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Linear Motion Coverage as a
Determinant of Transparent
Liquid Perception
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Abstract

When a transparent liquid flows, the background image behind the flow dynamically deforms due

to light refraction. The dynamic deformations of a background image (dynamic image

deformations) are one of the visual features used by the visual system to infer the existence of

a transparent liquid flow. Although previous studies have discussed the role of the narrow band

components of the spatiotemporal deformation frequency, it was still unclear whether motion

signals, one of the constituents of dynamic image deformations, were the determinant of the

perception of a transparent liquid. Manipulating the flow speed of image deformation, which is a

critical parameter for changing motion signals in dynamic image deformations, we asked observers

to judge whether a transparent liquid was included in the clips or not. We found that the

proportions of reporting that they saw a transparent liquid increased with the flow speed of

image deformations. Analyzing motion signals of the stimulus clips, we found that the faster the

flow of image deformations the fewer linear motion signals were contained. The results indicate

that the perception of a transparent liquid arises when the dynamic image deformations contain

fewer linear motion signals.
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Introduction

The visual system takes various approaches to infer the presence of materials or stuff
(Adelson, 2001; Adelson & Bergen, 1991). For example, in order to infer the
optical properties of materials, such as specular reflection, the visual system adopts various
approaches including inverse-optics (Marr, 1982), heuristics on the basis of image
statistics (Motoyoshi, Nishida, Sharan, & Adelson, 2007; Nishida & Shinya, 1998), and the
assessment of image feature appearances (Fleming, 2014; Marlow, Kim, & Anderson, 2012).
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The combination of some of these approaches may make it possible for the visual system to
robustly infer the properties of materials, which could be the basis of the capacity for the
effortless recognition of materials in everyday scenarios.

Among the various types of materials, the present study focuses on a transparent liquid.
Transparent volumetric materials often cause the image deformation of their backgrounds
due to light refraction if the materials have a refractive index of more than 1. When a
transparent liquid flows, the image deformation that is produced by the transparent liquid
becomes dynamic. We refer to the dynamic nature of image deformations as dynamic image
deformations. Recent studies have shown that dynamic image deformations are used by the
visual system to judge the state (i.e., solid, liquid, or gas) of a transparent material (Kawabe,
2017; Kawabe & Kogovšek, 2017; Kawabe, Maruya, & Nishida, 2015). For example,
Kawabe et al. (2015) investigated which bands of the spatiotemporal deformation
frequency led to the impression of a transparent liquid. Kawabe et al. reported that a
narrow band of the spatiotemporal deformation frequency played a key role in a liquid
being perceived as transparent. A different study (Kawabe & Kogovšek, 2017) sought to
identify what feature was critical for differentiating hot air from water, both of which are
transparent materials, and found that the magnitude of dynamic image deformations was a
vital image cue for human observers to differentiate them. These previous studies have used
stimulus clips wherein the entire spatial region of the clip was filled with the dynamic image
deformations of a background scene. On the other hand, a more recent study (Kawabe, 2017)
used a stimulus clip wherein only the disk-shaped area of the clip contained dynamic image
deformations. Thus, the area had a circular contour that was defined by the presence or
absence of dynamic image deformations. By using these kinds of stimuli, Kawabe (2017)
reported that not only dynamic image deformations within the disk-shaped area but also
dynamic changes in contour shape of the area containing dynamic image deformations were
important features that determined the perception of the deforming region as either a solid or
liquid material.

An important question to be addressed is what types of motion signals in dynamic image
deformations cause the perception of a transparent liquid. Previous studies have shown that
some attributes of dynamic image deformations are an important cause of transparent liquid
perception (Kawabe, 2017; Kawabe & Kogovšek, 2017; Kawabe et al., 2015). However, to
date, neither psychophysical nor neuroscience studies have provided evidence to show that
the visual system has detectors that are dedicatedly sensitive to dynamic image deformations.
Rather, the possibility exists that motion signals that are inherently contained in dynamic
image deformations are the determinant of the perception of a transparent liquid. We believe
that it is thus necessary to assess how motion signals in dynamic image deformations can
explain the perception of a transparent liquid, without simply ascribing it to the attributes of
dynamic image deformations.

The present study investigated how the flow speed of image deformations affected the
perception of a transparent liquid. To deform a background image, we used deformation
vector maps that store the degree to which each pixel of the image is moved (Figure 1, see
Method section for details on how the stimulus images were created). By horizontally shifting
the maps and sequentially deforming the background image on the basis of the shifted maps,
the flow of image deformations could be created. When the magnitude of the shift was small,
that is, the flow speed of image deformations was slow, a particular area in the background
image is sequentially deformed by the adjacent parts of the deformation vector maps across
frames (Video 1). Because the values in the deformation vector maps gradually change across
the adjacent parts, the particular area in the background image undergoes pixel shifts in
similar directions. Hence, in this scenario, linear motion signals, that is, motion signals with a
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consistent motion direction, are likely generated across the frames (see Results and
Discussion section for a further explanation of linear motion). On the other hand, when
the magnitude of the shift of the deformation map was large, that is, the flow speed of image
deformations was high, a particular area in the background image is sequentially deformed
by the disjunct parts of the deformation vector maps across frames (Video 2). Because the

Video 1 (Click to play).
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Figure 1. Schematic diagram showing how stimulus images were generated.
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values in the deformation vector maps are occasionally very different across adjacent parts, a
particular area in the background image occasionally undergoes pixel shifts in different
directions across frames. Hence, in this scenario, linear motion signals were generated to a
lesser degree. In this way, by manipulating the flow speed of image deformations, it was
possible to control the coverage of linear motion in the video clip. In the following
experiment, we asked our observers to judge whether the stimulus clip contained a
transparent liquid or not. We also analyzed the relationship between the proportion of
reporting a transparent liquid and the coverage of linear motion in the clip. Based on the
results, we discuss the proposition that the perception of a transparent liquid is based on
small coverage of linear motion signals in dynamic image deformations.

Experiment

Method

Observers. Twelve naive people (seven females and five males) participated in the experiment.
Their mean age was 32.3 years with a standard deviation of 9.12. They reported having normal
or corrected-to-normal visual acuity. They were recruited from outside the laboratory and
received payment for their participation. Ethical approval for this study was obtained from
the ethical committee of Nippon Telegraph and Telephone Corporation (Approval number:
H28-008 by NTT Communication Science Laboratories Ethical Committee). The experiments
were conducted according to the principles that have their origin in the Helsinki Declaration.
Written informed consent was obtained from all participants.

Apparatus. Stimuli were presented on a 21-in. iMac (Apple Inc., USA) with a resolution of
2048� 1152 pixels and a refresh rate of 60Hz. The outputs of the monitor were gamma
corrected. The CIE coordinates of the maximum intensity for each of RGB channel were R
(x¼ 0.6675, y¼ 0.3265, 37.8 cd/m2), G (x¼ 0.2575, y¼ 0.7082, 110.0 cd/m2), and B (x¼ 0.1434,

Video 2 (Click to play).
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y¼ 0.0456, 9.68 cd/m2), which were measured using a colorimeter (Bm-5A, Topcon, Japan).
The refresh rate of the monitor was 60Hz. A computer (iMac, Apple Inc., USA) controlled
stimulus presentation, and data were collected with PsychoPy v1.83 (Peirce, 2007, 2009).

Stimuli. Figure 1 shows how we generated our stimulus clips. Because the procedure used to
generate the stimulus clips was complicated, we describe our procedure by explaining each
step in more detail later.

– Preparation of background image. In the clip, five natural images which were downloaded
from the McGill Calibrated Colour Image Database (Olmos & Kingdom, 2004) were used
as background images. The size of the background image was 256� 256 pixels (5.2� � 5.2�

in an actual observation).
– Generation of the sequence of deformation vector map .The background image was

deformed using an image warp technique (Glasbey & Mardia, 1998). The image warp
technique uses a deformation vector map by which each pixel in a background image is
shifted. In this study, the deformation vector map, whose spatial size was identical to the
size of background images, was a two-dimensional matrix wherein each value was drawn
from a uniform distribution ranging from 0 to 1. In the present study, we wanted to create
a flow of image deformations. Hence, the deformation vector map was horizontally shifted
to the right or left. For each clip, the magnitude of the shift was randomly chosen from the
following 20 levels: 0.0104�, 0.0109�, 0.0115�, 0.0122�, 0.0130�, 0.0139�, 0.0149�, 0.0160�,
0.0173�, 0.0189�, 0.0208�, 0.0231�, 0.0260�, 0.0297�, 0.03467�, 0.04160�, 0.0520�, 0.0693�,
0.1040�, and 0.2080� of visual angle. The vacant cells in the matrix were filled with the
values drawn from the uniform distribution described earlier. Because we wanted the
stimulus clip have a duration of 2 s, we repeated this shift 120 times. Consequently, we
were able to obtain the sequence of the deformation vector maps.

– Further modification of the sequence of the deformation vector maps. Each of the
deformation vector maps in the sequence was low-pass filtered with the cutoff frequency
of the filter set to 16 cpi (3.08 cycles per deg). The cutoff frequency value was determined in
order to simulate the spatial deformation frequency which a real transparent liquid flow
was likely to generate (Kawabe et al., 2015). After filtering, the amplitude of the
deformation vector maps was modulated so that the vector values ranged between �12
pixels (�0.25�) and 12 pixels (0.25�). Different sequences of the deformation vector maps
were used for horizontal and vertical deformation, respectively.

– Sequential deformations of the background image. To obtain a stimulus clip, one of the five
background images was sequentially deformed by the sequences of the deformation vector
maps created in the way described earlier. For example, the nth frame of the clip was
generated by deforming the background image with the nth matrix in the sequence of the
deformation vector maps. Because we wanted to create a stimulus clip with a duration of
2 s, n was set to 120.

– Spatial window. To reduce the visibility of the image deformation artifacts that often arose
at the boundary of the background image, we applied a spatial Tukey window to the
deformed image.

Procedure. The observers sat at a distance of roughly 64 cm from the CRT display.
They started a session by clicking a green button in the interface of PsychoPy. One second
after clicking the button, the first trial started. The stimulus clip was presented for 2 s.
After observing the stimuli, the observers were asked to report whether the stimulus clip
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contained a transparent liquid or not in a two-alternative forced choice manner.
The observers reported their judgment by pressing one of the assigned keys. One second
after pressing the key, the next trial started. Each observer participated in two sessions with
each consisting of 20 Flow Speeds� 5 Backgrounds. It took 30min for each observer to
complete the two sessions. The order of trials was pseudorandomized across the observers.

Results and Discussion

Psychophysical experiment. For each observer, we calculated the proportion of reporting a
transparent liquid for each translation speed. Figure 2 shows the mean proportions. Using
the proportions, we conducted a one-way repeated measures analysis of variance and found
the significant main effect, F(19, 209)¼ 19.798, p< .0001. We conducted multiple comparison
tests (Ryan, 1959) and found that the proportion of reporting a transparent liquid occurred
more often at the higher flow speeds than at the lower flow speeds (Table 1).

As expected, the proportion of those reporting a transparent liquid was higher as the flow
speed increased. The results indicate that a paucity of linear motion signals in dynamic image
deformations is a key factor in determining whether dynamic image deformations are perceived
as a transparent liquid or not. To objectively support this hypothesis, in the next section, we
calculate linear motion coverages of dynamic image deformations and assess the relationship
between the proportion of reporting a transparent liquid and the linear motion coverage.

Analysis of linear motion coverages. As shown in Figure 3, i the present study, linear motion
refers to motion signals with a consistent motion direction. In contrast, Figure 3(b) shows an
object motion trajectory without a consistent motion direction. We focused on linear motion

Figure 2. Experimental results. The proportion of reporting a transparent liquid is plotted as a function of

translation speed. Error bars denote� 1 standard error of mean (N¼ 12).
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coverages which refer to the proportion of linear motion vectors in optical flow fields. To
calculate linear motion coverages, we used the algorithm proposed by Gautama and Van
Hulle (2002), which has been used in a psychophysical study to show the role of linear or
nonlinear motion signals in estimating surface matte or glossiness (Doerschner et al., 2011).

Figure 3(c) shows the linear motion coverages as functions of the flow speed of image
deformation and the number of video frames used for the calculation of optical flow fields.
On average, the linear motion coverages increased as the flow speed decreased. The results
are consistent with our prediction. Moreover, the linear motion coverages decreased with the
number of video frames used for the calculation; this was because dynamic image
deformations in our stimuli tended to produce more nonlinear motion signals as the
stimulus duration increased.

To check how the relationship between the proportion of reporting a transparent liquid
and the linear motion coverages varied with the number of video frames used for calculation,
we computed their correlation coefficients (Figure 3(d)). The correlation coefficients were
basically negative, and at all numbers of video frames, were statistically significant (at least
p< .01). Above all, the correlation coefficients peaked when the number of video frames was
10 (r¼�0.957, t(18)¼�13.978, p< 4.17262� 10�11). In Figure 3(e), we plotted the
proportion of reporting a transparent liquid and the linear motion coverages when the
number of video frames for calculation was 10.

The results clearly showed that the proportion of reporting a transparent liquid was
negatively correlated with the linear motion coverages of dynamic image deformations,
suggesting that human observers use linear motion coverages as a cue to judging whether

Table 1. Significant Pairs in the Multiple Comparison Tests.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 * * * * * * * * * * * * * * * *

2 * * * * * * * * * * * * * *

3 * * * * * * * * * * * * * *

4 * * * * * * * * * * * * *

5 * * * * * * * * *

6 * * * * * *

7 * * * * * *

8 *

9 * * *

10

11

12 *

13

14

15

16

17

18

19

20

Note. Labels ranging from 1 to 20 denote the flow speeds of 0.0104�, 0.0109�, 0.0115�, 0.0122�, 0.0130�, 0.0139�, 0.0149�,

0.0160�, 0.0173�, 0.0189�, 0.0208�, 0.0231�, 0.0260�, 0.0297�, 0.03467�, 0.04160�, 0.0520�, 0.0693�, 0.1040�, and 0.2080�,

respectively.

Asterisks denote the significant pairs (p< .05).
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dynamic image deformations originate from a transparent liquid or not. Moreover, the
negative correlation peaked when the number of video frames used for calculation was
around 10. In this study, the duration of a single video frame was 16.7ms. Therefore, the
results indicate that the visual system recruits motion signals across approximately 167ms to
judge the source of dynamic image deformations. Because as shown in Figure 3(d), the
function of the correlation coefficients was inversely heavily tailed along the axis of the
number of video frames, the visual system may use motion signals over longer durations
to make a judgment about it.

General Discussion

Image motion is one of the strong cues the visual system uses to judge material properties (Bi,
Jin, Nienborg, & Xiao, 2018; Bi & Xiao, 2016; Doerschner et al., 2011; Kawabe et al., 2015;
Morgenstern & Kersten, 2017). The present study also proposed that the coverage of linear
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Figure 3. (a) Object trajectory with linear motion signals. (b) Object trajectory without linear motion

signals. (c) Linear motion coverages as functions of the flow speed of image deformations (i.e., vertical axis)

and the number of video frames used for optical flow calculation (i.e., horizontal axis). (d) Correlation

coefficients between linear motion coverages and the proportion of reporting a transparent liquid and

(e) Correlational plot between the proportion of reporting a transparent liquid and linear motion coverages

when nine frames were used for the calculation.
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motion signals is used by the visual system to judge whether dynamic image deformations
come from a transparent liquid or not.

Why linear motion coverages decreased with the number of video frames used for
calculation is a topic worthy of close discussion. When the deformation vector maps
flowed horizontally, the texture of background images was heterogenous along the flow
trajectory. Due to the background heterogeneity in terms of orientation and spatial
frequency, motion directions along the flow trajectory likely changed across frames.
This variation in motion directions was possibly the source of nonlinear motion. As
such, it is expected that the spatial characteristics of background images such as spatial
frequency or texture density would easily change the critical parameters of dynamic image
deformations to cause the perception of a transparent liquid. The relationship between the
spatial frequency of background images and the spatial frequency of dynamic image
deformation may also alter the critical parameters. Future studies are necessary to
solve these issues.

We speculate that the visual system extracts multiple information from dynamic image
deformations to ascertain various attributes of transparent materials. As previous studies
have already reported, human observers can perceptually discriminate liquid from hot air on
the basis of the magnitude of image deformation (Kawabe & Kogovsek, 2017). In other
words, the visual system seems to exploit the magnitude of image deformations to
discriminate whether a transparent material is a liquid or a gas. In addition, the
spatiotemporal frequency of image deformation is a key attribute for perceptual
transparency (Kawabe et al., 2015). As the present study showed, the linear motion
coverages are a critical cue to the perception of a transparent liquid. Based on these
findings, it is possible that the visual system simultaneously extracts multiple information
from dynamic image deformation(s) and determines the various attributes of materials such
as optical properties, mechanical properties, and the type of material.

We would like to mention the relationship between the perception of image deformations
and the perception of a transparent liquid. When the flow of image deformation was slow,
observers rarely reported seeing a transparent liquid. On the other hand, it is possible
to perceive dynamic image deformations even with a clip having the slowest flow speed
(Video 1). Thus, it can reasonably be assumed that the mechanism for the perception of a
transparent liquid goes beyond the simple detection of motion signals to support nonrigid
structures as previous studies have reported (Nakayama & Silverman, 1988a, 1988b; Weiss &
Adelson, 2000). The visual system may heuristically determine material types from dynamic
image deformations by relying on the statistical aspect of linear (or nonlinear) motion signals.
Otherwise, the visual system may focus on the appearance of dynamic image deformations to
judge the underlying source of dynamic image deformations. Further clarification is
necessary to elucidate the precise mechanism involved in the perception of a transparent
liquid from dynamic image deformations.
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