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Computational Efficiency and Precision for
Replicated-Count and Batch-Marked Hidden

Population Models
Matthew R. P. Parker , Laura L. E. Cowen,

Jiguo Cao, and Lloyd T. Elliott

We address two computational issues common to open-population N -mixture models,
hidden integer-valued autoregressive models, and some hiddenMarkovmodels. The first
issue is computation time, which can be dramatically improved through the use of a fast
Fourier transform. The second issue is tractability of the model likelihood function for
large numbers of hidden states, which can be solved by improving numerical stability of
calculations. As an illustrative example, we detail the application of these methods to the
open-population N -mixturemodels.We compare computational efficiency and precision
between these methods and standard methods employed by state-of-the-art ecological
software. We show faster computing times (a ∼ 6 to ∼ 30 times speed improvement
for population size upper bounds of 500 and 1000, respectively) over state-of-the-art
ecological software for N -mixture models. We also apply our methods to compute the
size of a large elk population using an N -mixturemodel and show that while ourmethods
converge, previous software cannot produce estimates due to numerical issues. These
solutions can be applied to many ecological models to improve precision when logs
of sums exist in the likelihood function and to improve computational efficiency when
convolutions are present in the likelihood function.

Supplementary materials accompanying this paper appear online.
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1. INTRODUCTION

Hidden population models allow population sizes and dynamics to be estimated from
partial observations and form a cornerstone of ecological methodology. Open-population
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models allow population sizes to vary with time and are theoretically the most interesting
class of hidden population model. However, some open-population models exhibit substan-
tial computational issues when the population sizes are large (N � 250). These classes of
models include N -mixture models (Royle 2004; Dail and Madsen 2011), hidden Markov
models (HMMs; Zucchini et al. 2016), and integer autoregressive (INAR; Jin-Guan and
Yuan 1991) models. N -mixture models are used frequently in ecological studies where
under reporting is expected (e.g. Hostetter et al. 2015; Belant et al. 2016; Ward et al. 2017;
Ketz et al. 2018; Parker et al. 2020). HiddenMarkovmodels are used extensively in studying
hidden stochastic processes and have been applied to study problems similar to the open-
population N -mixture model (Cowen et al. 2017). Integer autoregressive models are also
used to study hidden open populations (Fernández-Fontelo et al. 2016).

These hidden INAR, HMM, and N -mixture models share some similarities in their
mathematical structure. In particular, owing to the transitions between unknown population
states, these models require large convolutions for likelihood function calculations. These
convolutions are computed many times in open-population N -mixture models due to the
explicit summation over possible values of N (the total hidden population size) and the
iterative nature of model fitting. In hidden INAR models, the convolutions are repeated
due to the explicit sums over the possible hidden states. The HMMs formulated in Cowen
et al. (2017) contain implicit summations through the multiplication of state matrices, with
convolutions arising in the calculation of transition probability matrices. In all three of
these hidden population model formulations, suitable upper bounds must be chosen on
the size of the population. The upper bound must be chosen large enough that the fitted
models are not affected by the choice of the upper bound. In practice, this means that
larger study populations require large upper bounds on the summations, leading to an even
larger number of computations of convolutions, and even larger computation times. These
computation times can be problematic, especially when simulation studies or parametric
bootstrap techniques require repeatedmodel fitting, such as in Parker et al. (2020). Our work
introduces some standard numerical methods to this class of models, leading to increased
computational efficiency and increased computational precision. We use the N -mixture
model (exemplified by the popular unmarked R package) as a proof of concept. Applying
thesemethods to the hidden INARmodels follows a similar procedure, due to the convolution
over hidden states in the hidden INAR model likelihood function, while applying these
methods to HMMs has been accomplished in previous work Cowen et al. (2017) and Mann
(2006).

Large numbers of hidden states (arising from large values of N in N -mixture models, for
example) lead to intractable likelihoods (see Sect. 2.2 for details). This is due to the presence
of summations over states, precluding simple log transforms for numerical stability. This
leads to numerical and computational issues, as integer underflow prevents the use of these
classes of models on populations with larger numbers of hidden states. Integer underflow
occurs when a floating point number is truncated to zero by limited machine precision
(Blanchard et al. 1985). When the true parameter values of a model lay in a region of
the likelihood function where underflow occurs for a particular data set, this can cause
inaccurate parameter estimates. Likewise, when the observed data lay in a region of the
likelihood function where underflow occurs for the true parameter values, the underflow
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can entirely preclude model fitting. In addition, the choice of initial values used during
likelihood optimisation must be chosen to avoid regions of underflow given the observed
data; otherwise, underflow at the initial values will preclude model fitting.

One solution to the integer underflow issue is to use arbitrary precision arithmetic. This is
investigated and discussed in Parker (2020). This solution is far from ideal, as it exacerbates
the computational complexity issue dramatically (arbitrary precision arithmetic can be hun-
dreds or even thousands of times slower than arithmetic on double-precision floating point
numbers; Bailey and Borwein (2013)). A common solution to the integer underflow issue
in HMMs is to use scaling (Zucchini et al. 2016, p. 48). However, Mann (2006) discussed
using the ‘log-sum-exp’ trick as an alternative.

Another solution is to use Bayesian Markov chain Monte Carlo (MCMC) methods in
model fitting (see for example Ketz et al. 2018, and the textbook Kéry and Royle 2015).
This approach removes the need to sum over hidden states by exploring the parameter space
stochastically and can reduce the computation times involved inmodel fitting (and numerical
stability can be achieved with simple log transforms). However, this approach requires the
use of prior distributions (which in some cases may be undesirable or even indefensible and
can yield more model parameters to estimate) and this approach is non-deterministic due to
the stochastic nature of MCMC.

We provide several important contributions with this work. We draw attention to the
mathematical similarities between three hidden populationmodelling frameworks and show
how commonly encountered computational precision and efficiency problems can be solved
in identical ways for all three frameworks. In light of the popularity of these classes of
models, and the computational issues they entail, we expect our proposed solutions to be of
particular interest to the ecological modelling community. We provide in our supplemental
materials all of the R code necessary for simple and immediate use of these improvements
to the N -mixtures framework. Similar code can be implemented for hidden INAR models
without difficulty.

We note that our methods for improving computational efficiency are not applicable to
general HMMs, but can be applied to any HMM which includes a convolution structure
(which is the case with the HMM formulated in Cowen et al. (2017), but is not the case in
general). Our methods for improving computational precision are applicable to any HMM,
as shown by Mann (2006). In both cases, our main contribution is to illustrate how these
methods can be extended to and used to improve the other two hidden model architectures:
hidden INAR and N -mixtures.

In Sect. 2.1 we propose a solution to the computation time issue inherent to hidden
open-population models through fast Fourier transforms (FFT), as is common in the signal
processing literature. Thismethod has been used successfully inHMMs (Cowen et al. 2017),
but has not yet been incorporated into any software that solves N -mixture models. Applica-
tion of FFT is similar for each of the three hidden population models we mention. We focus
our examples on N -mixture models and improve on the state-of-the-art software package
unmarked (Fiske and Chandler 2011), which we have chosen due to both the popularity of
the package as well as due to its non-Bayesian implementation of N -mixture model fitting.
In Sect. 4.1 we illustrate the gain in computation speeds made possible by using this tech-
nique through an application of N -mixture models to Ancient Murrelet (Synthliboramphus
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antiquus) chick count data (Parker et al. 2020). In Sect. 2.2we propose solving the numerical
instability of the N -mixture and hidden INAR models for large numbers of states using the
numerically stable method of calculating the sum of data (using log transformations, and
the log-sum-exp trick; Blanchard et al. 2020), which has already been used successfully
in HMMs (Mann 2006). In Sect. 4.2 we demonstrate improvements in numerical stability
through a case study with elk data (Ketz et al. 2018).

2. METHODS

2.1. IMPROVING COMPUTATIONAL SPEED USING FFT

We provide a short overview of fast Fourier transforms (FFTs). Details for the theory of
FFT can be found in the references Gray and Goodman (1995) and Heckbert (1998). The
FFT is a fast method of calculating a Fourier transform (FT). The Fourier transform uses
integration to transform a continuous function f (x) into its frequency counterpart ̂f (ν) (see
Eq. 1). The inverse of the Fourier transform, the IFT, undoes this transformation by moving
from frequency domain back to the time domain (see Eq. 2).

̂f (ν) = FT [ f (x)] =
∫ ∞

−∞
f (x)e−2π i xνdx, (1)

f (x) = IFT[ ̂f (ν)] =
∫ ∞

−∞
̂f (ν)e2π i xνdν. (2)

Here i is the complex unit i = √−1. We use discrete versions of these functions: the
discrete Fourier transform (DFT) and its inverse (IDFT). The DFT operates on a length
Q sequence of numbers x = {x1, x2, . . . , xQ} to produce the frequency domain sequence
x̂ = {̂x1, x̂2, . . . , x̂Q}. The DFT for each component k is given in Eq. (3), while the IDFT
is given in Eq. (4).

x̂k = DFT(x) =
Q

∑

j=1

x j e
−2π i jk
Q+1 (3)

xk = IDFT(̂x) = 1

Q + 1

Q
∑

j=1

x̂ j e
2π i jk
Q+1 (4)

The DFT can be used to compute convolutions of discrete functions. Given two sequences
of numbers x and y, the convolution is as follows: (x ∗ y)n = ∑Q

k=1 xk yn−k+1. Using the
DFT, this can be calculated using: (x ∗ y) = IDFT(DFT(x) · DFT(y)). The advantage to
calculating the convolution using the DFT is that for large Q, calculating the DFT and IDFT
is much faster than directly calculating the many summations. Both DFT and IDFT have
algorithmic complexity O(Q log Q). Manual calculation of the convolution has algorith-
mic complexity O(Q2), while calculating the convolution using the DFT has complexity
O(Q log Q) (Heckbert 1998).
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Applying these ideas to calculating the model likelihoods is as simple as identifying
the convolution components of the likelihood functions and replacing them with the DFT
version of convolution. To illustrate, we will replace the transition matrix computations of
open-population N -mixture models with FFT in Sect. 2.1.1. In the following, we will use
FFT to mean the fast method of computing the DFT and the IDFT.

2.1.1. N-mixtures Transition Probability Matrix

The likelihood function for the open-population N -mixturesmodel fromDail andMadsen
(2011) is given in Eq. (5). In this model there are four parameters: probability of detection
p, initial site abundance λ, mean population growth rate γ , and survival probability ω.
There are also two study specific constants: the number of sampling sites R, and the number
of sampling occasions T . The total population at site i and time t are given by the latent
variables Nit , and the observed population counts are denoted nit .

The function Pa,b shown in Eq. (6) calculates the transition probability for moving from
a population of size a to a population of size b. To calculate the likelihood equation requires
calculating Pa,b at most RT (K + 1)(T − 1) times (when each nit = 0), where K is the
upper bound on the summations and thus also the upper bound on the population size. The
complexity of computing Pa,b is thus the main bottleneck for computing the likelihood
function. Pa,b is a convolution of two discrete distributions and can thus be calculated
efficiently using the FFT convolution.

L(p, λ, γ, ω|{nit }) =
R

∏

i=1

⎡

⎣

K
∑

Ni1=ni1

· · ·
K

∑

NiT =niT

{(

T
∏

t=1

Bin(nit ; Nit , p)

)

Pois(Ni1; λ)

T
∏

t=2

PNit−1,Nit

}

⎤

⎦ , (5)

Pa,b =
min{a,b}

∑

c=0

Bin(c; a, ω)Pois(b − c; γ ). (6)

Here Bin and Pois denote the binomial and Poisson distribution functions, respectively.
We define the transition probability matrix MK to be the matrix of Pa,b values, where a and
b vary from 0 to K .

Equation (7) illustrates the relationships between Pa,b, MK , convolution, and FFT; let
xa,c = Bin(c; a, ω) so that xa = {xa,0, xa,1, . . . , xa,min{a,b}, 0, 0, . . . , 0} (right padded
with zeroes until xa has K + 1 elements), and let yb,c = Pois(b − c; γ ) so that y =
{y0,c, y1,c, . . . , yK ,c}, then (xa ∗ y)b = ∑min{a,b}

c=0 xa,c · yb,c = Pa,b, and (xa ∗ y) = {(xa ∗
y)0, (xa ∗ y)1, . . . , (xa ∗ y)K }.

MK =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

P0,0 P0,1 · · · P0,K
P1,0 P1,1 · · · P1,K
P2,0 P2,1 · · · P2,K
...

...
. . .

...

PK ,0 PK ,1 · · · PK ,K

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

O
(

(K+1)3
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(x0 ∗ y)
(x1 ∗ y)
(x2 ∗ y)

...

(xK ∗ y)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

IFFT
(

FFT(x0) · FFT(y)
)

IFFT
(

FFT(x1) · FFT(y)
)

IFFT
(

FFT(x2) · FFT(y)
)

...

IFFT
(

FFT(xK ) · FFT(y)
)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

O
(

(K+1)2 log(K+1)
)

(7)
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Figure 1. Plot of logmedian value of computation timemeasured inmilliseconds (out of 100 runswith randomised
γ andω) versus K for computation of the transition probability matrixMK usingmanual (grey) and the fast Fourier
transform (black) convolution methods. Error bars indicate minimum and maximum computing time over the 100
runs per K . We considered K = 1, 10, 50, 100, 250, 500, and 1000.

Computation of MK is a large portion of the computational cost of calculating the likeli-
hood function in open-population N -mixture models. In Fig. 1 we show a plot of the median
computation times for calculating MK for increasing values of K using both the manual
convolution and the FFT convolution techniques. The values plotted are the median com-
puting times over 100 runs for each value of K . Each run involved generating a random
value for ω drawn from a Beta (a = 10, b = 10) distribution and a random value for γ

drawn from a χ2
K distribution. MK was then calculated using the same ω and γ for both

the manual convolution method and the FFT convolution method, and computation times
were calculated using the R package microbenchmark (Mersmann 2021). The error bars
shown in Fig. 1 indicate minimum and maximum observed computing times. We also note
that for both methods, the upper and lower quantiles are indistinguishable from the median
computing times on the log plot.

Often, time-varying covariates for the population dynamics parameters γ and ω are
incorporated into N -mixture models. When this is done, the matrix MK is calculated once
for each time point t ∈ {2, . . . , T }. Thus the computing time savings when using FFT are
increased by a factor of up to T − 1 when time covariates are considered.

In Sect. 3.1 we use a simulation study to illustrate the improved computational efficiency
of using the FFT method for calculating MK when fitting N -mixture models. In Sect. 4.1
we apply the FFT method to improve computing efficiency for an Ancient Murrelet chick
counts application.

2.2. IMPROVING NUMERICAL STABILITY

Underflow arises when machine precision is not large enough to differentiate a floating
point number from zero (Blanchard et al. 1985). This situation occurs when calculating the
probability of relatively rare events. As an example, consider a binomial random variable X
with size parameter N and fixed probability of successω. There are N +1 possible states for
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the random variable X , the integers {0, 1, . . . , N }. Increasing N decreases the probability
of observing any particular state. For large enough N , integer underflow will occur when
calculating the probability pX of even the most probable state of X .

This problem is usually solved by calculating the state probabilities pX in log space:
log(pX ) rather than pX . When taking the log transform of the probability, the log of the
probability will have relatively small absolute magnitude (i.e. within the realm of floating
point precision). This solution is not immediately possible in certain likelihood equations,
such as the ones associated with N -mixtures, HMMs, and hidden INAR models. The pres-
ence of summations in the likelihood functions requires transformation away from log space
in order to compute the sums. To perform these summations in a numerically stable way we
use the log-sum-exp trick (LSE; Blanchard et al. (2020)), which is standard in the machine
learning community, and has been used for HMMs (Mann 2006), but is not used by the
unmarked software. We overview the details of LSE in this section.

LSE is amethodwhich allows two (ormore) log space floating point numbers to be added
outside of log space in a numerically stable way, producing a log space result. LSE works
by translating the floating point numbers into a region wherein computational precision is
maximised according to the IEEE 754 specification for floating points (Blanchard et al.
1985). Consider two very small floating point numbers x and y, which are being stored as
�x = log(x) and �y = log(y). The LSE allows the sum to be calculated using Eq. (8), where
v = max(�x, �y). Without loss of generality, suppose that �x > �y. Then equation 8 simpli-
fies to: LSE(�x, �y) = �x+log[1+exp(�y−�x)]. This leaves uswith a term log(1+z)where
z = exp(�y−�x) is bounded between 0 and 1 (an interval with highest computational preci-
sion according to IEEE 754). This can be computed accurately even for very small z so long
as appropriate algorithms for computing the logarithm are used (Blanchard et al. 2020). An
appropriate algorithmavailable inR (RCoreTeam2020) is provided by the functionlog1p.

LSE(�x, �y) = v + log(exp(�x − v) + exp(�y − v)), v = max(�x, �y). (8)

The function implementing LSE can be implemented with very few lines of code; for
an example implemented using R see Algorithm 1. These ideas can be used to compute
convolutions in log space, so that computing the transition probability matrix MK can be
done with high computational precision even at large K . See Algorithm 2 for an example
of implementing a log space convolution function using R.
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The ability to compute arbitrary sums in log space using LSE, as well as the particular
application of using LSE to compute convolutions in log space, allows for the accurate
computation of log-likelihood functions involving summations and/or convolutions. This
is directly applicable to the model likelihood functions for N -mixtures, HMMs, and hid-
den INAR models, giving them the ability to handle large numbers of discrete states in a
numerically stable way.

As an illustrative example, in Sect. 3.2weuse a simulation study to compare the numerical
stability of calculating the transition probability matrix of an open-population N -mixture
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model with and without the proposed LSE implementation. In Sect. 4.2 we apply the LSE
method to solve the integer underflow issue for an Elk counts application.

3. SIMULATIONS

All simulations were computed on a single 4.0 GHz AMD Ryzen 9 3900X processor.

3.1. COMPUTATIONAL SPEED COMPARISON AGAINST Unmarked

The popular R package unmarked (Fiske and Chandler 2011) contains the function
pcountOpen for fitting N -mixture models of the form developed in Dail andMadsen (2011).
pcountOpen is optimised using C++,making it a fast implementation of the open-population
N -mixtures likelihood. However, at the time of writing this manuscript, pcountOpen uses
manual convolution in calculating the transition probabilities (and does not use the FFT
convolution, incurring an additional factor ofO(K/ log(K )) in the asymptotic complexity).

We compare the computation times for pcountOpen against the computation times for
our implementation of the likelihood, which uses the FFT to compute convolutions. For this
comparison, we chose ω = 0.8, γ = 2, λ = 30, and p = 0.25 to generate a single random
data set {nit } for each combination of T and R considered. We refer to Fig. 1 to illustrate
that differences in ω and γ will have minimal impact on computing time for both methods.
We note that in all cases considered, the unmarked parameter estimates matched the FFT
parameter estimates.

The results of this simulation are summarised in Fig. 2. Due primarily to the high level of
optimisation of the unmarked function, as well as the diminishing relative advantage of the
FFT for small K , unmarked outperforms the FFT implementation in terms of computational
speed when K is small. However, the computational speed of the FFT implementation
substantially outperforms the unmarked implementation for K > 250 (in a domain where
unmarked requires months of computing time, our FFT implementation requires days).

The FFT method of computation as illustrated in Fig. 2 shows a non-monotonic growth
pattern in terms of increasing K . This is an artefact of the FFT algorithm, and different
implementations of the FFT will show different such artefacts. The FFT algorithm which
we have used is implemented in base R (R Core Team 2020) and uses the mixed-radix
algorithm of Singleton (1969). This implementation is known to be fastest for sequence
lengths which are highly composite. As well, odd factors of the sequence length compute
with four times fewer complex multiplications than the even factors, so that choice of K
influences computing time through its prime factors as well as its magnitude.

3.2. NUMERICAL STABILITY COMPARISON

We consider the effect of numerical instability on calculation of the transition probability
matrices MK . Figure 3 shows four matrix contour plots, with transition probabilities in log
space. Each matrix was calculated with ω = 0.5 and γ = 1 (according to the N -mixture
model in Eqs. (5) and (6)). We note that similar results can be obtained for any given
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Figure 2. Plot of the log computation time versus K using the unmarked model fitting implementation
pcountOpen and the FFT-based implementation. R is the number of sampling locations, and T is the num-
ber of sampling occasions. When population size upper bound K = 1000, the top three lines correspond to
unmarked, while the bottom three lines correspond to FFT.

combination ofω andγ . In amodelwith site or timevaryingγ orω, calculating the likelihood
would require a separate matrix MK to be calculated for each site or time. For this example
we are considering a single-transition probability matrix with constant parameters. The first
column of Fig. 3 illustrates the values of the transition probability matrix after calculation
without using the LSE method. The second column illustrates the same, calculated using
the LSE method. The first row is the matrices calculated when K = 500, while the second
row is the matrices calculated when K = 4, 000. The empty portions of Figs. 3a, c indicate
regions where underflow has occurred. In the case of Fig. 3a, 24.03% of the matrix entries
have experienced underflow. For Fig. 3c, 62.72% of the entries experienced underflow. This
illustrates that underflow becomes a more prominent issue as K increases. We note that in
the extreme case, when K is very large, 100% of the entries would experience underflow,
as the entries of MK tend to zero. For both choices of K , when calculating the matrix
using the LSE method, zero underflows occurred. We also note that the current likelihood
implementation used by the pcountOpen function of the unmarked package does not use
the numerically stable LSE; thus, caution must be exercised when fitting models for large
K (although small entries of MK correspond to unlikely states, all possible product chains
of entries with length T − 1 and with Nit ≤ K are weighted and summed together upon
likelihood evaluation).

4. CASE STUDIES

All case studies were computed on a single 4.0 GHz AMD Ryzen 9 3900X processor.
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Figure 3. Transition probability matrices MK in log space, calculated for K = 500, and for K = 4000. Each
matrix was calculated with the parameter values: ω = 0.5 and γ = 1. Vertical axes represent row number
and horizontal axes represent column number in the MK matrix. Greyscale indicates log of probability values.
Subfigures a and c are calculated without using the numerically stable LSE, while b and d are calculated using the
numerically stable LSE.

4.1. FFT APPLICATION

We considered a concrete example of increasing computational efficiency of N -mixture
models with the FFT approach, using the Ancient Murrelet chick counts from Parker et al.
(2020). The Ancient Murrelet chick count data were collected on East Limestone Island,
HaidaGwaii by theLaskeekBayConservationSociety, between1995 and2006.TheAncient
Murrelet is a burrow nesting seabird which is a species of special concern due to dramatic
population declines (see for example Bertram (1995)). Estimating the total number of chicks
from the chick count data provides a measure of population health over time for the Ancient
Murrelet colony. An increasing trend in chicks can indicate population growth, while a
decreasing trend can indicate population decline. For the chick count data, there are six
sampling sites (R = 6), which are constant for each year. The sampling sites use capture
funnels set each year, which allow easy counting as the chicks run from their burrows
out to sea during the hatching season. There are seventeen sampling occasions (T = 17),
with sampling occasions lasting from early May to late June. We chose an upper bound of
K = 500 for this study. In fitting these data, we show that the FFT implementation produces
the same estimates and the same standard error estimates as the unmarked implementation,
while computing more than ten times faster (Table 1). Our results show that the estimated
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Table 1. Results from fitting open-population N -mixture models to the Ancient Murrelet chick count data using
the unmarked implementation and the FFT implementation

unmarked FFT

computation time (s) 435.4 42.2
log(λ) 5.494 (0.068) 5.495 (0.068)
log(γ ) 1.991 (0.245) 1.993 (0.237)
logit(ω) 2.727 (0.185) 2.726 (0.180)
logit(p) −0.134 (0.127) −0.134 (0.126)
nll 607.79 607.79

Here T = 17 sample times, R = 6 sites and K = 500 were used. Included in the table are the computation
times in seconds, the four parameter estimates log and logit transformed (log(λ), log(γ ), logit(ω), logit(p)), and
the negative log-likelihood (nll) at the parameter estimates. Parameter standard error estimates calculated using
the estimated Hessian matrix are shown in parentheses

population dynamics parameters γ and ω are consistent with population decline, with the
estimated number of chicks declining from 1740 with 95% confidence interval (1530, 2010)
in 1995 to 950 (840, 1100) in 2006.

4.2. LSE APPLICATION

We considered a concrete example of increasing the computational precision of N -
mixture models with the LSE approach, using the elk (Cervus elaphus nelsoni) counts
from Ketz et al. (2018), which are counts of a wintering elk population located in the Estes
Valley, Colorado. In this example there are R = 2 sampling sites, corresponding to Rocky
Mountain National Park and Estes Park. There are T = 24 sampling occasions, with several
sampling occasions per winter for each of the years 2011 to 2016. More details can be found
in Ketz et al. (2018). In this case study we do not consider the movement model components
from Ketz et al. (2018), and so our results here are meant only as an example illustrating
the LSE approach for the large counts regime. We show that our LSE implementation of
the N -mixture model succeeds in producing estimates, while the unmarked implementation
fails due to numerical instability (Table 2): failing to converge because integer underflow
prevents the algorithm from considering the off diagonal corners of the transition probability
matrix. This can be seen in Fig. 4, which compares the transition probability matrix for the
elk data calculated with and without the numerically stable LSE at the converged parame-
ter values. For the LSE implementation, none of the elements of the matrix underflowed,
whereas for the unmarked implementation 65.83% underflowed.

5. DISCUSSION

We investigated the use of fast Fourier transforms and the ‘log-sum-exp’ trick to improve
computational and numerical instability issues inherent in N -mixture models when the
population size is large. We compared these methods with the standard implementation
found in the R package unmarked using both Ancient Murrelet and elk data.
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Figure 4. Transition probability matrices MK in log space for the elk model, calculated for K = 6000 at the
convergedmodel parameter values: ω̂ = 0.7743 and γ̂ = 202.94.Vertical axes represent rownumber andhorizontal
axes represent column number in the MK matrix. Greyscale indicates log of probability values. The cross indicates
a particular transition (a = 2262 to b = 979) which falls into the integer underflow region. Subfigure a is calculated
without using the numerically stable LSE, while b is calculated using the numerically stable LSE.

Table 2. Results from fitting open-population N -mixture models to the elk data using the log-sum-exponential
(LSE) implementation

LSE

log(λ) 6.917 (0.067)
log(γ ) 5.313 (0.031)
logit(ω) 1.233 (0.187)
logit(p) −1.322 (0.071)
nll 1427.14

Included in the table are the four parameter estimates log and logit transformed (log(λ), log(γ ), logit(ω), logit(p)),
and the negative log-likelihood (nll) at the parameter estimates. Computation time for model optimisation took
severalweeks due to the large population size upper bound K = 6000. Parameter standard error estimates calculated
using the estimated Hessian matrix are shown in parentheses

By recognising the convolution calculations inherent to calculating the model likelihood
functions, it is straightforward to replace the method of calculation from a manual convolu-
tion method to a substantially faster FFT convolution. The improvement in computational
complexity for the convolution calculation is largely realised in the computation of the N -
mixture model likelihood, since calculating the convolution is the most demanding aspect
of the likelihood computation. This improvement is readily available to any other likelihood
models which make use of convolutions, such as the hidden INAR (Fernández-Fontelo et al.
2016) and particular HMM models (Cowen et al. 2017, for example).

We have added our FFT implementation of the pcountOpen function to the R package
quickNmix (Parker et al. 2022), via the function pCountOpenFFT. Our package is available
on CRAN and enables researchers to quickly and easily switch between the unmarked
implementation and our FFT version.

There are many cases for which the faster FFT method makes computation time more
feasible. Some possibilities include large colonies of seabirds, sea lions, ungulates (elk/-
caribou), or insects where population surveys involve counts. One such example would be
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examining larger colonies of Ancient Murrelet seabirds than in Sect. 4.1. The colony on
Haida Gwaii is very small compared to the neighbouring colony on Reef Island, which is
estimated to contain roughly five times as many burrows (COSEWIC 2004). Especially
when bootstrap methods are implemented to produce standard error estimates, such as in
Parker et al. (2020), the gains in computational efficiency from using the FFT methods can
be instrumental to making a large population study computationally feasible.

Implementing numerically stable log-space summations allows for the study of models
with large numbers of hidden states by facilitating the calculation of the log-likelihood
at high computational precision even when the likelihood function contains summations.
This avoids the problem of integer underflow present in calculating the regular likelihood
functions when large numbers of states are considered (such as in the large K regime of
N -mixtures).

The transition probability matrix contour plots shown for the elk example in Fig. 4 illus-
trate why LSE can be used to fit the model to the elk data, but the unmarked implementation
cannot be used. The estimated parameter values (as shown in Table 2) give rise to an esti-
mated latent abundance for site 2 at sampling occasion 6 of ̂N2,6 = 2262, which transitions
to ̂N2,7 = 979 at sampling occasion 7. This transition falls into the underflow region of
Fig. 4a, illustrated by the blue cross. The integer underflow can be avoided by use of the
numerically stable LSE in this and similar situations.

We have addressed two computational issues common to N -mixture models, hidden
INAR models, and some HMMs. We have shown that the solutions to these issues compare
favourably against the current implementation in the unmarked R package, and both solu-
tions are easily implemented. For the open-population N -mixture models, we recommend
using the FFT convolution method for K larger than 200, noting that the FFT method can
be further improved by optimisation in C++. We also recommend the FFT method for other
models which contain many convolution calculations. However, we caution that without a
numerically stable FFT algorithm, integer underflow will still be an issue for large popula-
tion size upper bounds such as in the N -mixture models. Therefore we recommend using the
LSEmethod in situations where numerical instability leads to intractable model likelihoods,
where higher computational precision is needed (such as when an optimisation algorithm
fails to differentiate functional values at neighbouring parameter values), and when the
log-likelihood will be used in calculating quantities such as AIC or BIC.
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