
 International Journal of 

Molecular Sciences

Communication

Development of Atropa belladonna L. Plants with High-Yield
Hyoscyamine and without Its Derivatives Using the
CRISPR/Cas9 System

Lingjiang Zeng 1, Qiaozhuo Zhang 1, Chunxue Jiang 1, Yueyue Zheng 1, Youwei Zuo 1, Jianbo Qin 2,
Zhihua Liao 1,2,* and Hongping Deng 1,2,*

����������
�������

Citation: Zeng, L.; Zhang, Q.; Jiang,

C.; Zheng, Y.; Zuo, Y.; Qin, J.; Liao, Z.;

Deng, H. Development of Atropa

belladonna L. Plants with High-Yield

Hyoscyamine and without Its

Derivatives Using the CRISPR/Cas9

System. Int. J. Mol. Sci. 2021, 22, 1731.

https://doi.org/10.3390/ijms22041731

Academic Editor: Maria

Lourdes Gómez-Gómez

Received: 9 January 2021

Accepted: 5 February 2021

Published: 9 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC
Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China;
zengling@swu.edu.cn (L.Z.); zhangqz2016@email.swu.edu.cn (Q.Z.); jiangchunxue@email.swu.edu.cn (C.J.);
zhengyueyue@email.swu.edu.cn (Y.Z.); zuoyw1995@email.swu.edu.cn (Y.Z.)

2 Chongqing Academy of Science and Technology, Chongqing 401123, China; qjb1224@163.com
* Correspondence: zhliao@swu.edu.cn (Z.L.); denghp@swu.edu.cn (H.D.);

Tel./Fax: +86-23-68367146 (Z.L.); +86-23-68367146 (H.D.)

Abstract: Atropa belladonna L. is one of the most important herbal plants that produces hyoscyamine
or atropine, and it also produces anisodamine and scopolamine. However, the in planta hyoscyamine
content is very low, and it is difficult and expensive to independently separate hyoscyamine from
the tropane alkaloids in A. belladonna. Therefore, it is vital to develop A. belladonna plants with high
yields of hyoscyamine, and without anisodamine and scopolamine. In this study, we generated
A. belladonna plants without anisodamine and scopolamine, via the CRISPR/Cas9-based disruption of
hyoscyamine 6β-hydroxylase (AbH6H), for the first time. Hyoscyamine production was significantly
elevated, while neither anisodamine nor scopolamine were produced, in the A. belladonna plants
with homozygous mutations in AbH6H. In summary, new varieties of A. belladonna with high yields
of hyoscyamine and without anisodamine and scopolamine have great potential applicability in
producing hyoscyamine at a low cost.

Keywords: Atropa belladonna L.; CRISPR/Cas9; hyoscyamine 6β-hydroxylase; tropane alkaloids;
transgenic plant

1. Introduction

Atropa belladonna L. is an important herbal plant used by human beings. Modern
pharmaceutical science has revealed that A. belladonna plants produce anticholinergic
tropane alkaloids (TAs), including hyoscyamine, anisodamine, and scopolamine [1]. At-
ropine is the racemic mixture of hyoscyamine, and its name derives from A. belladonna,
which is widely cultivated to produce atropine or hyoscyamine [2–4]. Hyoscyamine, aniso-
damine, and scopolamine are clinically used for their anticholinergic properties. However,
each of the three alkaloids is specifically used for the treatment of different disorders.
Hyoscyamine is useful for the treatment of arrhythmias and organophosphate poisoning;
anisodamine has been applied to treat infective shock, gastrointestinal colic and vascular
spasm; scopolamine is well-known for curing motion sickness [5–7]. Medicinal plants
are the only resource for the commercial production of these TAs. A. belladonna plants
produce hyoscyamine as a major compound of TAs, and also produce the derivatives of
hyoscyamine, including anisodamine and scopolamine, as minor compounds [6]. There-
fore, it is necessary for the pharmaceutical industry to separate one compound from the
others. For example, hyoscyamine has to be purified from raw extracts of A. belladonna,
which contain hyoscyamine, anisodamine, and scopolamine in various mixtures. Due to
their similar structures, it is difficult and expensive to independently extract hyoscyamine
from the raw materials of A. belladonna that contain anisodamine and scopolamine. As
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such, it is important to develop A. belladonna plants without anisodamine and scopolamine,
facilitating the separation of hyoscyamine at a low cost. Additionally, the low in planta
content of hyoscyamine limits its supply and raises its price; therefore, the pharmaceutical
industry is seeking to develop new varieties that produce hyoscyamine at high levels.

Hyoscyamine 6β-hydroxylase (H6H, EC 1.14.20.13) is a bifunctional dioxygenase,
which catalyzes the 6β-hydroxylation of hyoscyamine to produce anisodamine, and sub-
sequently converts anisodamine to scopolamine through epoxidation [8]. The H6H gene
has been successfully employed to generate novel germplasm of A. belladonna with a
high yield of scopolamine through metabolic engineering methods. The overexpression
of the H6H gene from Hyoscyamus niger (HnH6H) markedly increased the production of
scopolamine in A. belladonna plants [6] and in the hair root cultures of other TA-producing
plants, such as Hyoscyamus niger, Atropa baetica, and Scopolia lurida [9,10]. Importantly,
hyoscyamine was almost completely converted to scopolamine in the leaves of some
HnH6H-overexpressing A. belladonna lines [6,11]. Inducing the overexpression of H6H is
an efficient method to develop new varieties of A. belladonna that produce scopolamine
at higher levels, and this method also markedly reduces hyoscyamine content. The H6H
gene of A. belladonna has also been identified, and it can be used as the target gene for the
generation of novel germplasm of A. belladonna without anisodamine and scopolamine via
genome editing technologies.

Genome editing technologies are powerful tools for studying gene function and devel-
oping novel germplasm of plants. Categorized according to the genome-editing nuclease
types, there are four groups of genome-editing technologies, including the CRISPR/Cas
system, transcription activator-like effector nucleases (TALENs), zinc-finger nucleases
(ZFNs), and meganucleases (MNs). All of the genome editing technologies can generate
double-strand breaks (DSBs) in a specific DNA sequence of the genome [12–16]. DSBs can
be efficiently repaired in two ways—non-homologous end joining (NHEJ) and homology-
directed repair (HDR). NHEJ usually results in nucleotide insertion or deletion (indels),
leading to a loss of or change in gene function. Of these genome-editing technologies,
the CRISPR/Cas9 system is the most popular because of its advantages, such as its ease
of use, its high efficiency, and its capacity for adaptation to diverse organisms [17]. The
CRISPR/Cas9 system has been used to edit genes in various plants in order to generate new
varieties [18–20], but it has not been tested in A. belladonna. In order to establish germplasm
of A. belladonna without anisodamine and scopolamine, we used the CRISPR/Cas9 system
to genetically edit the H6H gene, and then analyzed the production of tropane alkaloids
in planta.

2. Results and Discussion
2.1. Cloning and Analysis of the Genomic Sequence of A. belladonna H6H Gene

Hyoscyamine 6β-hydroxylase (H6H, EC 1.14.20.13) catalyzes the 6β-hydroxylation
of hyoscyamine to form anisodamine, which is subsequently converted into scopolamine
through epoxidation [8] (Figure 1A). The cDNA of A. belladonna H6H gene (AbH6H, Gen-
Bank number: JN415637) was reported in GenBank [21], and this helped us to identify its
corresponding genomic DNA sequence from the genome of A. belladonna, sequenced by our
group (data not released). To verify the consistency of the sequence, the coding sequence
(CDS) and corresponding genomic DNA of AbH6H were obtained by PCR amplification
and confirmed by a second process of sequencing. Subsequently, to analyze the struc-
ture of the AbH6H gene, we input the sequenced CDS and genomic DNA sequence into
the NCBI (National Center for Biotechnology Information) website. The 1032-bp AbH6H
CDS we obtained in this study was the same as the reported one (JN415637). The result
showed that AbH6H was a split gene, containing four exons and three introns (Figure 1B).
The total coding region was only 1032 bp, while the non-coding region was 2025 bp. In
total, the genomic DNA sequence was 3057 bp, including the start codon and the stop
codon. This conformed to the characteristics of eukaryotic genomes, which have more
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non-coding regions than coding regions. The analysis of genome structure was helpful for
us in designing single guide RNA (sgRNA).
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Figure 1. Catalytic function of hyoscyamine 6β-hydroxylase, genomic structure of AbH6H, and
construction of the CRISPR/Cas9 expression vector, named pCas9-H6H. (A) Hyoscyamine 6β-
hydroxylase catalyzes the 6β-hydroxylation of hyoscyamine to produce anisodamine, and subse-
quently converts anisodamine into scopolamine through epoxidation. (B) Genomic structure of
AbH6H and the CRISPR/Cas9 target site in exon 2. The target region is shown in green letters
followed by a red protospacer-adjacent motif (PAM), and black breaks between the exons indicate
introns; (C) CRISPR/Cas9 expression vector construction. The sgRNA was driven by the Arabidopsis
thaliana U6 promoter (pAtU6) with kanamycin resistance.

2.2. sgRNA Design and Vector Construction

The sgRNA that targeted AbH6H was designed with an online tool (http://crispor.
tefor.net/) in December of 2018. The genome data of Capsicum annuum (Solanaceae plants)
were used because A. belladonna’s genome sequence data were not available in this web tool.
Potential sequences with high scores were screened. All potential 20 bp sequences followed
by a protospacer-adjacent motif (PAM) in the open reading frame (ORF) of AbH6H were
scored and analyzed based on several factors, including mismatches and the number of
off-target sites. The employed guide ended with TTC or TTT, or contained only T and
C in the last four nucleotides, and more than two Ts or at least one TT and one T or C
(“TT-motif”). These guides should be avoided in polymerase III (Pol III)-based gene editing
experiments that require high sgRNA expression levels [22]. The guide contained the
sequence TTTT. It could not be transcribed with a U6 or U3 promoter, as TTTT terminates
the transcription [22]. We chose as the guide sequence the sequence at the second exon,
with a specificity score of 86, containing two restriction enzymes: AluBI and SmoI. This
sequence could be transcribed with a U6 or U3 promoter, and ends without TTC or TTT
(Figure 1C).

In the CRISPR/Cas9 vector, the Streptococcus pyogenes Cas9 (SpCas9) was driven by the
cauliflower mosaic virus (CaMV) 35S promoter, and the sgRNA was driven by the U6-26
promoter of A. thaliana. To express this vector in medicinal plants, the selection marker
gene HPT was replaced with NPTII. The 20 bp guide sequence from the AbH6H gene was
inserted into the CRISPR/Cas9 vector to generate the Cas9-H6H construct. The Cas9-H6H

http://crispor.tefor.net/
http://crispor.tefor.net/
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vector was introduced into the A. tumefaciens strain EHA105 [23] using the freeze–thaw
method [24].

2.3. Generation of Transgenic Atropa belladonna Plants

Sterile seedlings of A. belladonna were generated (Figure 2A) and their cotyledons were
used as initial explants for genetic transformation. After the cotyledons of A. belladonna were
infected with the engineered A. tumefaciens EHA105 harboring the plant-expressing vector
pCas9-H6H, some cotyledons gradually turned white or brown and became necrotic after
the subculture stage; some cotyledons in the selection medium with kanamycin generated
new shoots from the wounded sites within four weeks of the genetic transformation
(Figure 2B). When the regenerated seedlings grew to 2 cm in height, they were transferred
to, and cultured on, a rooting medium (MS with 0.20 mg/L indole butyric acid and
200 mg/L cephalosporin) (Figure 2C). After 2–3 weeks, when the regenerated plants had
formed roots, they were transferred into plastic pots and grown in a greenhouse under a
16 h light/8 h dark photoperiod cycle at 25 ◦C (Figure 2D).
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Figure 2. Generation and identification of transgenic Atropa belladonna plants. (A) Sterile Atropa belladonna plants. (B)
Kanamycin-resistant plantlets induced from cotyledons. (C) Rooting of transgenic plants. (D) Transgenic plants in plastic
pots. (E) PCR analysis of kanamycin-resistant Atropa belladonna transgenic plants. M, 2 kb molecular weight marker; PC,
plasmid pCas9-H6H; NC, non-transgenic Atropa belladonna; H1–H15, transformed Atropa belladonna plants.

PCR was used to detect the NPTII gene in A. belladonna plants. A 502-bp DNA
fragment specific to the marker gene (neomycin phosphotransferase II, NPTII) was amplified
from the pCas9-H6H plasmid (positive control) and transgenic plants of A. belladonna, and
was not amplified from wild type A. belladonna plants (negative control) (Figure 2E). The
PCR results were consistent with previous reports, in which NPTII was also used as the
marker gene detected by the same primers [11]. The PCR detection results indicated that
T-DNA harboring the AbH6H target DNA sequence was integrated into the genome of
A. belladonna, and of the 15 generated plants, there were 11 transgenic plants, suggesting
that some generated plants were able to resist kanamycin at the concentration used in
this study.

2.4. Detection of CRISPR/Cas9-Mediated Mutagenesis in AbH6H

To investigate CRISPR/Cas9-mediated mutagenesis in AbH6H, PCR amplifications
were carried out using the primer pair AbH6H-knock-F/R flanking the designated target
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site (Table 1). The PCR products were sequenced directly using the primer AbH6H-knock-F,
the favorable binding positions of which are 269 bp upstream of the target site. The sequenc-
ing results were directly decoded using the degenerate sequence decoding method [25].
Generally, the CRISPR/Cas9-mediated mutagenesis includes biallelic, heterozygous and
homozygous mutation. Biallelic and heterozygous mutation produces the se overlapping
peaks of chromatogram, while homozygous mutation does not [17,25]. Of the 11 trans-
genic plants, there were four plants exhibiting editing and seven plants exhibiting no
editing. The mutation rate was approximately 63.6% in 11 transgenic plants for Cas9-H6H
(Figure 3A). The sequencing results suggest that three transgenic plant lines (H9, H14, H15)
among the transgenic lines (27.3%, 3/11) were homozygous, with mutations occurring
in the same DNA locus in both alleles, both of which were inserted by one base. Others
lines exhibited non-homozygous mutations, including one biallelic mutation line (H1; two
distinct variations) and three heterozygous mutations (H4, H6, and H8; single mutation)
(Figure 3B).

Table 1. Primer information.

Primers Purpose Primer Sequence (5′-3′)

FH6H Gene cloning ATGGCTACTCTTGTCTCAAATTG

RH6H TTAGGCATTAATTTTATATGGCTTAAC

NPTII-F (XhoI)
Vector construction

CGCCTCGAGATGATTGAACAAGATGGATTG

NPTII-R (XhoI) CGCCTCGAGTCAGAAGAACTCGTCAAGAAG

AbH6H-F
Vector construction

GATTGTGGATTACCAGAAAAGCTGA

AbH6H-R AAACTCAGCTTTTCTGGTAATCCAC

AbH6H-knock-F
PCR detection

CATGCGCATGATATGTGAAC

AbH6H-knock-R CCGGATGAAGGCGATTCAG
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The results show that most of the transgenic plants tested had insertions or deletions,
a few of which were off-target. The results were a little different from those of previous
reports concerning A. thaliana, probably because of the selection of target DNA. Among
the seven transgenic plants, all kinds of mutation-containing sequences caused changes in
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the majority of amino acids and frameshifts in the ORF. These homozygous lines, H9, H14,
and H15, were also micro-propagated for alkaloid analysis.

2.5. Analysis of Tropane Alkaloids

To investigate the effects of the CRISPR/Cas9-mediated disruption of AbH6H on alka-
loid production, we analyzed pharmaceutical TAs, including hyoscyamine, anisodamine,
and scopolamine, in the roots and leaves of A. belladonna. The HPLC trace of alkaloids
indicated that the retention times of authentic hyoscyamine, anisodamine, and scopo-
lamine were 26.59 min, 14.75 min, and 13.28 min, respectively (Figure 4). Peaks respectively
corresponding to hyoscyamine, anisodamine, and scopolamine were also detected in al-
kaloid extracts of the wild type A. belladonna’s leaves and roots. The hyoscyamine peak
was also detected in alkaloid extracts from AbH6H-disrupting plants, while the peaks of
anisodamine and scopolamine were not detected in AbH6H-disrupting plants, indicating
that the conversion from hyoscyamine to anisodamine and scopolamine was completely
disrupted. The alkaloid analysis results confirm that the CRISPR/Cas9-mediated disrup-
tion of AbH6H led to a loss of function in the H6H in transgenic lines with homozygous
mutations, including H9, H14, and H15. Since the H6H-catalyzed reactions were disrupted
completely, attention should be paid to the hyoscyamine production in planta.
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Wild type A. belladonna plants produced hyoscyamine, anisodamine, and scopolamine
at the levels of 0.53 mg/g dry weight (DW), 0.50 mg/g DW, and 0.27 mg/g DW in their
roots, and at the levels of 0.92 mg/g DW, 0.09 mg/g DW, and 0.32 mg/g DW in their
leaves. The hyoscyamine levels were much higher than the scopolamine levels in the
roots and leaves of wild type plants, indicating that hyoscyamine is the main alkaloid in
A. belladonna [11]. In the roots of the H9, H14, and H15 plants, the hyoscyamine contents
were 2.48 mg/g DW, 2.76 mg/g DW, and 2.80 mg/g DW, respectively. The hyoscyamine
content was increased 3.68-, 4.21-, and 4.28-fold in the roots of the three lines with homozy-
gous mutations of AbH6H compared to in the roots of wild type plants (Figure 5A). In the
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leaves of H9, H14, and H15, the hyoscyamine contents were 1.48 mg/g DW, 1.62 mg/g DW,
and 2.97 mg/g DW, respectively, and were increased 0.61-, 0.76-, and 2.22-fold, respec-
tively, compared to the levels in the leaves of wild type plants (Figure 5B). Generally,
substrates are able to accumulate at higher levels when the biosynthesis genes downstream
from them are suppressed or disrupted. The suppression or silencing of TA biosynthe-
sis genes, such as ornithine decarboxylase [26], tropinone synthase [27], phenylpyruvic
acid reductase [28], and littorine synthase [29], dramatically reduced the corresponding
alkaloid production, while markedly increasing the accumulation of related substrates
and precursors in A. belladonna. Because anisodamine and scopolamine are the products
of H6H catalysis, the CRISPR/Cas9-mediated loss of H6H function halted the conver-
sion of hyoscyamine into its products, and, thus, the hyoscyamine accumulation level
was increased.
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In conclusion, we established Atropa belladonna plant lines with reduced hyoscyamine
6β-hydroxylase function by using CRISPR/Cas9 systems for the first time. The novel
germplasm lines with homozygous mutations in AbH6H produced hyoscyamine at higher
levels, and, in these lines, anisodamine and scopolamine were not synthesized. The novel
germplasm of A. belladonna has great potential applicability in developing new varieties
that can produce hyoscyamine at a low cost.

3. Material and Methods
3.1. Cloning and Analysis of the Genomic Sequence of the H6H Gene of A. belladonna

In order to verify the consistency between the coding sequence of AbH6H and its
corresponding genomic DNA sequence, we isolated the coding sequence of AbH6H using
total cDNA as the template, and the genomic DNA sequence of AbH6H using genomic
DNA as the template. Total RNA was extracted from the secondary roots of A. belladonna
using an RNAsimple Total RNA Kit (TIANGEN, Beijing, China), and then cDNAs were
synthesized using a FastKing RT Kit (TIANGEN, Beijing, China). The reported cDNA
sequence of AbH6H (GenBank Number: JN415637) was obtained from GenBank and then
amplified using a pair of primers, FH6H and RH6H, using total cDNA as the template.
Genomic DNA of A. belladonna was extracted using the CTAB method [30]. The two
primers, FH6H and RH6H, were also used to amplify the genomic DNA of AbH6H using
the genomic DNA of A. belladonna as the template. The amplification mixture contained
5 µL 10 × KOD Buffer, 5 µL dNTPs (2 mM), 2 µL MgCl2 (25 mM), 1 µL FH6H (10 µM),
1 µL RH6H (10 µM), 1 µL KOD plus Polymerase (1.0 U/µL), 1µL DNA (100 ng/µL) or
cDNA template, and water added to achieve a total volume of 50 µL. The PCR program
was as follows: 94 ◦C for 5 min, 1 cycle; 94 ◦C for 30 s, 56 ◦C for 30 s, 68 ◦C for 1 kb/min,
32 cycles; 68 ◦C for 5 min, 1 cycle. The amplified sequences were inserted into the pMD19-T
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vector (Takara, Beijing, China) and then sequenced by the company (Tsingke, Chengdu,
China). A comparison analysis between the coding sequence and genomic DNA sequence
of AbH6H was performed online (https://www.ncbi.nlm.nih.gov/sutils/splign/splign.cgi)
in November of 2018.

3.2. Design of sgRNA and Construction of CRISPR/Cas9 Vector

The derived coding sequence of the AbH6H gene was input into the relevant website (
http://crispor.tefor.net/) in December of 2018 to analyze potential gene editing sites. This
website evaluates all the possible sequences followed by 20-NGG, and ranks them from
high to low in order to evaluate which sgRNA would be the best choice for editing based
on the off-target possibilities and the location of the gene. Sequences with high marks
are ideal targets for editing. The ideal target was chosen, and a pair of complementary
oligos were synthesized by Tsingke (Chengdu, China) and annealed to generate the dimer.
The hygromycin-resistant gene in the original pCAMBIA1300-Cas9 [31] was deleted using
XhoI. Then, NPTII was inserted into the linearized pCAMBIA1300-Cas9 to generate a new
construct, pCAMBIA1300-Cas9N. The dimer was ligated into a linearized pCAMBIA1300-
Cas9N plant expression vector via BsaI enzyme digestion and recombination, forming a
new vector, pCas9-H6H.

3.3. Establishment of Transgenic Plants of Atropa belladonna

The Atropa belladonna seeds were germinated at 25 ◦C under a 16 h light/8 h dark
photoperiod cycle. After 2 weeks, they were used for transformation. The pCas9-H6H was
introduced into the A. tumefaciens strain EHA105 using the freeze–thaw method [24]. Co-
cultivation was carried out in the dark at 25 ◦C for 4 days. After co-cultivation, the explants
were transferred to the selection medium (the MS solid medium with 1 mg L−1 zeatin,
0.5 mg L−1 indole-3-acetic acid, 400 mg L−1 kanamycin and 200 mg L−1 cephalosporin).
The method for transforming Atropa belladonna plants was based on the previous report,
with slight differences [32]. When the transformed plants generated roots, they were
transplanted into substrates composed of PINDSTRUP-moss:vermiculite:perlite (v:v:v =
3:6:1) and grown in the greenhouse under a 16 h light/8 h dark photoperiod cycle at 25 ◦C.

3.4. Molecular Analysis of Transformants

When the A. belladonna plants grew to 25 cm in height [26], the genomic DNA was
isolated from the leaves of the transformed and untransformed A. belladonna plants using
the TPS protocol [33]. PCR detection was conducted using a pair of primers (NPTII-F/R).
Wild type A. belladonna plants were used as the negative control, and the pCas9-H6H vector
was used as the positive control. The samples with positive PCR results were kept for
further PCR detection with another pair of detection primers (AbH6H-Knock-F/R) and
further sequencing. The amplification mixture contained 10 µL 2 ×mixture buffer, 0.5 µL
NPTII-F (10 µM), 0.5 µL NPTII-R (10 µM), 100 ng template DNA, and water added to
achieve a total volume of 20 µL. The PCR program was as follows: 94 ◦C for 5 min, 1 cycle;
94 ◦C for 30 s, 56 ◦C for 30 s, 72 ◦C for 45 s, 35 cycles; 72 ◦C for 5 min, 1 cycle. The primers
used in this study were listed in Table 1. The edited base was analyzed according to the
sequenced results.

3.5. Alkaloid Detection

TAs were extracted from approximately 200 mg of dried plant material, according to
a previously reported method [34]. The mobile phase was composed of acetonitrile and
ammonium acetate (acetonitrile:50 mM ammonium acetate = 89:11). The flow speed was
1 mL/min. The standard samples of hyoscyamine, anisodamine, and scopolamine were
purchased from Sigma-Aldrich (Sigma, LA, USA). The standard samples were dissolved in
methanol at a final concentration of 2000 mg/mL and were gradually serially diluted to
1000, 750, 500, 250, 100, 50, 25, 10, and 5 mg/mL. The HPLC system was an LC-20A from
Shimadzu; the detector was a photo-diode array. The detecting wavelength was 226 nm.

https://www.ncbi.nlm.nih.gov/sutils/splign/splign.cgi
http://crispor.tefor.net/
http://crispor.tefor.net/
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The temperature of the CTP-ODS column (150 × 4.6 mm) was 40 ◦C. There were at least
three independent biological replicates. The sample solution was injected at 20 µL each
time. The method for the analysis of the TAs content was the same as that described in our
recent work [26,28,29,35,36].
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