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Abstract

Over the last 20 years, studies of Caenorhabditis elegans natural diversity have demonstrated the power of quantitative genetic
approaches to reveal the evolutionary, ecological, and genetic factors that shape traits. These studies complement the use of the
laboratory-adapted strain N2 and enable additional discoveries not possible using only one genetic background. In this chapter, we de-
scribe how to perform quantitative genetic studies in Caenorhabditis, with an emphasis on C. elegans. These approaches use correlations
between genotype and phenotype across populations of genetically diverse individuals to discover the genetic causes of phenotypic varia-
tion. We present methods that use linkage, near-isogenic lines, association, and bulk-segregant mapping, and we describe the advantages
and disadvantages of each approach. The power of C. elegans quantitative genetic mapping is best shown in the ability to connect pheno-
typic differences to specific genes and variants. We will present methods to narrow genomic regions to candidate genes and then tests to
identify the gene or variant involved in a quantitative trait. The same features that make C. elegans a preeminent experimental model ani-
mal contribute to its exceptional value as a tool to understand natural phenotypic variation.
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Introduction
Natural genetic variation is evolution’s raw material and provides
a window into the processes that shape the living world. It is
also a big collection of mutant alleles. Among the hundreds of
thousands of sites that differ between two wild isolates of
Caenorhabditis elegans are alleles that perturb your favorite molec-
ular pathway, pushing a biochemical equilibrium slightly beyond
where it sits in the N2 strain, generating worms that are measur-
ably different in phenotype. These natural mutations stand ready
to lead us from phenotype to molecular gene. A simple method,
quantitative genetic mapping, provides a way to use natural ge-
netic variation to discover molecular functions and shed light on
evolutionary patterns and processes.

The field of quantitative genetics has its roots in the early
days of human biometrics and agricultural genetics, where it fo-
cused on variation in quantitative traits, which are measured on
a continuous scale. Over time, as geneticists discovered that
quantitative variation is just another flavor of Mendelian genet-
ics (Fisher 1918), and that even discrete traits, like disease sta-
tus, result from genetic risk factors that themselves vary
quantitatively, the name quantitative genetics became attached
to the broader field of natural genetic variation. We use the
name in this modern sense, to refer to studies that investigate
the effects of natural genetic variation, as opposed to studies
that use laboratory-generated alleles or perturbations. For
many molecular biologists, quantitative genetics is an opaque

and esoteric field, where a priesthood of statisticians offers au-

guries from behind a veil of LOD scores, LD statistics, negative-

log-10-P-values, and genomic relationship matrices. Our goal

here is to demystify quantitative genetics and illustrate its enor-

mous utility for research in Caenorhabditis nematodes, with a fo-

cus on C. elegans and its selfing relatives, Caenorhabditis briggsae

and Caenorhabditis tropicalis.
To start, we will set aside the statistical complexities and fo-

cus on the core elements of C. elegans quantitative trait locus

(QTL) mapping, the quantitative genetics version of forward ge-

netics, and the method most useful to researchers interested in

using natural variation to discover new molecular players in their

corners of worm biology. The goal of QTL mapping is to identify a

region of the genome that contains a locus (a QTL) whose alleles

affect a quantitative measurement of a phenotype. For our pur-

poses, QTL mapping includes a range of techniques, including

both linkage and genome-wide association (GWA) mapping stud-

ies, and they all share the following framework in three simple

steps. First, we require a collection of genetically distinct worm

strains that differ from one another phenotypically because of

the unique combinations of variants each strain carries. Such

variation is almost always present among wild worm strains or

among recombinant strains derived from them, for literally any

trait. Pumping rate? Yes. Penetrance of some phenotype after a

perturbation? Yes. Probability that a particular serine is phos-

phorylated in a protein expressed in the ASEL neuron during the
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early L4 stage? The answer will be yes, and the challenge is sim-
ply to measure it. Second, we require genotype data for the worm
strains. The number of positions whose genotypes we require
varies by mapping technique, with some methods needing only a
handful of positions per chromosome and others needing dense
genome-wide data, but in C. elegans and its relatives, most of the
genotyping work has already been done, and one need only order
the strains. Of course, one of the great virtues of C. elegans for
quantitative genetics is that we start with inbred lines, which can
be genotyped once and phenotyped forever. Third, we perform a
statistical test, where the priesthood historically steps in and
asks the molecular biologists to shield their eyes. But the man be-
hind the curtain is just a test for a difference between two means,
the kind of test that molecular geneticists perform in every paper.
We simply ask, does the average phenotype differ between those
strains that are homozygous for allele 1 at this position and those
strains that are homozygous for allele 2? For a continuous trait,
we can use a t-test. For a binary trait, we can use a chi-square
test for independence. For a trait with a weird distribution, we
can use a nonparametric test, which simply converts the pheno-
type values to ranks and then asks whether the ranks differ be-
tween the two genotypic classes. Statisticians will have opinions
about which tests are best in which settings, and often an opti-
mal test exists from the perspective of statistical power. In the
sections below about specific experimental designs, we provide
some recommendations. But conceptually—and practically, in al-
most all cases—the choice of test is inconsequential.

A good way to understand QTL mapping is to think about it as
an example of a broader class of experimental design, a random-
ized multifactorial perturbation. When we sample wild isolates of C.
elegans, or recombinant lines derived from them, they differ at a
large number of genetic positions. Each of these genetic differen-
ces represents a perturbation, a mutation that may (or may not)
alter the animal’s biology. In conventional forward genetics, we
aim to study strains that carry one perturbation at a time. By
comparing mutant to wild-type, we can test for an effect of that
single perturbation. If we detect a difference, we can attribute it
to the single mutation that differs between strains (notwith-
standing background mutations—always outcross your
mutants!). QTL mapping departs from that approach by including
huge numbers of perturbations all at once—hence, multifactorial
perturbation. Now, when two strains differ in phenotype, we are
unable to point to any single mutation as the causal variant. The
key to discovering the causal variants is to examine each pertur-
bation while shuffling all of the other perturbations—randomiz-
ing them. If the randomization is effective, all the other
perturbations just add a bit of random variation, and all of the
systematic variation will be caused by the focal perturbation.
Consider a collection of inbred C. elegans strains in which every
variant is randomized with respect to every other variant (equiva-
lently, they are uncorrelated, so knowing the genotype at one po-
sition provides no information about the genotype at another
position). After measuring the phenotypes of these inbred lines,
we can take each variant, one at a time, and test whether the two
classes of homozygotes have different average phenotypes. We
can then march through the genome, testing every position—ide-
alized QTL mapping.

In practice, the major challenge of QTL mapping as a random-
ized multifactorial perturbation is the randomization step: how
can we get all of the perturbations to be independent of one an-
other? Population geneticists refer to correlations among loci as
linkage disequilibrium (LD), and much of the experimental and
statistical work of QTL mapping centers on reducing or

controlling LD to achieve effective randomization. In this paper,
we focus on a handful of experimental designs for mapping pan-
els, collections of strains whose patterns of variation and LD
make them useful for QTL mapping, represented schematically
in Figure 1.

Screens leave genes on the table
Genetic screens are one of our most powerful methods for biolog-
ical discovery. Quantitative genetics, like a mutagenesis screen,
can point us to genes with dramatic effects on phenotypes and
processes of interest. In addition, quantitative genetics can reveal
a broader spectrum of alleles and can point to genes that other
methods would struggle to find or would miss altogether. We can
point to at least four classes of discovery where quantitative ge-
netic methods excel.

First, quantitative genetics can reveal mutations whose effects
are modest in size or whose phenotypes have low penetrance. In
a classical mutagenesis screen, the number of homozygous
mutations scored for each mutant phenotype is typically low,
limited by time and resources required to examine each animal,
and the scoring is typically qualitative. If the effect of a mutation
is small or manifests only a fraction of the time, a screen might
not identify it. Consider in contrast a quantitative genetic experi-
ment that scores 100 strains, each carrying a unique mosaic of
alleles sampled from two inbred wild strains (as in Figure 1, RILs
and RIAILs). Now, for the cost of phenotyping 100 strains, every
mutation will be assayed on average 50 times (each parent allele
is homozygous in approximately half of the 100 offspring).
Randomized multifactorial perturbation provides high levels of
replication at the level of mutation without requiring high levels
of replication at the level of strain. This means that quantitative
genetics can find genes of small effect or incomplete penetrance,
but equivalently it means that the method allows for studies of
noisier phenotypes, or for lower-resolution higher-throughput
phenotyping at the screening stage of analysis. In C. elegans, the
built-in replication of randomized multifactorial perturbation
has proven itself in studies of traits that are laborious, slow, and
expensive to score (e.g., Ghosh et al. 2012a, 2012b; Farhadifar et al.
2020); traits that are low penetrance (e.g., Noble et al. 2015); traits
that are noisy and sensitive to random environmental variation
(Bendesky et al. 2011, 2012); and traits that can be screened using
high-throughput assays (Andersen et al. 2015; Zdraljevic et al.
2017; Evans et al. 2020).

Second, the multifactorial character of quantitative genetics
facilitates the efficient discovery of genes whose effects depend
on other genetic perturbations, including all of the classic kinds
of epistasis, suppressors, and enhancers that can be identified us-
ing sequential classical screens, but also pure redundancy, where
neither of two single mutations has any effect. This feature of
quantitative genetics is not obvious and has been widely misun-
derstood. The key underlying fact is that multifactorial perturba-
tion generates multiple combinations of alleles across loci.
Consider again our hypothetical example of 100 strains, each car-
rying a uniquely shuffled genome derived from two inbred lines.
If a trait is affected by two totally redundant genes, such that
only a double mutant shows a mutant phenotype, we expect to
observe the rare combination 25 times in our sample, versus
rarely in a one-perturbation-at-a-time approach (Ferguson and
Horvitz 1989; Andersen et al. 2008). Moreover, we will detect these
interacting loci for free, without tailoring the analysis to them in
any way, because the average effect of each of the two loci is de-
tectable (Figure 2). In C. elegans, quantitative genetics pointed to
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roles for glb-5 and npr-1 in response to shifts in the ratio of O2 and
CO2, with the effects largely visible only in one of the four two-
locus genotypes (see Figure 1 in McGrath et al. 2009).

Third, the standard N2 strain we use for C. elegans genetics is
just a single example of worm biology (Sterken et al. 2015), and
genes that are missing or broken in this reference strain are invis-

ible to classical genetic analyses. Quantitative genetics has
allowed for the discovery of multiple genes that are pseudogen-
ized in the N2 strain [e.g., plg-1 (Palopoli et al. 2008), col-182 (Noble

et al. 2020), and glb-5 (McGrath et al. 2009)], additional genes
where N2 carries hypomorphs [e.g., nath-10 (Duveau and Félix
2012)], and still other genes that interact with gain-of-function

mutations that arose during N2 domestication [e.g., nurf-1 (Xu
et al. 2019) and npr-1 (McGrath et al. 2009; Andersen et al. 2014)].
Moreover, some genes have functions that only make sense in

the context of natural genetic variation. For example, zeel-1 and
pha-1 are essential genes in N2; mutations in these genes cause
embryonic lethality, but these genes are totally dispensable in

other strain backgrounds. They are only essential in N2 because
they counteract toxins that are genetically encoded by tightly
linked genes that are present in N2 and absent in many other

strains (Seidel et al. 2008; Ben-David et al. 2017).
Fourth, natural genetic variation provides a ready alternative

for studies that require quantitative perturbations of biological
function, dialing a biological activity up or down to test the rela-

tive sensitivities of other processes to these quantitative changes.
In conventional molecular genetics approaches, this role is filled
by an allelic series or a dose-dependent pharmacological inter-

vention. But allelic series are hard to come by, and pharmacology
can be a blunt tool. For biological activities that are affected by

many genetic loci—which is to say, for most biological

activities—a collection of wild isolates or recombinant lines offers

a continuous distribution of that activity, and downstream phe-

notypes can be tested for their sensitivities. Similarly, because
many traits vary simultaneously in a multifactorial perturbation

experiment, researchers can isolate the quantitative effects of

one variable while accounting for quantitative variation in a sec-

ond. The ability to test for effects in this kind of multivariate set-

ting allows for tests of causal models that are otherwise

experimentally challenging (Rockman 2008; Evans et al. 2018;

Farhadifar et al. 2020).

The foundations of Caenorhabditis elegans
QTL mapping
Caenorhabditis elegans quantitative genetics is the simplest version

of quantitative genetics. The main reason is that we study fully

homozygous inbred lines. Inbred lines allow us to consider only

two genotype classes at each locus, removing dominance from

consideration in mapping because no heterozygotes are studied,

and they allow each trait to be assayed in large numbers of genet-

ically identical individuals under strictly controlled laboratory
conditions. The complex calculations required for working with

pedigrees or heterogeneous natural environments are absent.

Instead, C. elegans researchers can simply measure phenotypes in

individuals from distinct inbred lines and then attribute variation

among lines to genetic variation. Unlike most other animal mod-

els, C. elegans usually lives in nature as inbred lines, so the pheno-

types of these lines reflect natural variation and not pathologies

caused by inbreeding depression (Dolgin et al. 2007; Gimond et al.

2013; Cutter et al. 2019). The second advantage of C. elegans is its

small, tidy genome, relatively devoid of repetitive elements and

Linkage mapping:
lab randomization

RI
Ls

RI
A

IL
s

Association mapping:
natural randomization

Multiparent Panel 
lab & natural randomization

M
PP

-R
IA

IL
s

W
ild

 Is
ol

at
es

Strain Contrasts
Near-Isogenic Lines

Ti
le

d 
N

IL
s

H
ig

h 
Bu

lk
Lo

w
 B

ul
k

Pool Contrasts
Bulked Segregant Analysis

Figure 1 QTL-mapping panels. Different experimental designs make different compromises along many axes, including detection power, mapping
resolution, and genetic diversity. Laboratory crosses of a pair of strains provide a straightforward route to mapping by linkage in RILs, represented here
as a single chromosome from each of six RILs from a cross of two strains, one with an orange genome and the other blue. Because of the low
recombination rate in C. elegans, RIL chromosomes have an average of one crossover each. By adding generations of intercrossing prior to inbreeding,
RIAILs increase the number of breakpoints, increasing mapping resolution. Association mapping uses historical recombination to randomize alleles.
Wild isolates carry a mixture of common alleles that arose in ancient ancestors (black symbols) and more recent alleles that are unique to each strain
(red stars). The pattern of association among shared variants (LD) is governed by the population history of recombination, and some variants may be
perfectly correlated (e.g., black star and black hexagon). Multiparent panels use laboratory crosses to shuffle wild isolate genomes even more, reducing
LD and increasing the frequency of rare alleles; now even singletons (red stars) are visible to QTL mapping. QTL can also be discovered by comparing
strains that differ only in a small interval—near-isogenic lines. Finally, bulk segregant and related evolve-and-resequence methods do away with the
construction of inbred lines. They detect QTL as differences in allele frequencies between pools of individuals selected to differ in phenotype. In the
figure, the allele frequencies differ between the high-phenotype pool and the low-phenotype pool in the highlighted interval.
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completely lacking centromeric repeats. Genomic variation is rel-
atively cheap and easy to measure. Third, C. elegans has a won-
derfully short generation time, allowing for even arbitrarily
complex strain constructions in a short time. Finally,
Caenorhabditis nematodes can be cryopreserved indefinitely, so
that genotyped strains can be maintained without accumulating
mutations.

The framework of linear modeling provides a useful way to
think about the factors contributing to phenotypic variation.
Given a collection of measurements, we can partition variation in
the measurements in terms of each of the factors that contribute
to variation. For example, if we have measurements of individu-
als from a single strain raised on two different food sources, with
replicates of each, we could write the model yi ¼ m þ bFi þ ei. Here,
the measured phenotype y of individual i is modeled as the global
mean phenotype m, plus a deviation b due to the food source Fi,
plus a random error, ei, that represents effects of the unique mi-
croenvironment of individual i along with any measurement er-
ror. As we add more variables, our linear model grows and
potentially includes interactions among variables. If we have
individuals from two different strains in the two environments,
we could think of the model yi ¼ m þ bGGi þ bFFi þ bGxF(GF)i þ ei,
where the model includes an average effect of the strain geno-
type (G), an average effect of the food source (F), and an

interaction between genotype and food (GF), to account for
effects of combinations of strain and food that are not captured
by their averages. The coefficients b, which represent the effect
sizes of the variables in the measured population, can be esti-
mated by linear regression, minimizing the sum of the squared
residual error e across the whole collection of observations. With
C. elegans and its relatives, we often measure phenotypes as the
average across all of the genetically identical individuals on an
assay plate, and so phenotype yi refers to the plate-level mea-
surement but logic of the model is otherwise unchanged.

For QTL mapping with inbred lines, we assay a large number
of strains and include each strain’s genotype at a locus in the lin-
ear model, generically of the form yi ¼ m þ bQQi þ ei, where Qi is
the strain’s genotype at the site being tested for the presence of a
QTL. We then compare this QTL model to a null model in which
the locus has no effect, so bQ ¼ 0. The power to detect a QTL in
this setting depends on the product of two numbers: the number
of inbred lines assayed and the fraction of phenotypic variance
that is attributable to the QTL. That researchers control the num-
ber of lines assayed is obvious, but they also have considerable
control over the fraction of phenotypic variance attributable to
the QTL. That fraction is the ratio of variance due to genotype at
the QTL, VQTL, to the total phenotypic variation, VP, which
includes variation due to the QTL as well as a broad range of
other factors, most notably environmental variation and genetic
effects of other loci. The QTL mapper can take a variety of steps
to maximize VQTL while reducing other contributors to VP.

Increasing VQTL

The phenotypic variance attributable to a QTL, VQTL, is maxi-
mized when the two genotypic classes (e.g., homozygotes for one
allele vs homozygotes for the other) are at similar frequencies
(50:50). Panels of inbred lines derived from a cross between two
founder lines, such as RILs, are designed to maximize VQTL by fix-
ing allele frequencies at 0.5 genome-wide. Conversely, panels of
wild isolates sample allele frequencies from nature, and QTL
studied in such panels often have uneven frequencies, with one
allele much rarer than the other.

VQTL is more complicated for epistatic interactions. For inter-
actions of the sort shown in Figure 2, three of the four genotypes
have the same mean phenotype, and so the genotypic classes
that matter are present in frequencies 1=4 and 3=4. For an interac-
tion that depends on three loci, the rare class would be present in
only 1/8 of the lines, if allele frequencies among the inbred lines
are 50:50 at each locus. For this reason, the VQTL caused by epi-
static interactions, though it contributes to additive variance as
shown in Figure 2, is quite sensitive to allele frequencies, and
higher-order epistatic effects contribute so little additive variance
as to be nearly invisible. For similar reasons, experiments
designed to assay genotype-by-environment interactions should
carefully consider the sample size requirements for the specific
goals.

VQTL may be masked by linkage of the QTL to other loci with
opposing effects, so recombination is another important tool to
increase the variation due to a QTL. A common phenomenon in
C. elegans quantitative genetics is that RILs derived from wild iso-
lates with similar phenotypes vary far beyond the phenotypic
range of the founding strains. This pattern is known as transgres-
sive segregation and is a result of recombination shuffling the
alleles into new combinations. If each founding wild isolate car-
ries a collection of trait-increasing and trait-decreasing alleles,
the founders may be phenotypically similar, but their
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Figure 2 Epistasis for free. A hypothetical example of a trait with pure
redundancy between two underlying loci that differ between the strains
N2 and AB1. Of 100 simulated RILs, only those carrying AB1 alleles at
both loci show a phenotypic effect of the loci (top panel). But considering
the loci one at a time (middle and bottom panels), each locus has a clear
marginal effect and is easily detectable by QTL mapping methods that
do not explicitly consider epistatic interactions. Note that the power to
detect these loci is strongly influenced by the frequency of the rare
phenotypic class (here, 1=4, but often much lower in GWA mapping
designs). Methods tailored to discover epistatic interactions often take
advantage of the difference in phenotypic variance between single-locus
phenotypic distributions to identify candidate interactors (Struchalin
et al. 2010; Rönnegård and Valdar 2012).
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recombined descendants could end up with all trait-increasing or
all trait-decreasing alleles. Transgressive segregation means that
QTL mapping is often successful in C. elegans even when the
founding strains are phenotypically identical (e.g., Farhadifar
et al. 2020). It may also mean, for highly polygenic traits, that in-
dividual QTL with moderate to large effects are actually com-
posed of smaller effect QTL that are tightly linked and evade
detection unless special effort is made to break up linked loci
(e.g., Bernstein et al. 2019).

Decreasing all the other sources of VP

Power to detect a QTL increase as phenotypic variation from all
other sources is reduced. C. elegans researchers have many tools
to reduce this residual variation.

The ordinary routines of laboratory control are essential for
reducing random environmental variation, including controls
on temperature, humidity, plate media, food, worm manipula-
tion, and so forth. Because of the prevalence of transgenera-
tional environmental effects in C. elegans, researchers should
control conditions for several generations prior to assays
(Sakaguchi et al. 2014; Heestand et al. 2018; Webster et al. 2018;
Moore et al. 2019; Baugh and Day 2020; Baugh and Hu 2020; Ewe
et al. 2020; Houri-Zeevi et al. 2020). Careful environmental con-
trol is standard operating procedure in every worm lab, but
QTL mapping introduces new complications. Regardless of the
quantitative genetic mapping method, the phenotypes of many
independent strains must be measured accurately. This scaling
issue is quite different from what the typical C. elegans labora-
tory encounters, where studies are often focused on the N2
strain and a few mutant strains. Phenotyping methods that
can measure traits across minimally tens but oftentimes hun-
dreds of independent strains at one time are preferred in order
to reduce environmental and assay-to-assay variation. High-
throughput measurements have been successful in measure-
ments of offspring production (Andersen et al. 2014, 2015),
growth rate (Cook et al. 2016a; Zdraljevic et al. 2017; Hahnel
et al. 2018), and behaviors (McGrath et al. 2009; Reddy et al.
2009; Bendesky et al. 2012; Ghosh et al. 2012a, 2012b, 2015).

In most cases, the scale required precludes simultaneous
assays on all strains. When subsets of strains are measured on
different days, environmental factors that vary day to day con-
tribute to VP. These batch effects represent systematic environ-
mental perturbations, like the food source in our example
linear model, and unlike the random microenvironmental vari-
ation that makes genetically identical individuals different
from one another on a single plate. For QTL mapping, batch
effects are often handled by explicitly including batch identity
in the linear model used for mapping. A similar approach is to
adjust phenotype values prior to mapping, by regressing out
the batch effects. Ideally, each inbred line will be included in
multiple batches, and the collection of lines will be randomized
across batches. Randomization is good practice generally, but
in particular researchers should avoid batching strains accord-
ing to trait values. For example, measuring fast-growing lines
one day and slow-growing lines the next day introduces a con-
founding between batch effects and genotypes. This is a fre-
quent concern in agricultural and medical genetics, where this
kind of genotype-environment covariance (CovG, E, not to be
confused with GxE, or genotype-by-environment interaction) is
common, but C. elegans researchers can simply avoid it with
careful experimental design.

A simple way to increase VQTL/VP is to reduce noise in the phe-
notype measurements, which can be done on a per-worm basis,
for example by taking multiple measures of each worm, or track-
ing a worm’s behavior traits over longer time periods.
Importantly, inbred lines provide an even better option to mea-
sure multiple worms per line. For QTL mapping with inbred lines,
the phenotypic variation of interest is the among-line variance,
not the among-worm. Consequently, the better each line’s mean
phenotype is measured, the more the total variance will reflect
genetic effects. Notwithstanding this benefit from measuring
many worms per line, an investigator with the choice to increase
the number of worms per line or to increase the number of lines
will almost always be better served by increasing the number of
lines. Indeed, because QTL mapping leverages randomized multi-
factorial perturbation, replicate measurements of each line are
really not required. An additional caveat is that phenotypes mea-
sured on multiple genetically identical worms on a single plate
represent a single measurement because worms share a common
environment; that is, in estimating a strain’s phenotype, three
plates of 100 worms each is closer to three measurements than
to 300. Researchers typically take the mean of each plate as one
measurement and consider VP as the among-plate variation, par-
titioned into within-line and among-line.

With the mapping goal of maximizing VQTL/VP in mind,
researchers can experiment with a range of environmental
conditions, assays, or phenotype index (e.g., a weighted combina-
tion of phenotypes, though this may reduce interpretability), in
order to find an experimental setup that has high among-line
variance. A QTL that contributes no variance at 20�C on OP50
could have a large effect at 18�C on HB101. In the case of cryptic
genetic variation, which generates VQTL only under rare condi-
tions, more extreme perturbations are required (Paaby et al. 2015;
Vu et al. 2015; Torres Cleuren et al. 2019).

Finally, researchers may want to account for genetic factors
other than the focal locus that contribute to VP. That is, to test
for an effect of one region of the genome, phenotypic variation
due to genetic variation elsewhere in the genome may reduce
detection power by increasing VP and thereby decreasing the
fraction of variance due to our test region. When the back-
ground QTL are known, they can be accounted for much like
batch effects, by including them in the linear model or regress-
ing them out in advance. They can also be experimentally re-
moved from consideration, by generating new mapping panels
in which the known variants are fixed (e.g., Sinha et al. 2008;
Andersen et al. 2015). Accounting for background genetic varia-
tion is particularly important in GWA mapping, where its com-
plex structure can otherwise contribute misleading signals,
and powerful statistical approaches (discussed in the GWA sec-
tion below) provide the necessary accounting.

Genetic variation in Caenorhabditis elegans
and other Caenorhabditis species
QTL mapping makes use of naturally occurring genetic variation
as a source of function-perturbing mutations. The set of variants
that go into an experimental mapping panel sets bounds on the
scope of genetic perturbations we can study, influences the ease
with which we can localize causal variants, and defines the range
of evolutionary insights we can draw. For example, consider an
experiment that maps QTL in a cross of two closely related
strains. Closely related strains differ at few sites, so the probabil-
ity that they differ at a QTL is low; few variants means few molec-
ular processes perturbed. At the same time, mutations that
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differentiate closely related strains likely have arisen recently,
and so are likely rare in the species as a whole. That also means
that they have been relatively untested by natural selection in
the wild, and they may therefore have larger effect sizes than
more ancient variation. Finally, because there are few variants,
the challenge of picking out causal variants within a QTL will be
relatively easy, as there will be fewer candidate genes harboring
variation. Alternatively, crosses between divergent strains pro-
vide greater assurance that QTL will be present, but they also in-
crease the challenges of identifying causal variants from the
large number of variants that will occur within each QTL region.
Divergent crosses may also increase the probability of outbreed-
ing depression, where alleles that have coevolved in separate lin-
eages interact badly when brought together in recombinant
mapping strains. The mean fitness in a panel of lines from a di-
vergent cross may be lower than the fitnesses of the parental
strains, and so measurements of specific phenotypes may reflect
generic pathology rather than features specific to the focal trait.
Crosses between two strains provide a narrow view of genetic
variation in a species, and mapping in panels of wild isolates (i.e.,
GWA studies) typically provide a broader perspective. This wide
view trades off with the different, and generally lower, statistical
power for QTL detection in GWA mapping.

In C. elegans, a study of 609 wild strains, nearly the complete
catalog of known isolates, identified 2,431,645 single-nucleotide
variants and 845,797 small (�50bp) insertions and deletions
(Lee et al. 2021). In addition, the study showed that the species
harbors hundreds of regions where hyperdivergent haplotypes
segregate. Haplotypes are groups of alleles that are inherited as
a unit from a single parent because they occur together on a
segment of chromosome. Determining the total number of var-
iants within these regions awaits species-wide long-read se-
quencing. In the meantime, we can confidently say that more
than 3% of all sites in the �100 Mb reference genome vary in the
C. elegans population and 89% of all N2 genes have a predicted
deleterious variant in at least one wild C. elegans strain, provid-
ing an enormous pool of genetic perturbations.

Comparable species-wide data will soon be available for C. brigg-
sae and C. tropicalis. In the meantime, a survey of 37 C. briggsae iso-
lates identified more than three million SNVs and small indels
(Thomas et al. 2015), and a study of 24 isolates of C. tropicalis identi-
fied fewer than a million SNVs (Noble et al. 2021b). Assuming those
studies surveyed a representative sample of strains, we can con-
clude that C. elegans is intermediate among the selfers in its level of
genetic variation. Like C. elegans, both C. briggsae and C. tropicalis also
carry extensive regions of hyperdivergent haplotypes whose contri-
butions to coding sequence variation remain to be fully character-
ized (Lee et al. 2021; Noble et al. 2021b).

The dozens of other Caenorhabditis species are all gonochor-
istic, with separate males and females and obligate outcrossing
every generation (Kiontke et al. 2011; Félix et al. 2014; Yin et al.
2018; Stevens et al. 2019, 2020; Dayi et al. 2021). Many of these
species harbor enormous quantities of genetic variation; C.
brenneri may be the most genetically diverse of all animal spe-
cies (Dey et al. 2013). The genetic variation in these outcrossers
includes a large store of recessive deleterious variation that
renders them nearly incapable of inbreeding to homozygosity
(Dolgin et al. 2007; Barrière et al. 2009). Substantial efforts have
generated some nearly homozygous strains and relatively
high-quality reference genomes for C. remanei (Fierst et al. 2015;
Teterina et al. 2020), which is currently the preeminent gono-
choristic Caenorhabditis species for quantitative genetic studies
(Reynolds and Phillips 2013; O’Connor et al. 2021). Some

gonochoristic species appear to have more modest levels of ge-
netic variation, and these species might be more amenable to
quantitative genetic methods that rely on inbred lines (Li et al.
2014; Stevens et al. 2020). For all of the gonochoristic species,
however, incomplete and poorly validated gene models remain
an obstacle to functional discovery.

Quantitative genetic mapping requires
determination of genotype
One of the most powerful advantages of C. elegans quantitative
genetics is that mapping panels and strain resources can be con-
structed (or collected), genotyped once, cryopreserved, and then
phenotyped in any lab. This process is dependent on identifica-
tion of the genotypes of these strains. The advent of inexpensive
whole-genome sequencing has made this process straightfor-
ward. Many strains can be multiplexed and sequenced in the
same run, reducing costs. This point is especially clear when gen-
otyping inbred strains that are derived from crosses of well-char-
acterized founders (RILs, RIAILs, NILs, MPPs, and BSA; Figure 1).
In these cases, low-coverage sequencing (approximately 1x) of
each strain is sufficient to impute genome-wide genotypes with
high confidence (Noble et al. 2017; Evans et al. 2018a, 2018b; Na
et al. 2020). Whole-genome resequencing of wild isolates requires
higher coverage but also scales well for Caenorhabditis species
that have small genomes.

All genotyping endeavors are influenced by two important
points. First, they are biased by the reference genome used for
short-read sequence alignments. If the strain has a genome quite
different from the reference genome, then some reads will not
align, variants will not be identified in those regions, and geno-
types will not be determined for the entire genome. This point is
most easily observed in the case of hyper-divergent regions (Lee
et al. 2021; Noble et al. 2021b) where genome regions are
completely different from the reference strain and contain tens
to hundreds of new genes and undiscovered biology. Second, gen-
otyping is also affected by the types and positions of variants that
can be called using different sequencing technologies. The
Illumina short-read sequence platform enables scaling of highly
multiplexed sequencing but it can not identify variants well that
are longer than the read length. For this reason, variants that
cause phenotypic differences across a population might not be in
the whole-genome genotype data or even mapping marker set.
New long-read sequencing technologies can be used to address
the other classes of variation, but algorithms and methods are
still actively being developed. Importantly, these concerns are
typically irrelevant for mapping QTL. As long as the undetected
variants are correlated with observed variants, associations be-
tween the undetected variants and phenotypes will be detected
using their shared correlations with the observed variants. This
logic is fundamental to genetic mapping, including GWA in
humans: LD makes observed variants informative about unob-
served variants. The length-scale of LD in C. elegans—whether in
wild isolates or experimentally generated lines—is sufficiently
long that linkage and GWA mapping work well for detecting ge-
nomic regions containing QTL, even with imperfect genotyping.
However, when attempting to pin down the precise variants re-
sponsible for phenotypic variation, in the fine-mapping stage of a
QTL mapping project, unobserved variants can lead to erroneous
inferences. Overall, genotyping Caenorhabditis strains is facilitated
by small genomes, defined chromosomal domains, and a rich
history of comparative genomics.
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Experimental designs for mapping
Linkage mapping—correlating genotype and
phenotype using recombinant lines
As we explained above, quantitative genetic mapping correlates
genotype and phenotype to identify QTL. Tests of correlation are
most powerful when the population is approximately evenly split
between two genotypes. To create a population with approxi-
mately equal allele frequencies, researchers generate panels of
recombinant inbred lines (RILs), each derived by reshuffling the
genetic differences between two founding inbred lines (Figure 1).
In the absence of selection, the final panel will have approxi-
mately equal contributions from both strain genetic backgrounds
throughout the genome. RILs carry pieces of their founding
genomes in relatively large segments, so beyond the advantages
in allele frequencies, linkage mapping in RILs can also leverage
sparse genotyping and perform fewer statistical tests of correla-
tion across the genome. These analyses generate confidence
intervals where causal quantitative trait genes (QTGs) likely re-
side. RIL panels are constructed and genotyped once but can be
phenotyped repeatedly for many traits. Combined with
cryopreservation, RIL panels are living resources usable in
perpetuity.

C. elegans usually has only one crossover per chromosome per
meiosis (Hillers and Villeneuve 2003), limiting the degree of ran-
domization among alleles. Conventional RILs are generated by in-
breeding from a simple F2 population. The resulting RILs have few
recombination breakpoints but are easy to construct (Figure 3).
With few breakpoints comes low mapping resolution—each variant
will be highly correlated with neighboring variants across a long
segment of chromosome. To ameliorate this problem, an alterna-
tive experimental design, recombinant inbred advanced intercross
lines (RIAILs), is widely used. RIAILs are generated by many genera-
tions of crossing of recombinant individuals to one another, so they
have many recombination breakpoints. RIAILs are more labor-
intensive than RILs to construct and genotype but the effort is justi-
fied by greater mapping resolution.

The construction of these panels is divided into two phases:
crossing and inbreeding. Both RILs and RIAILs start the crossing
phase with a cross of two genetically (and oftentimes phenotypi-
cally) divergent strains. To balance mitochondrial genotypes,
pairwise crosses with males and females of each of the two
strains should be performed (strain A male � strain B hermaph-
rodite and strain B male � strain A hermaphrodite). Four types of
F1 individuals from these two crosses will be generated: males or
hermaphrodites with either strain A or B mitochondria. For RILs,
the two hermaphrodite classes can be selfed. For RIAILs, the F1

individuals can be crossed in each of four combinations to mix
different mitochondrial and X-chromosome genetic backgrounds.
Recombination in the F1 parents will create unique combinations
of the two genetic backgrounds (A and B). The F2 individuals will
harbor a collection of different recombinant and parental chro-
mosomes. RIAIL panel construction continues the crossing phase
by intercrossing the F2 (and subsequent recombinant genera-
tions) to each other (Rockman and Kruglyak 2008). The RIAIL
intercrossing phase produces a collection of recombinant individ-
uals with unique breakpoints throughout the genome, but these
individuals are heterozygous at many loci. These individuals
must be homozygosed so that cryopreservation will maintain sta-
ble genetic backgrounds. To homozygose recombinant genotypes,
line construction projects enter the inbreeding phase. Individuals
from the RIAIL crossing phase or F2 individuals from the RIL
crossing phase are selected and propagated by single-

hermaphrodite passage for ten generations, enough so that each

locus that differed between the founding lines as a low probabil-
ity (1/210) of retaining heterozygosity. For obligate outcrossers, in-

breeding is achieved by sib-mating, which takes more
generations to reach the same degree of homozygosity; research-

ers typically aim for 20 generations of sib-mating, which gives a
locus a 99% probability of homozygosity, absent selection (e.g.,

Wright 1921). The final size of a panel is dependent on the num-
ber of unique recombinant individuals selected for the inbreeding

phase and the loss of lines during the inbreeding phase.
After genotyping the inbred lines, allele frequency skews are

sometimes observed in genomic locations where incompatibility

loci are found (Seidel et al. 2008, 2011; Ben-David et al. 2017; Ross

et al. 2011; Noble et al. 2021b). The known large-effect incompati-
bilities all involve a special class of single-locus parent-offspring

interaction that only manifests in the progeny of heterozygotes.
Consequently, these loci contribute to allele frequency distortion

during line construction but not to phenotypic variation among
inbred lines. At the same time, selfing Caenorhabditis species also

exhibit outbreeding depression due in part to weakly incompati-
ble alleles (Snoek et al. 2014). These interacting loci are common

and cause subtle effects on fitness. Generally speaking, allele fre-
quency skews reduce statistical power to detect QTL in the region

of the skew, but they pose little risk for creating false positives.
Linkage mapping in C. elegans leverages recombinant line pan-

els to measure phenotypic variation and correlate with genotypic
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Figure 3 RIL construction. Conventional RILs are generated by crossing
two inbred lines (P0), each here represented by a single pair of
homologous chromosomes. The cross yields F1s that are heterozygous at
every locus that differs between the strains. Self-fertilization of F1

hermaphrodites yields genetically heterogeneous F2s. Because of
complete crossover interference in C. elegans, each F2 carries on average
one recombinant chromosome with a single crossover. Each F2 is
independently inbred by selfing until the F10 generation, at which point
the genome is expected to be completely homozygous, with an average
of one crossover per chromosome. This collection of homozygous strains
is a panel of RILs. Note that this panel will all inherit the mitochondrial
genome of the P0 hermaphrodite. To balance the panel with respect to
mitochondrial genotype, an equal number of RILs should be constructed
from the reciprocal cross.
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variation to identify QTL. With an abundance of genetic markers
spread evenly throughout the genome, a marker-based regres-
sion approach is often performed for linkage mapping. Much of
the traditional statistical opacity of QTL mapping is due to com-
plications of sparse marker data, a problem that genome se-
quencing has largely solved. For each marker throughout the
genome, the RIL collection is divided into the two founder geno-
types. Then, a linear model is generated to describe the difference
in phenotype between these two groups. This linear model is
compared to a model in which the recombinant panel is not di-
vided into two groups based on the founder genotype. These cal-
culations facilitate the comparison of models by constructing an
odds ratio between the goodness of fit of both models. The LOD
can be calculated to determine how different these two models
are. A LOD score of three indicates that the data are 1000 times
more probable under the linear model with two groups than un-
der the model with one group, a good correlation of genotype
with phenotype at this marker.

The statistical model that allows the two genotype groups to
have different mean phenotypes will always fit better than the
null model in which the groups share a single mean, and conse-
quently LOD scores of this sort are always positive. Further, be-
cause the statistic is calculated for each marker throughout the
genome, strikingly high LOD scores will occur at some markers
by chance, even if those regions do not have QTL (e.g., see the
peak on chromosome I in Figure 4B). To determine which geno-
mic positions are significantly correlated with phenotypic differ-
ences, a permutation-based approach is used (Churchill and
Doerge 1994). The recombinant line identity is shuffled to break
correlations between genotype and phenotype. Then, the
genome-wide marker-based regression approach is repeated,
yielding LOD scores in the absence of real QTL effects. After hun-
dreds or thousands of rounds of shuffling and calculating scores,
the LOD score corresponding to a genome-wide error rate of 5%
can be determined by taking the 95th percentile LOD score from
the distribution of the maximum LOD score from all the permu-
tations. This 95th percentile represents the LOD score that we
would expect to match or exceed somewhere in the genome one
time in 20, in the absence of any true QTL (i.e., genome-wide
p¼ 0.05, e.g., see peaks labeled with red triangles in Figure 4B).
This threshold depends somewhat on idiosyncrasies of the

phenotype distribution, but mostly on the number of statistically
independent regions of the genome: the number of chromosomes
and the genetic length of each (Lander and Botstein 1989). More
independent regions means more chances for a high LOD score
by chance, and so longer genetic maps (e.g., RIAILs vs RILs) end
up with higher thresholds for significance. This relationship cre-
ates a trade-off between QTL mapping resolution (improved by a
long map) and QTL detection power (reduced by a long map).
Typically, a forward-search mapping approach is performed
where the most significant QTL position from one round of map-
ping is used as a covariate in the next round of mapping (Brady
et al. 2019). This process is repeated until no more significant QTL
are detected. This approach enables detection of small-effect
QTL and also mitigates concerns about QTL that might be depen-
dent on multiple genomic regions, as is often the case in complex
traits.

To define the regions where the causal variant(s) could lie,
95% confidence intervals surrounding the peak QTL marker are
calculated. A 1.5 drop in the LOD score from the peak marker
closely approximates this level of statistical confidence (Broman
and Sen 2009), so it is often reported. It is important to consider
that the causal variant(s) might not lie in the QTL confidence
intervals. The LOD score is influenced by the allele frequency of
the marker and variation contributed by other factors indepen-
dent of the tested marker. As the allele frequency departs from
50:50, the linear model fit is more affected by outliers. The num-
ber of RILs influences the power to detect QTL and the accuracy
of those QTL positions. It is best to score as many lines as can
be scored in any trait of interest to increase statistical power to
detect QTL (Figure 4A). QTL that explain more than 10% of
the phenotypic variance can be more easily followed-up using
near-isogenic line (NIL) and candidate gene approaches discussed
below.

Typically, researchers apply a conventional linear model to
calculate linkage statistics. This model treats the data as drawn
from normal distributions whose means differ as a function of
genotype. Many phenotypes have different distributions, but the
linear model approach is versatile and can accommodate traits
that are binary, mixtures of binary and continuous, or idiosyn-
cratic in other ways. For example, discrete traits with genetically
variable penetrance yield presence/absence data for individual

Figure 4 Linkage mapping power and example. (A) The statistical power of different RIAIL panel sizes is plotted by the QTL effect (percent of VP that is
VQTL). Larger RIAIL panels can identify QTL that in total explain more of the total phenotypic variance. These data were generated using the QTLDesign
package in R (Sen et al. 2007). (B) An example linkage mapping plot for response to zinc (Evans et al. 2020) is shown. Genomic position (x-axis) is plotted
against the logarithm of the odds (LOD) score (y-axis) for 13,003 genomic markers. Each significant QTL is indicated by a red triangle at the peak marker,
and a blue rectangle shows the 95% confidence interval around the peak marker.

8 | GENETICS, 2022, Vol. 220, No. 1



worms, and these data can be analyzed using logistic regression
(e.g., Noble et al. 2015). Nonparametric linkage mapping uses the
ranks of the phenotypes rather than their actual values, remov-
ing distributional assumptions, albeit at a potential cost in terms
of statistical power (e.g., Reddy et al. 2009; Rockman et al. 2010). In
general, any statistical test that assesses differences between
groups can be adapted to linkage mapping. The Andersen lab cre-
ated an R package for C. elegans and C. briggsae linkage mapping
using many of the existing RIL and RIAIL strain sets (https://
github.com/AndersenLab/linkagemapping).

The linkage mapping approach identifies QTL that harbor alle-
lic differences between two founder strains. Remember that, be-
cause of transgressive segregation, it is still possible to detect
QTL even if the two founder strains do not have different pheno-
types. A linkage mapping approach is designed primarily to de-
tect QTL that contribute additively to the trait variance, meaning
that, regardless of phenotypic direction of effect, the founder
strain difference is the simple sum of each of the QTL effects
taken independently. Many traits are controlled by interacting
loci, where the effects of each QTL are enhanced or suppressed
by the effects of other loci (Phillips 2008). In rare cases, interac-
tion effects precisely cancel out additive effects (symmetric sign
epistasis), and two-factor linkage mapping approaches (e.g., Sen
and Churchill 2001; Gaertner et al. 2012) are required to detect
these loci. However, interactions typically generate additive
effects that are visible to conventional linkage mapping
(Figure 2), and most (but not all) traits have a primarily additive
genetic basis (Bloom et al. 2013, 2015; Zdraljevic et al. 2017, 2019;
Evans et al. 2018, 2020).

After a QTL is detected, plots of the phenotype values of all re-
combinant lines by the founder genotype difference at the peak
QTL marker help to visualize the magnitude and direction of the
QTL effect. The QTL with the largest phenotypic effects will be
easier to narrow to candidate genes and test using candidate
gene approaches as described below, but these QTL might not
represent evolutionarily important loci where effects might be
more modest (Rockman 2012).

So far, we have presented linkage mapping approaches using
two founding strains that are from the same species and not ge-
netically modified. Linkage mapping can also be used to identify
QTL between different species (e.g., Woodruff et al. 2010) or QTL
that might modify mutant phenotypes (Duveau and Félix 2012;
Schmid et al. 2015; Koneru et al. 2021). If interspecies crosses pro-
duce viable offspring, then recombinant lines can be generated
between different species. The possibility of hybrid incompatibili-
ties increases as the genetic distance between the two species
increases, so allele frequency skews might be more common. For
this reason, the construction of recombinant lines is often diffi-
cult, so a RIL panel might be preferred over a RIAIL panel. To
identify modifiers present in diverse genetic backgrounds, linkage
mapping can be applied to founding strains with edited or altered
genomes. For example, Kammenga and Felix labs sought to iden-
tify modifiers of the RTK/Ras pathway present in wild C. elegans
strains so they introgressed mutations that cause incompletely
penetrant vulval defects in the N2 strain background into wild
strain backgrounds (Duveau and Félix 2012; Schmid et al. 2015).
They each created RIL panels and then measured the modifica-
tion of the vulval development phenotype in these RILs. RIL pan-
els can also carry mutations that make phenotyping easier, as in
the case of a panel that carries a him-5 mutation, increasing male
frequency, to facilitate scoring male traits (Noble et al. 2015). In
other cases, panels include fluorescent reporters that simplify
cellular phenotyping (Koneru et al. 2021). These approaches are

made significantly easier using the CRISPR-Cas9 genome-editing

system to add specific mutations or variants to defined genetic

backgrounds for new recombinant line panels. The linkage map-

ping approach is most powerful in the three selfing Caenorhabditis

species because genetic diversity is lower and inbreeding is easier
than in outcrossing species. However, linkage mapping can work

well in outcrossing species when strains can be established with

reduced diversity and heterozygosity so that recombinant lines

can be crossed and inbred. Overall, the linkage mapping ap-

proach using inbred lines is the quantitative genetic mapping

method with the greatest power for QTL detection.
C. elegans linkage mapping experiments using the N2 and

CB4856 strains have been used extensively (Rockman and

Kruglyak 2009; Andersen et al. 2015; Brady et al. 2019). These lines

are available from the C. elegans Natural Diversity Resource (Cook

et al. 2016b). For many traits, a few large-effect QTL have been

identified. Other traits are affected by large numbers of small-

effect loci. In a recent study, four QTL distributed on different

chromosomes were found to contribute to exogenous zinc

responses (Evans et al. 2020) (Figure 4B). In three of the four loci,

the N2 allele caused zinc resistance, and the other QTL had the

opposite effect with the CB4856 allele causing zinc resistance.

One of the QTL was narrowed to a genomic interval that con-

tained a small number of candidate genes on chromosome III

and then the candidate gene (sqst-5) was shown to mediate the

difference in zinc response. Genome-editing approaches (dis-

cussed below) were used to show a definitive connection between

sqst-5 variation and differences in zinc responses.
A large number of traits have been studied using panels of

N2xCB4856 RIAILs and RILs, which have led to the identification
of many genes and specific variants that contribute to natural

variation across the C. elegans species. Prior to the introduction of

the N2xCB4856 recombinant panels, other wild strains were

used. Most notably, the Bergerac strain, which goes by numerous

strain designations, was crossed to N2 and facilitated early QTL

mapping in the species (reviewed in Gaertner and Phillips 2010).
Whole-genome assemblies for the N2 and CB4856 strains

identified 327,050 SNVs and 79,529 insertions and deletions, as

well as 816 segments too divergent to align (Thompson et al.

2015). Some 8,140 protein-coding genes (40%) harbor protein-

altering variants, including 1,885 with apparent loss-of-function

mutations. In addition, thousands of genes show evidence of cis-

acting regulatory differences between these strains (Li et al. 2006;

Capra et al. 2008; Rockman et al. 2010; Vi~nuela et al. 2010;

Andersen et al. 2014; Francesconi and Lehner 2014). Overall, in-

bred line panels derived from these strains provide an efficient

way of assaying the effects of perturbations to a large number of

genes and molecular processes. At the same time, fine mapping

is necessarily limited by the relatively large number of variants

compared to the number of recombination events that separate

them during RIL or RIAIL construction.
Researchers have also studied traits in C. briggsae and C. tropi-

calis using RIL panels. In C. briggsae, RILs and RIAILs derived from

the Indian strain AF16 and the Japanese isolate HK104 have

revealed genetic factors contributing to variation in male tail ray

development and drug sensitivity (Baird et al. 2005; Ross et al.
2011; Zamanian et al. 2018). In C. tropicalis, RILs derived from

strain NIC58 from French Guiana and strain JU1373 from

Reunion Island have been used to map a QTL affecting hermaph-

rodite mating propensity and genetic incompatibilities (Noble

et al. 2021b).
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Genome-wide association mapping—correlating
genotype and phenotype using wild strains
Natural populations harbor staggering levels of genotypic and
phenotypic diversity. Heritable phenotypic diversity is the prod-
uct of mutation, selection, and drift, so the underlying genotypic
diversity reflects those causes. Unlike linkage mapping where ge-
netic differences between two strains are tested for correlations
with phenotypic differences, GWA mapping leverages the diver-
sity and historical recombination found across populations to
identify loci that could underlie phenotypic variation in those
populations. The number of variants tested for correlations is
typically much higher, the allele frequencies of those variants de-
part significantly from 50:50, and correlations among variants
(LD) cause more unpredictable effects on GWA than linkage. In
this section, we will describe the process, power, and caveats of
GWA mapping in C. elegans and related Caenorhabditis nematodes.

GWA mapping correlates phenotypic variation among wild
strains with whole-genome variant data to identify QTL. In C. ele-
gans, a growing collection of wild strains and whole-genome se-
quence data are available in the C. elegans natural diversity
resource (CeNDR). Wild strains are grouped into isotypes where
the strains within an isotype are highly related to each other. If
all wild strains are used in mapping, then these highly related
strains will bias statistical tests while adding little additional in-
formation. For this reason, CeNDR recommends using isotype
reference strains (the chosen reference for each isotype) in all
studies of wild strains. These isotype reference strains are orga-
nized into sets of 48 to facilitate GWA mapping experiments.
Statistical power calculations show that a minimum of 96 strains
should be scored to have 80% power to detect QTL that explain
15% of the variation in that population (Figure 5A). In addition to
performing a GWA mapping, the phenotypes of wild strains can
be used to determine founding strains for additional RIL collec-
tions and/or bulk-segregant mapping approaches.

On the genotype side, CeNDR provides releases of whole-
genome sequence and variant data for all strains. For GWA map-
ping, one does not typically test every variant in the genome for a
correlation with phenotypic variation. First, many variants are
rare (allele frequencies less than 5%), which reduces power to de-
tect QTL if they were included in the GWA mapping. Second,
alleles at distinct loci can be correlated (LD is high in selfing spe-
cies like C. elegans), rendering them redundant. Whole-genome

variant data are pruned to reduce these effects. In the CeNDR
GWA workflow, bi-allelic variant sites with more than 10% miss-
ing variant calls across the population are removed. The remain-
ing variant sites with minor-allele frequencies less than 5% are
removed. Last, LD between all remaining variant sites is assessed
and pairs of variant sites that are correlated greater than 0.8 are
pruned to just one of the two sites. These steps typically reduce
the species-wide variant data set from millions to tens of thou-
sands of variant sites.

Some regions of the genome have relatively few variants for
three different reasons. First, centers of chromosomes, where re-
combination is relatively low, harbor fewer variants than chro-
mosome arms because of the effects of background selection
(Cutter and Payseur 2003; Rockman et al. 2010). Under back-
ground selection, the constant influx of new deleterious muta-
tions reduces genetic diversity at sites linked to the mutations.
Second, selective sweeps have removed diversity on chromo-
somes I, IV, V, and X (Andersen et al. 2012). A selective sweep
results when a new beneficial mutation spreads through the pop-
ulation quickly, replacing the diverse chromosomes that do not
carry the mutation. Third, variant calling is more difficult, if not
impossible, in divergent regions where the wild isolate genome is
extremely different from the N2 reference genome and short-
read sequences do not align to the reference genome (Thompson
et al. 2015; Lee et al. 2021).

Current GWA mapping methods use a linear mixed-effect
model approach to identify genotype-phenotype correlations (see
Sul et al. 2018 for a good explanation). In this approach, the ge-
netic variant being tested for an effect on phenotype is modeled
exactly as in the linear models described previously. The geno-
type at the locus has a fixed effect whose sign and magnitude we
hope to estimate. The other part of the mixed-effect model is the
random effect, where we model variation in phenotype caused by
nuisance variables, factors that we have to account for even
though their exact values are not our interest. Rather than esti-
mate their values, we treat them as random—that is, as values
drawn from a probability distribution—and we attempt to model
the shape of that distribution. In GWA mapping, random effects
are included to account for spurious correlations that are caused
by related strains within the mapping population. Related indi-
viduals are often found in nearby areas. This situation is called
population structure and can be described by a matrix of pairwise
sharing of genome-wide variants among the strains in a

Figure 5 Genome-wide association mapping power and example. (A) Statistical power for the 20200815 CeNDR release strain set is plotted by the QTL
effect (Percent of phenotypic variance explained by the QTL). (B) A Manhattan plot for single-marker-based GWA mapping of the ascr#5-induced dauer
formation trait (Lee et al. 2019) is shown. Each dot represents a single-nucleotide variant (SNV) that is present in at least 5% of 157 wild strains. The
genomic position in Mb, separated by chromosome, is plotted on the x-axis, and the statistical significance of the correlation between genotype and
phenotype is plotted on the y-axis. Two significance thresholds are shown. The dashed horizontal line denotes the Bonferroni-corrected P-value
threshold using all markers, and the solid horizontal line denotes the Eigen-corrected P-value threshold using independent markers correcting for LD
(genome-wide eigen-decomposition significance threshold). SNVs are colored red if they pass either threshold.
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population (Sul et al. 2018). Without adjustments for population
structure, every genomic region that is genetically similar among
strains that are phenotypically similar will look like a QTL, even
though many such regions will simply reflect the shared history
of the related strains. As a random effect in the mixed model, the
population structure matrix effectively down-weights observed
phenotypic similarities among strains that are also genotypically
similar genome-wide. In some cases, a QTL effect might be corre-
lated with the population structure, which will decrease the like-
lihood that a QTL will be detected. Because of the differences in
distribution of variants across and within chromosomes, statisti-
cal power to detect QTL is higher on chromosome arms where
more intermediate and common allele frequency variants are
found. In addition, LD is less on chromosome arms so mapping
resolution is higher.

As in the case of linkage mapping, a large number of statistical
tests will result in a large number of associations, even in the ab-
sence of QTL. To determine which of the many associations be-
tween genotype and phenotype are statistically significant, the
significance threshold (alpha, conventionally 0.05) is adjusted for
the number of independent tests. The most conservative signifi-
cance threshold uses the Bonferroni method, where alpha is di-
vided by the number of markers where the test of association
was performed. This method is designed to establish the proba-
bility that a QTL is detected anywhere in the genome at 5%, un-
der the null hypothesis that no QTL exist. However, Bonferroni is
overly conservative because many of those markers are not inde-
pendent because of LD; that is, Bonferroni divides alpha by an in-
flated number in this context, setting the threshold for
significance at an inappropriately stringent level. Alternatively,
alpha can be adjusted by dividing it by the effective number of in-
dependent markers across the genome. The variant pruning
steps explained above reduce many dependent markers but not
all. To determine the effective number of independent markers,
the correlation among markers in the genotype matrix can be re-
duced by Eigen decomposition (Li and Ji 2005). The experimental-
ist can decide whether to focus on QTL defined by the
conservative Bonferroni threshold or the more liberal Eigen-value
threshold. QTL detected using either threshold have been vali-
dated using NILs and genome-edited strains.

Permutation approaches, such as those used in linkage map-
ping, are generally not appropriate for GWA. The logic of permu-
tation is that the shuffled strains are interchangeable under the
null hypothesis of no QTL (Churchill and Doerge 1994). With wild
isolates, however, the strains are not interchangeable, because
some are very similar to one another and others very different
(Churchill and Doerge 2008; Abney 2015). As mixed-model
approaches have become more popular, permutations have been
adapted to significance testing in the GWA mapping context. For
example, if phenotypes are adjusted by regressing out population
structure effects, the significance of associations between a locus
and these phenotype residuals can be evaluated by permutation
(Abney 2015; Noble et al. 2017).

The composition of the strains phenotyped in a C. elegans
GWA experiment can also impact the mapping power and QTL
resolution. As explained above, C. elegans wild strains can be
grouped into those strains that harbor one or multiple of the
chromosome-scale selective sweeps on chromosomes I, IV, V,
and X or those strains that do not have any sweeps and have
higher levels of genetic diversity. These two groups of wild strains
should be mapped separately because the effects on QTL power
and resolution are different. GWA mapping of swept strains will
have higher power to detect QTL because variants have higher

allele frequencies than in divergent strains, but the detected QTL
will have poorer resolution because LD is more extensive than in
divergent strains. By contrast, GWA mapping of divergent strains
will have lower power to detect QTL because most variants are
rare, but the detected QTL will have higher resolution because
long-range LD is lower than in swept strains. Despite these chal-
lenges, numerous GWA mapping have identified and validated
QTL across the C. elegans species.

The two other selfing Caenorhabditis species will enable power-
ful GWA mapping but with different caveats. C. briggsae has
greater population structure than C. elegans, so traits correlated
with the tropical or temperate clades (Thomas et al. 2015) will re-
quire GWA mapping within each strain subset to avoid false posi-
tive QTL. C. tropicalis also has a significant population structure
(Noble et al. 2021b), and it also has lower levels of genetic diver-
sity than the other two selfing Caenorhabditis species. It will be in-
teresting to see whether GWA mappings in these two species will
work as well as they have for C. elegans.

Other Caenorhabditis species that do not self present a distinct
set of issues for GWA. Most of these outcrossing species have
been refractory to inbreeding, and so the usual methods of geno-
typing a strain once and then measuring many identical individu-
als are not applicable. Genotyping and phenotyping individual
worms are possible but sacrifice many of the advantages of the
Caenorhabditis model. Another issue is that the worms have such
high levels of diversity that it will be difficult to generate reliable
genotypes using reference-based short-read mapping. However,
given the exceptionally low LD in highly diverse outcrossing
Caenorhabditis, mapping resolution could be at the gene or variant
level, as observed in large population samples in yeast (Bloom
et al. 2013, 2015; Albert et al. 2014). As single-worm approaches in-
crease in prevalence, GWA mappings in these species will be-
come more commonplace.

GWA mapping has been performed for a variety of traits. In
many cases, QTL have been narrowed to QTGs and quantitative
trait variants (QTVs) using techniques discussed below (Evans
et al. 2021). In a recent study, the fraction of dauers formed after
exposure to ascaroside pheromones was mapped to multiple
QTL, including a QTL on the X chromosome (Figure 5B) where
variation in the gene srg-37 was found to underlie differences
across a population of 168 wild strains (Lee et al. 2019). The wild
strain collection at the C. elegans Natural Diversity Resource
(CeNDR) can be measured for a phenotype of interest and then
mapped using tools available on the CeNDR website or the
Andersen lab GitHub page (https://github.com/AndersenLab/
NemaScan). CeNDR and NemaScan (Widmayer et al. 2021) make
GWA mapping accessible to a wide variety of C. elegans research
groups.

In some cases, multiple alleles of the same gene present on
different haplotypes could underlie natural variation in a popula-
tion. GWA mapping will not detect this locus because the individ-
ual haplotypes oftentimes do not reach high enough allele
frequency for detection, even if they would when considered col-
lectively. An alternative GWA mapping approach, called burden
mapping (Price et al. 2010; Zhan et al. 2016; Hahnel et al. 2018),
aggregates variation in genes to make a gene-by-gene association
test across the genome. Allelic heterogeneity at the gene level is
controlled because this aggregation makes a single test per gene.
This technique was crucial for mapping a QTL for benzimidazole
resistance in C. elegans to the beta-tubulin locus ben-1 (Hahnel
et al. 2018). In this case, many wild strains have independent var-
iants in the ben-1 gene so standard marker-based GWA mapping
did not detect this locus even though it is known that the gene
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expresses the target of this drug class. This approach is powerful,
but effects of population structure, demography, LD, and allele
frequency need to be tested before it can be more widely adopted.
Such studies are underway and new tools should be available on
CeNDR soon.

Multi-parent RILs—mix of linkage and
association mapping
Linkage mapping in C. elegans uses controlled crosses to achieve
balanced allele frequencies, but resolution is limited by the num-
ber of meioses and genetic diversity is limited to the two founding
strains. Association mapping samples much broader diversity
and uses historical recombination to generate high resolution,
but rare alleles account for much of the variation, and population
structure introduces substantial statistical confounding.
Multiparental populations (MPP) provide a compromise between
linkage and association, potentially offering the best of both
worlds (Figure 1). A typical MPP is generated by systematically
crossing more than two inbred lines, increasing the genetic diver-
sity beyond that found in typical RILs or RIAILs while keeping rel-
atively balanced allele frequencies and minimally structured
populations to achieve better results than possible with conven-
tional association mapping. MPPs have become important tools
for model-system quantitative genetics, with powerful panels
such as the Collaborative Cross and Diversity Outbred mice
(Churchill et al. 2004, 2012), the Drosophila Synthetic Population
Resource (King et al. 2012), the Arabidopsis Multiparent Advanced
Generation Intercross (MAGIC) lines (Kover et al. 2009), and many
more in crop species (Scott et al. 2020). The C. elegans community
has generated two MPP panels, the four-parent mpRILs (Snoek
et al. 2019) and the 16-parent C. elegans Multiparent Experimental
Evolution (CeMEE) panel (Noble et al. 2017). Although MPPs are
sometimes studied as genetically segregating populations, where
each animal has a unique and partly heterozygous diploid ge-
nome, we typically let C. elegans populations go through a period
of intercrossing and then derive inbred lines by selfing, as in the
construction of RIAILs. The biology of C. elegans is such that het-
erogeneous populations are most conveniently studied by bulk-
segregant analysis (BSA), as described in a later section, at least
for questions about additive genetic effects. However, C. elegans
biology is spectacularly suited to the construction of MPP-derived
RIAILs; we can reduce LD to our hearts’ content by adding more
generations of intercrossing, inbreed to homozygosity without
major losses of fitness, cryopreserve the lines at minimal ex-
pense, and do it all in a matter of months rather than years.

MPPs offer new routes to the discovery of functionally impor-
tant variation, and they raise new statistical challenges. To facili-
tate progress in MPP analysis, the Genetics Society of America
created a portal to collect papers on these themes (https://www.
genetics.org/content/multiparental_populations) (de Koning and
McIntyre 2017). As always, experimental designs for MPP panels
face tradeoffs. More founders means a broader sampling of diver-
sity but at the cost of QTL detection power, as each founder hap-
lotype becomes rarer as founder number is increased. In
addition, more founders increase the likelihood that some strains
will have genetic incompatibilities that can skew allele frequen-
cies and decrease power. MPP panels offer improvements in map-
ping resolution if the founding lines share alleles but have deep
histories of recombination that have rendered them independent;
that is, the MPP can jointly leverage recombination events during
strain construction and ancestral recombination events that oc-
curred in the wild ancestry of the founder strains. Overall, more

founders means better resolution at common alleles and lower
power at uncommon ones.

Broadly speaking, there are two main modes of analysis for
panels of MPP inbred lines: one can test for associations variant
by variant, in the manner of an association analysis, or one can
test for association with genomic segments according to which
founding strain they derive from, treating the panel strains as
mosaics of the founding inbred lines’ genomes (e.g., Broman et al.
2019). If, for example, gene-sized chunks are not recombined,
then the gene-sized haplotype of each founder can be considered
a unique allele, and the population thought of as potentially car-
rying an allelic series at each gene (Crouse et al. 2020). This ap-
proach allows for the variants within a haplotype to interact
epistatically, conferring a unique phenotypic effect, even though
the individual variants might also occur in different combina-
tions in other founder haplotypes. At the same time, approaches
that treat each founding strain’s haplotype as a unique allele
may sacrifice statistical power, as the allele frequencies of each
founder haplotype are lower than the allele frequencies of the
minor allele at a single variant site that is shared among multiple
founders. In other words, single-variant association is better
for common variants and additive effects, and haplotypic
approaches have advantages when intralocus epistasis is com-
mon.

The C. elegans mpRIL panel includes 200 inbred lines derived
from four wild-type isolates from Orsay and Santeuil, France
(JU1511, JU1941, JU1926, and JU1931). Jan Kammenga and col-
leagues systematically intercrossed the founders and their prog-
eny for three generations and then inbred by six generations of
selfing. A particular advantage of this panel is that it includes
only natural genetic variation, uncontaminated by N2, offset
somewhat by the fact that the founders are genetically similar to
one another, and so some regions of the genome, such as the left
side of chromosome II, are nearly invariant in the panel. Among
the inbred lines, the frequencies of the four founder haplotypes
are reasonably uniform across the genome, with a few excep-
tions, so that the panel retains substantial statistical power to de-
tect allelic effects that derive from only a single founder. At the
same time, the panel’s design offered little opportunity for re-
combination, and so the haplotype segments are long, similar to
conventional RILs. Overall, the panel offers similar detection
power to a RIL panel but with greater haplotypic diversity. Snoek
and colleagues successfully mapped multiple QTL for lifespan
and stress response traits, with an average QTL interval of 1.2 Mb
(Snoek et al. 2019).

The CeMEE panel is the product of an unprecedented labora-
tory evolution experiment (Noble et al. 2017). Briefly, Henrique
Teotonio and colleagues systematically intercrossed sixteen
founding strains, including N2 and CB4856, over many genera-
tions to produce a highly outbred heterogeneous population.
(Two pairs of founding strains are nearly identical, and so the
population effectively descends from 14 separate founders.) They
then subjected this population to 140 generations of experimen-
tal evolution under ordinary laboratory conditions. The popula-
tions were maintained on multiple large plates, keeping census
size in the range of 10,000 animals. Each generation ended with a
bleach treatment, enforcing four-day nonoverlapping genera-
tions. The researchers then derived hundreds of inbred lines
from the evolved population, which is called the A6140 popula-
tion. They generated still more inbred lines after another 50 gen-
erations of experimental evolution and then again after 50 more
generations. These efforts produced more than 700 inbred lines,
described as A6140 RILs, CA50 RILs, and CA100 RILs. The C and A
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in these appellations stand for “Control” and “Androdioecious,” to
distinguish them from the GA50, GT50, and GM50 populations
and RILs. Prior to inbreeding, these panels went through 50 gener-
ations of experimental evolution under gradually (“G”) increasing
salt content in the plate media, after having had their mating sys-
tems altered to Trioecy (“T”) or Monoecy (“M”) via bulk introgres-
sion of fog-2 or xol-1 mutations. The fog-2 allele converts
hermaphrodites to females, and incomplete introgression
resulted in a population with three sexes, males, females, and
hermaphrodites. After the experimental evolution, the GT RILs
were derived by inbreeding hermaphrodites. The GM population,
incapable of outcrossing because xol-1 males are inviable, experi-
enced a rapid loss of diversity and the resulting inbred lines are
of little value for mapping. The remaining collection of more
than 1000 RILs derived from A6140, CA50, CA100, GA50, and
GT50 makes CeMEE an unparalleled resource for genetic map-
ping. Noble and colleagues have genotyped the lines by sequenc-
ing and imputation and have carefully studied its mapping
potential by simulation (Noble et al. 2017; 2021a).

The key feature of CeMEE is its low LD: the combination of an-
cestral and laboratory-generated recombination has shuffled the
alleles, leaving variants largely uncorrelated with one another.
The result is excellent mapping resolution. In a simulation study
considering the 763 strains in CeMEE v2, QTL were found that ex-
plain as little as 3% of phenotypic variance have expected associ-
ation confidence intervals on the order of 10–20 kb on
chromosome arms and 50–100 kb on chromosome centers, with
the association peak falling within 2.5 kb of the true causal vari-
ant across this whole set of parameters (Noble et al. 2021a).

The design of CeMEE also engenders some costs for mapping.
Higher resolution trades off with detection power, so a larger
number of lines is required to achieve the same ability to discover
a QTL at a given genome-wide significance level. The long phase
of experimental evolution also resulted in a spread of allele and
haplotype frequencies, due to both drift and selection. Thus,
many of nearly 400,000 variants segregating in CeMEE are at low
frequency, and so can only be detected as QTL if their effect sizes
are larger than would be necessary in a biparental RIL panel. The
laboratory haplotype of npr-1, on the left side of the X chromo-
some, swept to fixation early in the history of CeMEE, eliminating
all variation and mapping ability across more than a megabase.
In addition, new mutations that arose during experimental evo-
lution may contribute to phenotypic variation among the lines;
more than 10,000 such mutations are present in at least three
lines, and those at slightly higher frequency can be mapped as
causal variants. Finally, the panel retains some population struc-
ture, so computationally expensive mixed-model approaches,
similar to those used for association mapping in CeNDR, are re-
quired (Noble et al. 2021a). Tools for analysis of CeMEE data are
available at https://lukemn.github.io/cemee/.

MPP panels are well suited to Caenorhabditis and we expect
that they will play a sizable role in QTL mapping in the future.
Some new multiparent populations are already in the works. To
study outcrossing species, the Rockman lab has constructed an
MPP-RIAIL panel in the obligate outcrosser C. becei, chosen be-
cause it tolerates inbreeding better than most such species. The
panel derives from one male and two female wild founders, not
inbred lines, and so the genetic diversity is derived from six
founding genomes. Outcrossers are expected to harbor much
more recessive deleterious variation than selfers. Conventional
analysis of inbred lines is unable to distinguish recessive from ad-
ditive effects, as only homozygotes are studied, but crosses be-
tween characterized inbred lines generate reproducible

heterozygous genotypes and provide access to recessive varia-
tion. The experimental design that evaluates the F1 progeny of
RILs or RIAILs is known as a recombinant inbred intercross (RIX)
(Hua et al. 2003; Zou et al. 2005; Yuan et al. 2011). By crossing pairs
of inbred lines reciprocally, researchers can use RIX designs to
map maternal- and paternal-effect QTL separately from QTL that
act zygotically.

Finally, we note that additional MPP designs have been suc-
cessfully applied to quantitative genetics questions in other spe-
cies but have not yet been applied to Caenorhabditis. One of the
most ambitious and informative quantitative genetic programs is
the nested association mapping (NAM) population in maize
(Buckler et al. 2009; McMullen et al. 2009; Gage et al. 2020). The
NAM design involves a collection of multiple RIL panels, each
sharing one founder in common. QTL mapping within each RIL
panel offers all the detection-power advantages we associate
with RILs, but comparisons across the RIL panels provide the ben-
efits of greater diversity and historical recombination that we as-
sociate with association mapping. A drawback is the exceptional
size of a NAM population—the maize panel includes 5000 RILs. A
similar MPP experimental design implemented in yeast, with
each of 16 strains crossed to each of two others, includes 13,950
strains (Bloom et al. 2019). Phenotyping on massive industrial
scales is required to gain the full benefits of these designs.

Near-isogenic lines—a Mendelian approach to
QTL mapping
Linkage and association mapping test for an effect of a variant by
randomizing the rest of the genome. When an effect is detected,
it reflects the average effect of the variant across the collection of
randomized genetic backgrounds. An alternative approach to
mapping is to simply eliminate all background variation instead
of randomizing it. The key tool in this approach is the NIL (Eshed
and Zamir 1995), a strain that carries a small region from one
strain (the donor) introgressed into the genome of another strain
(the recurrent parent) (Figure 1). Any phenotypic difference be-
tween the NIL and the recurrent parent is caused by an allelic dif-
ference within the introgressed region. NILs are sometimes called
congenic strains, particularly in the rodent literature, but the C.
elegans community has adopted the NIL vocabulary from plant
genetics, where NILs have long been a key tool for genetic analy-
sis. An introgressed region can be studied just as a classical allele
would be, and indeed standard worm nomenclature guidelines
provide an allele-naming convention—allele numbers are pre-
fixed with IR (introgressed region), and donor and host are de-
scribed with an arrow. For example, a strain that carries the
CB4856 npr-1 locus (and surrounding region) on the X chromo-
some introgressed into N2 is described as carrying
qgIR1(CB4856>N2 X).

NILs are widely and effectively used to validate the locations
of variants mapped by linkage or association, as we describe be-
low in the “validation” section. Here, we describe the utility of
NILs for genetic mapping. Given wild isolates that differ with re-
spect to a trait of interest, QTL can be localized by surveying a
panel of NILs that carry segments of one strain in the other
strain’s background. Panels of NILs come in many flavors. The
simplest is a panel of chromosome substitution strains (CSSs), in
which each strain is homozygous for the recurrent parent ge-
nome except for a single chromosome, which comes entirely
from the donor strain. A widely used C. elegans panel carries
CB4856 chromosomes in the N2 background (Glauser et al. 2011;
Evans et al. 2020). By surveying seven strains (N2 plus six CSSs),
chromosomes that carry QTL can be identified (e.g., Glater et al.
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2014). CSSs are manufactured by repeated backcrossing into the
recurrent parent background, with genotyping at each generation
to preserve donor DNA only on the chromosome of interest.
Other mapping panels have been generated by recurrent back-
crossing without genotyping, an approach that yields random
segments of the introgressed genome, notwithstanding the
effects of recombination and selection. The blind introgression
approach can be tailored to target particular parts of the genome
by using an existing NIL (or RIL or RIAIL) as the donor strain. The
most widely used NIL panel for C. elegans was generated by recur-
rent backcrossing of several N2/CB4856 RILs into the N2 strain,
yielding a collection of 90 strains, each with a single segment of a
few megabases of CB4856 genome in the N2 background
(Doroszuk et al. 2009). The strains collectively tile across 96% of
the genome, and NIL collections of this type are called tiled NILs
(Figure 1). The Kammenga lab has also constructed a reciprocal
panel, with N2 segments introgressed into the CB4856 strain
(Sterken and Kammenga, personal communication). A third de-
sign, after CSSs and tiled NILs, is stepped NILs, a panel of NILs
that all share one introgression boundary and vary only at the
second boundary (Koumproglou et al. 2002). In other words, the
introgressions are nested, each containing slightly less donor ma-
terial than the last. These strains can be generated by starting
with a single NIL and selecting recombinants (with or without the
help of visible markers) that break the introgressed region into
smaller and smaller chunks. Bernstein and Rockman generated
and genotyped 870 stepped NILs that step through a 1.4 Mb re-
gion of the X chromosome (Bernstein and Rockman 2016).

Introgression-based mapping is an important tool in studies of
reproductive incompatibility. Donor regions that cannot be intro-
gressed into a recurrent parent are incompatible with that
strain’s genetic background, and so missing tiles in a NIL library
might reveal incompatibilities. Bi et al. used marker-facilitated in-
trogression to identify regions of the C. briggsae genome that were
incompatible with the genome of its sister species, C. nigoni (Bi
et al. 2015). Even when NILs are viable, they may show directional
declines in fitness consistent with incompatibilities (Snoek et al.
2014), and crosses among them may reveal higher-order interac-
tions that contribute to speciation (Bi et al. 2019). This growing
line of research in Caenorhabditis parallels similar applications in
Drosophila and tomato speciation genetics (Masly and Presgraves
2007; Moyle and Nakazato 2009).

NIL-based QTL mapping has some important caveats. First,
NIL mapping abandons the statistical efficiency of linkage and
association mapping, retreating instead into the rigorous logic of
Mendelian genetics. The result is that sample size requirements
are quite different (Keurentjes et al. 2007). To detect an effect of a
given size, linkage and association can pool data from many ge-
netically different strains. With NILs, analysis typically involves
pairwise comparisons of strains, and consequently, detection
power scales with the number of replicates per strain and not
with the number of strains. A corollary of pairwise comparisons
is that background mutations (that is, mutations that arise dur-
ing strain construction, as well as small, unobserved introgressed
segments) are completely confounded with the introgressed in-
terval, exactly as they are with alleles derived from mutagenesis.
Background mutations are less of a concern with linkage map-
ping and association, where such mutations are unique to indi-
vidual strains and contribute statistical noise but not
confounding. Second, effects of donor segments are detected in a
single recurrent parent genetic background, eliminating back-
ground genetic variation. The single background makes small-
effect variants easier to discover (Eshed and Zamir 1995; Shao

et al. 2008), but it also means that the additive effect of the donor
segment is completely confounded with epistasis between recur-
rent parent and donor alleles. In some cases, this is a desirable
outcome, converting hard-to-detect epistatic variance into easy-
to-detect additive variance, but in other cases it will cause the
concealment of variants whose effects are masked by the recur-
rent parent background. NIL QTL effects will therefore not always
closely match the additive effects of alleles averaged over back-
grounds, and they could reflect idiosyncratic or even pathological
epistatic interactions. For example, for the interaction shown in
Figure 2, each locus would show a large effect in the AB1
recurrent-parent background but none at all in the N2 recurrent-
parent background. Epistatic effects are likely to be quite com-
mon in selfing species like C. elegans (Dolgin et al. 2007; Snoek
et al. 2014), and when using NILs for validation, researchers typi-
cally account for such effects by assaying reciprocal NILs, with
the focal region from each strain introgressed into the other
strain.

The analysis and interpretation of NIL data differs in impor-
tant ways from that of linkage or association data. Despite its sta-
tistical inefficiency, pairwise comparison between strains is the
safest method of analysis. Methods that test marker effects aver-
aged over strains, as in linkage or association mapping, are likely
to work well for traits affected by a small number of large-effect
loci, such that NILs can be divided into a few phenotypic classes;
approaches such as “bin mapping” (Doroszuk et al. 2009) work in
this case. For traits with more complex genetic architectures, par-
ticularly polygenic or epistatic architectures, marker (or segment)
regression approaches are prone to a variety of artifacts, caused
by the idiosyncratic LD structure of NIL panels. This problem is
particularly acute in stepped NILs, where alleles at opposite ends
of the maximal introgression almost always have opposite strain
origins, generating strong LD.

Given that pairwise contrasts are the safest analysis method,
the question becomes, which strains should we contrast?
Statistically testing all pairs of strains imposes a large multiple-
testing burden, and the results are hard to interpret. One classical
approach is called the common segment method (Snell and
Bunker 1965; Shao et al. 2008). Each NIL is tested for a difference
with the recurrent parent, which carries no introgression. If
strains that differ from the recurrent parent have overlapping
introgressions, the smallest overlap is inferred to carry a QTL.
Strains that carry the QTL but do not differ from the recurrent
are inferred to also carry suppressors. This approach is fairly ad
hoc, and it infers some QTL (suppressors) from the presence of
nonsignificant tests, something that makes statisticians wince.
An alternative approach involves sequentially testing each pair
of most-similar strains, testing the minimum number of strain
pairs to achieve the greatest possible mapping resolution. Shao
et al. (2010) developed an algorithm to find the best set of con-
trasts, constructing a minimum spanning tree of NIL genotypes
and then testing adjacent pairs along the branches of the tree. In
several studies of C. elegans traits, this sequential mapping tech-
nique has identified suites of QTL (Green et al. 2013; Glater et al.
2014).

A common outcome of NIL analysis, in C. elegans as elsewhere,
is the discovery of a large number of QTL, many more than are
detected in analyses of RILs from the same founders and often
with effect sizes whose sums greatly exceed the phenotypic dif-
ference between the founding strains (Shao et al. 2008). For exam-
ple, a series of studies of dauer formation (Green et al. 2013, 2014)
identified more than 30 QTL in NILs carrying CB4856 donor seg-
ments in the N2 background (Doroszuk et al. 2009). These findings
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reinforce the polygenic architecture of complex traits in C. elegans
and the improvement in detection power afforded by NIL map-
ping. At the same time, the size of the effects in NILs and their in-
visibility in RILs suggests that many NIL-detected QTL are
amplified by interactions with the fixed genetic background
(Shao et al. 2008). Bernstein and colleagues (Bernstein et al. 2019)
pushed this question to its limits by studying population growth-
rate phenotypes in stepped NILs that subdivide a single 1.4 Mb re-
gion of the X chromosome into 15 small intervals, each encom-
passing about 0.1% of the genome. They detected QTL in nine of
the 15 intervals. The effects of adjacent QTL were in opposite
directions, so that tight linkage between them masked their
effects in their native contexts. This pattern of linkage masking
(Brown et al. 2016) is emerging as a potentially important mecha-
nism by which segregating variation is masked in populations
(Schoech et al. 2020).

Bulk-segregant analysis enables high-resolution
QTL detection
All of the quantitative genetic mapping procedures described so
far use strain resources that can be shared among labs, including
RILs, wild isolates, or NILs. The creation of these resources
requires investments of time and money to generate the strains
and to genotype them. In addition, the strain sets and mapping
approaches we have presented so far do not use selection to iden-
tify or enrich for phenotypically different individuals. In this sec-
tion, we will present BSA, which does not require the generation
of strains. In this mapping procedure, a researcher experimen-
tally generates a population of genetically heterogeneous individ-
uals. One then compares allele frequencies among individuals
with the phenotype of interest to allele frequencies in an unse-
lected pool or a pool of individuals with the opposite phenotype.
Isolation of the desired phenotypic class can involve worm-by-
worm measurements by the researcher or mass selection im-
posed by relevant environmental perturbations. Unlike the other
mapping methods, phenotype distributions draw from a geneti-
cally heterogeneous pool of individuals, including heterozygotes,
and consequently dominance can influence the detection of QTL.

For more than 20 years, BSA mapping has facilitated the iden-
tification of many mutant genes in the laboratory-adapted strain
N2. These bulk-segregant analyses take an N2 mutant of interest
and cross it to a genetically divergent strain to generate a hetero-
zygote. After allowing the heterozygote to self, the experimenter
selects for the mutant phenotype of interest in the next genera-
tion. The individuals with the mutant phenotype will carry N2
regions of the genome linked with the mutation of interest but
unlinked genomic regions will be from either N2 or the geneti-
cally divergent strain in Mendelian proportions. Regions of the
genome linked but distant from the mutation will recombine
with the genetically divergent strain. Individual recombinants
will have unique combinations of the genetically divergent geno-
mic regions except where the mutation is located, which will
have N2 markers. The more recombinants that are scored the
more precisely localized the mutation of interest will be. These
regions are identified by genotyping either restriction fragment
polymorphisms (Davis et al. 2005), SNVs from reduced represen-
tation sequencing (O’Rourke et al. 2011), molecular inversion
probes (Mok et al. 2017), or whole-genome sequencing (Doitsidou
et al. 2010). Allele frequency skews in the N2 direction suggest
linkage with the mutation of interest. In practice, observed allele
frequency skews could also be caused by experimental bottle-
necks that lead to fewer recombinants generated in some inter-
vals. In addition, genetic incompatibilities between the two

strains can cause allele frequency skews in this cross design, as
has been observed previously (Ben-David et al. 2017). Epistatic
interactions between the focal mutation and the genetically di-
vergent strain can also cause skews toward N2 at sites not linked
to the mutation, as only strains that carry both the mutation and
the potentiating background will be selected. In some cases,
these accidental skews have been used to map the interactors
(Noble et al. 2020).

In the context of natural variation, phenotypically divergent
strains should be identified and then crossed in the same way
that N2 and genetically divergent strains have been in the past. If
the two wild strains have few genetic differences, then it might
be easier to identify the specific variant(s) underlying the pheno-
typic difference, as has been done with laboratory strains N2 and
LSJ2 (McGrath et al. 2011; Large et al. 2016; Zhao et al. 2020).
Oftentimes, phenotypically divergent strains are also genotypi-
cally divergent, so many variants must be evaluated for linkage
with the trait variation. In C. elegans, nearly all extant wild iso-
lates have genome sequence available through the C. elegans
Natural Diversity Resource (Cook et al. 2016b), so design of geno-
typing strategies is straightforward. From simulations and empir-
ical work, it has been shown that QTL can be identified by BSA
using different strains and that QTL confidence intervals can be
smaller than what are obtained using linkage mapping or NIL
mapping approaches, especially after many generations of
crosses to reduce LD (Burga et al. 2019). QTL detection power and
mapping resolution are dependent on the intensity of selection
(higher is better), number of recombinants generated (the more
the better), the effect size of the QTL, and the genetic complexity
of the trait. If these procedures can be scaled to map variation be-
tween many different pairs of genetically divergent strains, then
BSA has the promise to identify QTL and causal genes that under-
lie variation for many quantitative traits. However, BSA is less ef-
ficient in several situations. First, genomic regions where
recombination in limited (chromosome centers) lower the map-
ping resolution. Second, BSA depends on the strength of selection
for the particular trait difference. It is not easy to select for the
phenotypically extreme individuals from both sides of a pheno-
typic distribution in all traits. For example, it is difficult to select
for sensitive individuals in drug responses because these individ-
uals are dead or do not grow and can not be genotyped. BSA
approaches for drug responses depend on selection for drug-re-
sistant individuals. Third, genetic incompatibilities could make
some strains unlikely or impossible to generate recombinant
progeny (Seidel et al. 2008; Ben-David et al. 2017; Ben-David et al.
2021; Noble et al. 2021b). For example, BSA will have allele fre-
quency skews in genomic regions where the two genotypes do
not generate progeny in equal proportions because of effects on
growth or reproduction, as has been observed in C. elegans and C.
tropicalis. Fourth, the statistical power and resolution of QTL iden-
tified by BSA depend on the number of recombinants generated.
With selfing species like C. elegans, self-progeny must be pre-
vented to ensure that all the individuals in the next generation
were generated from a cross with the genetically divergent strain,
using a mutation in the gene fog-2 (Schedl and Kimble 1988) that
feminizes hermaphrodites as done previously (P.T. McGrath, per-
sonal communication). Genome-editing approaches that delete
the fog-2 locus make selfing strains into obligately outcrossing
strains offering an effective method to mitigate this issue. One
can also use small pools of RILs in an assay similar to BSA to
identify genomic intervals enriched in one phenotypic class
(Frézal et al. 2018; Koneru et al. 2021). Overall, BSA offers a power-
ful method to connect phenotypic differences to specific genes
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using C. elegans and other selfing Caenorhabditis species. An R
package was created to help with C. elegans BSA experiments
(https://github.com/eyalbenda/xQTLstats).

BSA approaches can also make use of population-wide diver-
sity by selecting bulk populations from the tails of a pool of wild
isolates, an analog of GWA that allows ancient recombination to
shuffle alleles, albeit imperfectly. In one study, starvation sur-
vival was selected in a pool of animals representing 96 wild
strains (Webster et al. 2019). They used the allele frequency
changes during the experiment to infer the relative survival rates
for each of the 96 strains, and they then performed GWA on these
inferred probabilities. The approach, which led to discovery of a
starvation-resistance QTL on chromosome III, is equivalent to
BSA analysis of the allele frequencies among the survivors, but
by first inferring strain identities and then imputing genotypes
genome-wide, it improves on the raw allele frequency estimates.

In outcrossing Caenorhabditis species, BSA offers one of the few
methods to connect phenotypic variation to genotypic variation
because levels of genotypic variation are so high. In
Caenorhabditis, linkage, GWA, and NIL-based mapping all depend
on genotypically defined strains, but most outcrossing
Caenorhabditis species do not have defined strains because in-
breeding depression limits the ability to make strains homozy-
gous at all genomic loci. Therefore, isolates do not breed true
from generation to generation. BSA mapping in these species
tracks allele-frequency shifts after selection. With higher levels
of variation and recombination, QTL detection will be more diffi-
cult because markers must be tightly linked to the causal locus,
but once detected QTL resolution should be higher.

It is also possible to identify QTL using an evolve-and-
resequence approach. In this approach, a genetically heteroge-
neous population is exposed to selection. This approach can use
either directional selection, where only individuals with particu-
lar phenotypes are chosen to breed, or experimental evolution, in
which the experimental environment imposes selection but the
exact phenotypes are unknown. After some generations of evolu-
tion, allele frequencies in the evolved population are compared
to those in their ancestors or in control populations subjected to
similar numbers of generations without the selective conditions.
This approach can identify QTL that vary within the founding
population, as has been performed for stress responses using C.
remanei (Sikkink et al. 2019). Experimental evolution is described
at length in a previous WormBook chapter (Teotónio et al. 2017).
Overall, BSA and its kin offer powerful approaches to identify the
genetic variants that underlie phenotypic differences in selfing
and outcrossing Caenorhabditis species.

Caenorhabditis quantitative genetics from QTL to
gene and variant
Quantitative genetics can teach us about the causes of evolution-
ary change and about the molecular mechanisms underlying im-
portant traits. A critical step is to connect a QTL to a specific gene
and ultimately to the variant that causes the phenotypic differ-
ence. C. elegans has made this connection many times over the
past 20 years because of distinct advantages in generation time,
genome-editing tools, and inbred strains (Evans et al. 2021). These
results have impacted our understanding of mating system evo-
lution (Palopoli et al. 2008), genetic incompatibilities (Seidel et al.
2008, 2011; Ben-David et al. 2017), toxin responses (Zdraljevic et al.
2017, 2019; Brady et al. 2019; Evans and Andersen 2020; Na et al.
2020), and behavioral variation (de Bono and Bargmann 1998;
McGrath et al. 2009; Reddy et al. 2009; Bendesky et al. 2011, 2012;
Greene et al. 2016a, 2016b). In this section, we will describe the

process to go from QTL to QTG and to QTV. Notably, all genetic
mapping approaches, including the quantitative genetic mapping
approaches described here, involve a trade-off between continu-
ing to map to finer resolution vs moving to candidate gene test-
ing. As we describe in the next section, any mapped interval
should be confirmed using crosses before moving to candidate
genes. Mapping provides positional candidate genes, and the
transition from positional candidates to candidates with plausi-
ble or suggestive biological annotations is fraught with danger.
The shortcomings of candidate-gene storytelling are well docu-
mented (Pavlidis et al. 2012), and mistaken assumptions about
causal genes have sometimes caused whole fields to move in the
wrong direction (Smemo et al. 2014; Claussnitzer et al. 2015). It
takes genetic experiments to determine causal links between ge-
netic variants, biological mechanisms, and phenotypes.

Additional experiments and mapping approaches can help
narrow QTL to smaller genomic intervals and give higher confi-
dence in the detection of QTL. For linkage, NIL, and BSA mapping
approaches, additional lines or recombinants can increase confi-
dence in correlated genotypic markers and add markers that are
correlated with the trait difference. Once a QTL is detected, addi-
tional strains or recombinants with recombination breakpoints
within the QTL interval (but not scored previously) can be used to
narrow the QTL interval. This approach has been instrumental in
narrowing broad QTL to small genomic intervals with fewer can-
didate genes (Zdraljevic et al. 2017, 2019; Evans et al. 2021). For
GWA mapping, wild strains with novel haplotypes or haplotypes
with breakpoints nearby the markers most highly correlated with
the phenotypic difference can also better define the QTL. This
process is limited by haplotype information and historical recom-
bination across QTL identified by GWA. The combination of map-
ping results from different methods offers a powerful way to
narrow QTL as well. Overlap between QTL identified using link-
age and/or NIL and GWA analyses can be a powerful method to
identify candidate genes. This technique works well when com-
mon variation is shared by one of the two founding strains used
in the linkage, NIL, or BSA mapping. In some cases, single or a
small number of candidate genes are identified. Once QTL are
detected from initial mapping experiments, QTL can be narrowed
by scoring additional strains and by comparing different quanti-
tative genetic mapping methods. The ultimate goal is to identify
one or a small number of candidate genes that can be tested for
causal links between genotypic and phenotypic variation.

All of the mapping approaches presented in this chapter are
statistical measures of correlation between genotypic and pheno-
typic variation. Like any statistical method, mapping could iden-
tify false-positive QTL and miss true positive QTL. Experimental
tests of specific genomic regions in isolation can mitigate many
concerns about false-positive QTL. NILs offer a ready approach to
both confirm that a QTL causes a phenotypic difference and to
narrow QTL to candidate genes (Figure 6). One distinct advantage
of Caenorhabditis species is that crosses are rapid and NILs can be
easily generated between any two strains using insertion-
deletion variants to genotype the interval and genetic back-
ground. CeNDR offers an indel finder and primer generator for
any pairwise strain comparison to aid this process. The C. elegans
N2xCB4856 RILs, RIAILs, and NILs have been used to identify nu-
merous QTL that have been narrowed using existing or newly
constructed NILs. Once a NIL recapitulates the observed pheno-
typic effect identified in the mapping experiment, this NIL can be
repeatedly crossed to the recurrent genetic background to make
increasingly smaller NIL intervals. This approach is limited by re-
combination distance and easy-to-genotype markers to detect
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recombination events within the interval. In mapping panels
with more than two founders, including GWA and MPP, the
choice of NIL parent strains is not obvious because numerous
strains with different haplotypes in the QTL region harbor the ref-
erence or alternative genotype at the peak QTL marker. In addi-
tion, parent strains should be chosen with known
incompatibilities on chromosomes I and III taken into consider-
ation (Seidel et al. 2008; Ben-David et al. 2017). Genetically com-
patible strains will be easier to make NILs if they are reproducibly
phenotypically divergent and have opposing genotypes at the
peak marker in the QTL. Once NILs are identified or created, then
the same quantitative assay that identified the QTL should be
performed to confirm and narrow the QTL interval. The identifi-
cation of a genotype-phenotype correlation, as with NIL mapping,
can be repeated iteratively with ever-smaller NILs to narrow the
interval to candidate genes. The efficiency of this process is a dis-
tinct advantage of quantitative genetic mapping in C. elegans.
Once a QTL is detected, genetic crosses to make NILs are trivial
and reduce the dependency on mapping alone to define candi-
date genes. However, QTL effects can fractionate to smaller effect
QTL, as observed previously (Glater et al. 2014; Evans et al. 2018;
Bernstein et al. 2019), so iterative cross approaches should be cog-
nizant of this limitation.

NILs can narrow QTL intervals to lists of candidate genes that
can be tested using quantitative phenotyping assays. Candidate
genes within a QTL interval need to have variation to underlie
the phenotypic differences observed in the mapping population
or cross. For this reason, scans of variation in coding regions or
upstream gene regulatory regions should be performed to make
candidate gene lists (but keep in mind that regulatory variants
can be distant from the gene they regulate, even in C. elegans,
Bendesky et al. 2012). Coding variation that is predicted to affect
function is an easy starting point, but gene expression variation
can be equally impactful. In many cases, many noncoding var-
iants surrounding candidate genes exist so connections to the
gene of interest are not easy to make computationally. In the
context of QTL between the N2 and CB4856 strains, researchers
can take advantage of previous work mapping alleles that affect
transcript abundance in RILs and RIAILs (Li et al. 2006; Rockman
et al. 2010; Vi~nuela et al. 2010; Francesconi and Lehner 2014).
Genes with large-effect local (likely cis-acting) regulatory varia-
tion are known and can be prioritized for follow-up. Importantly,
CeNDR contains single-nucleotide variants (SNVs) and insertion-
deletion (indel) variants less than 50 bp, but additional variation
could impact gene function and is not curated across C. elegans
strains yet. New data, algorithms, and simulations to validate
variant calls are required to generate lists of these other variants,
including short-tandem repeats, transposon insertions and exci-
sions, large chromosomal aberrations (inversions, deletions,
duplications, translocations), and copy-number variants. These
types of variants can underlie differences in gene functions for
quantitative traits as seen in C. elegans previously (Palopoli et al.
2008; Zhao et al. 2020), but each requires additional analyses.

Once candidate genes are identified, then these genes can be
tested for a causal role in trait variation. Just like in molecular ge-
netics experiments to establish genetic causality, complementa-
tion tests using existing mutant alleles can work but genetic
background differences between the two strains in the comple-
mentation test can be problematic. In addition, one should not
assume that the N2 allele of a gene is wild-type (e.g., npr-1
Sterken et al. 2015), so other methods might be preferred.
Molecular geneticists might test “complementation” using trans-
genic overexpression of the N2 wild-type version of gene. This

Figure 6 Genetic causality experiments in C. elegans. Step 1 is to
identify QTL using statistical mapping approaches. A GWA mapping is
shown here. Step 2a uses NILs to narrow the QTL confidence interval
found in Step 1, shown as dotted red vertical lines. In parallel or
iteratively, QTL fine-mapping approaches like Step 2b can also narrow
a QTL to candidate genes. Once candidate genes are identified,
genome-editing using CRISPR-Cas9, as shown in Step 3a, can replace
the candidate gene allele from Strain A with the Strain B allele and
vice versa. Sometimes candidate genes have many different variants
or no single variant can be tested as in Step 3a. In these cases, a loss-
of-function allele like a deletion shown in Step 3b can be created in
both Strain A and Strain B genetic backgrounds using CRISPR-Cas9
genome editing. Then, these new deletion strains can be crossed to the
reciprocal parent strains and compared to the parent strains and
heterozygotes in a quantitative complementation experiment. In the
example shown here, Strain A (orange) has a low trait value and Strain
B (blue) has a high trait value. The Strain B allele confers a dominant
phenotype as seen in the heterozygote. Deletion of the Strain A allele
has no effect on the phenotype of the heterozygote but loss of the
Strain B allele fails to complement the Strain A allele. These data
indicate that the gene deleted is the same gene that confers a trait
difference between these two strains.
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method might work for natural variants, but the caveats about
genetic background, reference genome bias, and overexpression
can be problematic. When coding variation caused by a single
SNV or indel is implicated, then CRISPR-Cas9 genome editing can
readily change each parent strain to contain the single variant
site from the other parent strain. These reciprocal allele replace-
ment strains when compared to the parent strains should alter
phenotypes to match the genotype at the QTN. Given the ease of
genome editing in C. elegans, this method is preferred to
complementation-based assays. If the candidate gene has many
variants, then a simple single allele-replacement experiment will
not suffice. One strain might have lost the function of that gene
compared to the strain that still maintains that gene function.
CRISPR-Cas9-induced gene deletions are predicted to cause dif-
ferent effects in these two genetic backgrounds in this case. In
the parent strain that has lost the function of the gene, a deletion
of that same gene should not alter the phenotype. By contrast, a
deletion of that gene in the strain that maintains the function of
that gene should cause a phenotype similar or equivalent to the
strain without the function of the gene. To ensure that alteration
of the phenotype is caused by the specific gene deletion, recipro-
cal hemizygosity tests (Bendesky et al. 2012; Stern 2014; Turner
2014; Brady et al. 2019) can be performed if the quantitative phe-
notype is recessive. In this experiment, the deletion of the gene in
one genetic background is crossed to both the same and the other
genetic backgrounds. This procedure is repeated for deletion of
the gene in the other genetic background. Two of these four
strains are homozygous at all loci except for the candidate gene,
and the other two of the four strains are heterozygous at all loci
except for the candidate gene. When compared to the two homo-
zygous parent genetic backgrounds, the effects of the candidate
gene can be tested explicitly. This procedure has identified the
gene underlying several QTL in C. elegans (Evans et al. 2018, 2020,
2021; Brady et al. 2019; Evans and Andersen 2020). The ease and
speed of C. elegans genetics and genome editing make gene cau-
sality testing possible and a powerful approach to identify QTG
and QTN underlying phenotypic variation in the species.

For most C. elegans geneticists, it is tempting to perform RNAi
by feeding to test candidate genes in traits of interest. This ap-
proach requires caution for studies using wild strains because of
natural variation in the RNAi response (Tijsterman et al. 2002;
Pollard and Rockman 2013; Paaby et al. 2015), though with appro-
priate controls RNAi can still be informative (Noble et al. 2015;
Paaby et al. 2015; Vu et al. 2015; Torres Cleuren et al. 2019).

Evolutionary lessons
Quantitative genetic studies of C. elegans started in the 1990s,
more than half a century after similar work began in Drosophila
and mouse. Despite that late start, worm researchers have wran-
gled some fundamental lessons about the forces that shape heri-
table phenotypic variation.

The first discovery and an early lesson is that domestication
imposes powerful and sometimes surprising patterns of selec-
tion. C. elegans domestication involved a single-worm bottleneck
followed by hundreds of generations of evolution under novel
conditions, and the result is that evolution was dependent on
new mutations, often with very large effects (Sterken et al. 2015).
Many of the nearly Mendelian variants discovered in C. elegans
quantitative genetics have proven to be recent mutations that
arose during the 20th century during adaptation to laboratory
conditions.

A second discovery is that the genomic distribution of QTL is
strongly shaped by selection on traits unrelated to those under
study. In other words, the probability that a gene carries pheno-
typically relevant variants is strongly influenced by selection on
the genes nearby. The linked selection can be positive, with ad-
vantageous mutations sweeping through the population (selec-
tive sweeps), or purifying, with deleterious mutations eliminated
from the population (background selection). In either case, selec-
tion on a focal site eliminates genetic variation from a population
over a large region of a chromosome, with the exact extent de-
pendent on the details of the selective effects and the rate of re-
combination. In C. elegans, background selection gives all of the
chromosomes a characteristic pattern of low genetic variation in
the gene-dense chromosome centers (Rockman et al. 2010), and
selective sweeps have stripped the bulk of genetic variation from
huge sections of four different chromosomes (Andersen et al.
2012; Lee et al. 2021). These patterns are visible in the distribution
of DNA sequence variation, but they also manifest at the level of
quantitative genetic variation, as for example in the distribution
of genes whose transcript abundances are affected by nearby var-
iants (Rockman et al. 2010). The effects of selection at linked sites
depend on the population-effective recombination rate, which
involves both the per-meiosis crossover frequency (one per chro-
mosome in C. elegans) and the frequency with which individuals
are heterozygous at multiple sites. The extremely high rate of
selfing in C. elegans amplifies the effects of selection at linked
sites by decreasing the effective recombination rate.

A third lesson, illustrated in part by the effects of linked selec-
tion, is that the mating system has profound effects on nearly ev-
ery aspect of quantitative variation. The partial-selfing mating
system of C. elegans, C. briggsae, and C. tropicalis is starkly different
from the random mating of idealized Wright-Fisher population
genetics. Although worm geneticists often think of Drosophila
geneticists as our closest kin, for quantitative genetics our touch-
stones should be in the plant genetics world, particularly in spe-
cies with mixed-mating systems, such as Arabidopsis lyrata,
Capsella rubella, and Mimulus species. The transition to selfing in
Caenorhabditis lineages is associated with a dramatic increase in
homozygosity, presumably associated with a purging of large-
effect recessive deleterious variants and possibly the fixation of
weak-effect variants. A side effect of low rates of outcrossing and
recombination is that whole genomes evolve as units, and alleles
are rarely tested in new combinations. An expected effect is out-
breeding depression, where matings produce F2 individuals that
carry shuffled genomes that suffer from mismatched alleles.
Evidence for outbreeding depression is extensive in all three self-
ing species (Dolgin et al. 2007; Gimond et al. 2013; Cutter et al.
2019). Low rates of recombination allow for coadaptation among
loci, increasing the likelihood that epistatic interactions con-
tribute to trait variation (Gaertner et al. 2012). For traits under
stabilizing selection, each inbred isolate may have ended up
with a unique genetic solution, and crosses therefore reveal
abundant transgressive segregation. This kind of population
history also facilitates the accumulation of cryptic genetic vari-
ation, alleles that are invisible in their usual setting but avail-
able to fuel adaptation to novel conditions or for discovery in
QTL-mapping studies.

One surprising finding from quantitative genetic studies in C.
elegans, C. briggsae, and C. tropicalis is that each species carries a
distinctive and unusual type of post-zygotic gene drive element.
These haplotypes express an offspring-killing toxin in the game-
tes (usually the oocyte but in one case the sperm) and an antidote
that is expressed in the offspring. In an animal heterozygous for
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such a haplotype, self-fertilization results in delivery of the toxin

to 100% of the offspring but the antidote only to 75%. This class

of gene drive element, known broadly as a Medea element, is

very rare outside of these three species. Because the offspring-

killing only happens in heterozygotes, and these species mostly

self, the evolutionary causes and dynamics of Medea elements in

Caenorhabditis are quite mysterious. An important effect is in-

creased outbreeding depression, though here the cause is interac-

tion between parental and offspring genotypes at a single locus,

and not the expected interaction between loci newly shuffled by

recombination.
Finally, C. elegans quantitative genetics carries lessons about

the genetic architectures of complex traits. Mendelian effects ap-

pear largely limited to recent lab adaptation and to male-related

traits. Most QTL mapping has focused on narrowly defined phe-

notypes, often with unclear relationship to fitness in the wild,

and these have been the most productive for the method. Often a

handful of relatively large effect loci are discovered, and experi-

mental fine-mapping and validation has led to new findings

about the biology of a range of topics. Other traits have proven to

be extremely polygenic, such that no individual locus emerges as

significant in linkage or association mapping, though methods

tailored to polygenic effects can show that they exist (Noble et al.

2017). The range of genetic complexities in C. elegans mirrors that

found in other experimental systems, including humans. After

all, man is but a worm.
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Frézal L, Demoinet E, Braendle C, Miska E, Félix MA. 2018. Natural ge-

netic variation in a multigenerational phenotype in C. elegans.

Curr Biol. 28:2588–2596.

Gaertner BE, Parmenter MD, Rockman MV, Kruglyak L, Phillips PC.

2012. More than the sum of its parts: a complex epistatic network

underlies natural variation in thermal preference behavior in

Caenorhabditis elegans. Genetics. 192:1533–1542.

Gaertner BE, Phillips PC. 2010. Caenorhabditis elegans as a platform for

molecular quantitative genetics and the systems biology of natu-

ral variation. Genet Res (Camb). 92:331–348.

Gage JL, Monier B, Giri A, Buckler ES. 2020. Ten years of the maize

nested association mapping population: impact, limitations, and

future directions. Plant Cell. 32:2083–2093.

Ghosh R, Andersen EC, Shapiro JA, Gerke JP, Kruglyak L. 2012a.

Natural variation in a chloride channel subunit confers avermec-

tin resistance in C. elegans. Science. 335:574–578.

20 | GENETICS, 2022, Vol. 220, No. 1



Ghosh R, Bloom JS, Mohammadi A, Schumer ME, Andolfatto P, et al.

2015. Genetics of intra-species variation in avoidance behavior

induced by a thermal stimulus in Caenorhabditis elegans. Genetics.

200:1327–1339.

Ghosh R, Mohammadi A, Kruglyak L, Ryu WS. 2012b.

Multiparameter behavioral profiling reveals distinct thermal re-

sponse regimes in Caenorhabditis elegans. BMC Biol. 10:85.

Gimond C, Jovelin R, Han S, Ferrari C, Cutter AD, et al. 2013.

Outbreeding depression with low genetic variation in selfing

Caenorhabditis nematodes. Evolution. 67:3087–3101.

Glater EE, Rockman MV, Bargmann CI. 2014. Multigenic natural vari-

ation underlies Caenorhabditis elegans olfactory preference for

the bacterial pathogen Serratia marcescens. G3 (Bethesda). 4:

265–276.

Glauser DA, Chen WC, Agin R, Macinnis BL, Hellman AB, et al. 2011.

Heat avoidance is regulated by transient receptor potential (TRP)

channels and a neuropeptide signaling pathway in Caenorhabditis

elegans. Genetics. 188:91–103.

Green JWM, Snoek LB, Kammenga JE, Harvey SC. 2013. Genetic map-

ping of variation in Dauer larvae development in growing popula-

tions of Caenorhabditis elegans. Heredity (Edinb). 111:306–313.

Green JWM, Stastna JJ, Orbidans HE, Harvey SC. 2014. Highly poly-

genic variation in environmental perception determines Dauer

larvae formation in growing populations of Caenorhabditis elegans.

PLoS One. 9:e112830.

Greene JS, Brown M, Dobosiewicz M, Ishida IG, Macosko EZ, et al.

2016a. Balancing selection shapes density-dependent foraging

behaviour. Nature. 539:254–258.

Greene JS, Dobosiewicz M, Butcher RA, McGrath PT, Bargmann CI.

2016b. Regulatory changes in two chemoreceptor genes contrib-

ute to a Caenorhabditis elegans QTL for foraging behavior. Elife. 5:

e21454.

Hahnel SR, Zdraljevic S, Rodriguez BC, Zhao Y, McGrath PT, et al.

2018. Extreme allelic heterogeneity at a Caenorhabditis elegans

beta-tubulin locus explains natural resistance to benzimidazoles.

PLoS Pathog. 14:e1007226.

Heestand B, Simon M, Frenk S, Titov D, Ahmed S. 2018.

Transgenerational sterility of piwi mutants represents a dynamic

form of adult reproductive diapause. Cell Rep. 23:156–171.

Hillers KJ, Villeneuve AM. 2003. Chromosome-wide control of mei-

otic crossing over in C. elegans. Curr Biol. 13:1641–1647.

Houri-Zeevi L, Korem Kohanim Y, Antonova O, Rechavi O. 2020.

Three rules explain transgenerational small RNA inheritance in

C. elegans. Cell. 182:1186–1197.e12.

Hua J, Xing Y, Wu W, Xu C, Sun X, et al. 2003. Single-locus heterotic

effects and dominance by dominance interactions can ade-

quately explain the genetic basis of heterosis in an elite rice hy-

brid. Proc Natl Acad Sci USA. 100:2574–2579.

Keurentjes JJB, Bentsink L, Alonso-Blanco C, Hanhart CJ, Blankestijn-

De Vries H, et al. 2007. Development of a near-isogenic line popu-

lation of Arabidopsis thaliana and comparison of mapping power

with a recombinant inbred line population. Genetics. 175:

891–905.

King EG, Merkes CM, McNeil CL, Hoofer SR, Sen S, et al. 2012. Genetic

dissection of a model complex trait using the Drosophila synthetic

population resource. Genome Res. 22:1558–1566.

Kiontke KC, Félix M-A, Ailion M, Rockman MV, Braendle C, et al. 2011.

A phylogeny and molecular barcodes for Caenorhabditis, with nu-

merous new species from rotting fruits. BMC Evol Biol. 11:339.

Koneru SL, Hintze M, Katsanos D, Barkoulas M. 2021. Cryptic genetic

variation in a heat shock protein modifies the outcome of a muta-

tion affecting epidermal stem cell development in C. elegans. Nat

Commun. 12:3263.

Koumproglou R, Wilkes TM, Townson P, Wang XY, Beynon J, et al.

2002. STAIRS: a new genetic resource for functional genomic

studies of Arabidopsis. Plant J. 31:355–364.

Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, et al. 2009.

A multiparent advanced generation inter-cross to fine-map

quantitative traits in Arabidopsis thaliana. PLoS Genet. 5:e1000551.

Lander ES, Botstein D. 1989. Mapping mendelian factors underlying

quantitative traits using RFLP linkage maps. Genetics. 121:

185–199.

Large EE, Xu W, Zhao Y, Brady SC, Long L, et al. 2016. Selection on a

subunit of the NURF chromatin remodeler modifies life history

traits in a domesticated strain of Caenorhabditis elegans. PLoS

Genet. 12:e1006219.
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