2. The 7 most important variables are identical
(with slightly difference in ranking) and their contributions to
reducing the deviance are comparable: “at least one previous
hospitalization via emergency departments 6 months before”,
“category of disease”, “hospitalization via emergency depart-
ments”, “length of stay”, “age”, “severity”, and “type of hospital
stay”.

The variable importance of the other models is presented in

supplementary file 3, http://links.lww.com/MD/F247.
4. Discussion

In this large sample of acute care inpatients (82,862 patients and
118,650 hospitalizations), ML methods (i.e., RF, GB, and NN),
except for CART, are superior to LR for predicting 30-day all-
cause rehospitalizations. To date, the majority of studies have
focused on particular conditions, for example, patients with
specific diagnoses.[36] This finding confirms the importance of
ML models in predicting rehospitalization, despite previous
contradictory results on this subject.[23] RF achieves the best
Table 2

Comparison of AUC and H-measures of ML models to LR and RF
(paired t tests).

Ref. Model: LR Index Statistic P value

H t tests H-GB �93.84 <.0001
H-NN �9.15 <.0001
H-CART 67.00 <.0001
H-RF �194.00 <.0001

AUC t tests AUC-GBM �97.76 <.0001
AUC-NN �29.67 <.0001
AUC-CART 122.28 <.0001
AUC-RF �50.34 <.0001

H t tests H-GB 166.61 <.0001
H-NN 196.01 <.0001
H-CART 200.53 <.0001
H-LR 194.00 <.0001

AUC t tests AUC-GB 11.97 <.0001
AUC-NN 49.22 <.0001
AUC-CART 106.25 <.0001
AUC-LR 50.34 <.0001

CART = classification and regression trees, GB = gradient boosting, LR = logistic regression, NN =
neural networks, RF = random forest.
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performance among all models according the H-measure and the
AUC. This result is consistent with recent studies reporting that
RF is a relevant and accurate method for predicting health
outcomes,[37–40] although some studies report no improvement in
ML models compared to LR.[23]

RF is an easy-to-understand method providing an original
variables importance index that helps identify the top-ranked
variables associated with 30-day all-cause rehospitalizations.[31]

This property of RF should be highlighted regarding the
traditional trade-off between accuracy and interpretability in
statistical modeling.[41] Contrary to LR, ML models (e.g., RF,
GB, NN) are considered to be black boxes because there is not
always a clear interpretable connection between outcomes and
predictors. However, there has been a tremendous amount of
work in developing ways to explain black box models. Variable
importance is one of them. In our study, 2 important findings
should be highlighted.
First, the 7 most important variables are identical (with slightly

difference in ranking) and their contributions to reducing the
deviance are comparable between RF and LR. This homogeneity
of findings between the 2 methods is reassuring for the
interpretation of results by health care providers. Hospitalization
via Emergency Departments and previous hospitalization via
emergency departments 6 months before are generally associated
with higher readmission in previous works.[42] Older adults are
also described as at higher risk of readmission in previous
studies.[4,5] Concerning the category of disease, medical-psychi-
atric comorbidity was highly related to rehospitalizations,
confirming previous studies on this complex population.[43,44]

This finding justifies the identification of hospitalized patients
with psychiatric conditions to better address their behavioral
needs. The length of hospital stay was inconstantly associated
with higher readmission in previous works.[45–47] French
hospitals are under pressure to save on costs, and reducing
LOS is strongly advocated. Future studies should thus explore the
consequences of this health policy in the French context,
particularly its impact on rehospitalization and, more generally,
on quality of care.
Second, there are more variables of importance above a

threshold of 10% in RF (7 variables: state funded medical
assistance, gender, destination on discharge, congestive heart
failure, chronic pulmonary disease, dementia, free universal
health care, and malignancy) than in LR (only 1 variable:
dementia). This suggests that RF is better able to identify
discriminating variables than LR, including clinical and socio-
economic variables. For example, socioeconomic status (i.e., state
funded medical assistance and free universal health care in our
study) was associated with rehospitalization in our study,
confirming recent findings on social risk (poverty, disability,
housing instability, residence in a disadvantaged neighborhood)
and rehospitalization.[48] Interestingly, previous studies also
reported gender inequalities[49] and risk associated with
congestive heart failure,[4] chronic pulmonary disease,[50]

dementia.[51]

Despite our findings in favor of RF and ML methods, 2 issues
must be considered in future work: a moderate improvement,
especially for the AUC, between ML and LR, and the use of data
at discharge.
Our study included a relatively small set of variables (29

variables), relevant for classical statistical methods based on
standard parametric models but suboptimal for ML methods in
some respects. Several additional pieces of information could be

http://links.lww.com/MD/F247
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relevant to predict rehospitalization, including structured (e.g.,
socioeconomic status, drugs, and self-reported functional status)
and unstructured (e.g., clinical notes from physicians, nurses, and
other professionals) data available in electronic medical records.
These data could improve prediction by offering richer medical
information than those found in the only medico-administrative
databases. Previous studies reported that the performance of ML
methods could be improved by taking into account a larger
number of variables.[52] Future studies should include all data
available in electronic medical records.
As for the majority of predictive risk scores, our study was

based on data at discharge, while predictive risk scores should
ideally give information early enough during hospitalization to
trigger care intervention.[53] To date, instruments based on
discharge data have been proven to lead to models with better
performance[53,54] than models based solely on admission data.
An important perspective would be to implement real-time
predictive rehospitalization risk scores during hospitalization,
updated for all new available data, and then propose early alerts
0 10

Category of disease

Charlson Comorbidity Index
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for high risk of rehospitalization. A recent study reported that
ML methods can be used in real-time predictions using routinely
collected clinical data exclusively, without the need for any
manual processing.[55] Another recent study trained and tested a
neural network model to predict the risk of patients rehospitali-
zation within 30 days of their discharge based on real-time data
from EHR, and thus applicable at the time discharge from
hospital.[56]

Our findings must be interpreted in the context of our studys
limitations. Despite the large overall sample size of this
multihospital study, our findings may not be applicable to all
French hospitals, particularly general hospitals where patients
have potentially different characteristics from those of university
hospitals. In addition, the 4 university hospitals included in our
study were located in only one geographical area, and social and
healthcare geographical characteristics (e.g., poverty, density of
physicians, number of beds, and private hospitals) are known to
influence the risk of rehospitalization.[53,57] Future studies should
thus be conducted in different categories of hospitals and in
20 30 40 50 60 70 80 90 100

Forest

variables in RF model.
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several geographical areas to confirm the properties and
importance of our predictive risk score. Our model does not
factor in deaths outside the hospital because we do not account
for this information in our database. Other studies with available
data on outpatient events are needed to investigate to what extent
this could impact our predictive risk score using a competing risk
model as an example. We excluded ambulatory surgery from the
analyses. This specific topic should be studied in the French
context, strongly marked by pressures for reducing length of stay.
Lastly, the caret R package offers the possibility of using other
statistical models that could be studied in future work (e.g.,
Multi-Layer Perceptron Neural Network, Support Vector
Machine, Bayesian Network).
5. Conclusion

The use of ML may be an alternative to regression models to
predict health outcomes. The integration of ML, particularly the
RF algorithm, in the prediction of unplanned rehospitalization,
may help health service providers target patients at high risk of
rehospitalizations and propose effective interventions at the
hospital level.
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