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Abstract: Carnosic acid (CA) is a natural phenolic compound with several biomedical actions.
This work was performed to study the use of CA-loaded polymeric nanoparticles to improve the
antitumor activity of breast cancer cells (MCF-7) and colon cancer cells (Caco-2). CA was encapsulated
in bovine serum albumin (BSA), chitosan (CH), and cellulose (CL) nanoparticles. The CA-loaded
BSA nanoparticles (CA-BSA-NPs) revealed the most promising formula as it showed good loading
capacity and the best release rate profile as the drug reached 80% after 10 h. The physicochemical
characterization of the CA-BSA-NPs and empty carrier (BSA-NPs) was performed by the particle size
distribution analysis, transmission electron microscopy (TEM), and zeta potential. The antitumor
activity of the CA-BSA-NPs was evaluated by measuring cell viability, apoptosis rate, and gene
expression of GCLC, COX-2, and BCL-2 in MCF-7 and Caco-2. The cytotoxicity assay (MTT) showed
elevated antitumor activity of CA-BSA-NPs against MCF-7 and Caco-2 compared to free CA and
BSA-NPs. Moreover, apoptosis test data showed an arrest of the Caco-2 cells at G2/M (10.84%) and
the MCF-7 cells at G2/M (4.73%) in the CA-BSA-NPs treatment. RT-PCR-based gene expression
analysis showed an upregulation of the GCLC gene and downregulation of the BCL-2 and COX-2
genes in cells treated with CA-BSA-NPs compared to untreated cells. In conclusion, CA-BSA-NPs
has been introduced as a promising formula for treating breast and colorectal cancer.

Keywords: carnosic acid (CA); bovine serum albumin nanoparticles; BCL-2; COX-2; GCLC

1. Introduction

Breast and colon cancer is a primary cause of malignant tumors and one of the most
important causes of disability and death globally [1]. The disease is a typical emergency
that requires continuous work for new treatment methods [2].

Natural products have recently attracted more interest due to their potential pharma-
cological properties and lower toxicity for synthesizing effective drugs [3]. Carnosic acid
(Figure 1) (MW~330 Da) is a phenolic diterpene derived from Rosmarinus officinalis [4]. It has
broad pharmacological properties involving antitumor, antiviral, and anti-inflammatory
activities [5,6]. However, low water solubility and poor bioavailability of CA limit its
in vivo anticancer effects [7].
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developed for various drug-delivery applications due to their biocompatibility, simplic-
ity, and low cost of fabrication [11,12]. Currently, nanomedicine plays a central role in 
biomedical applications, such as diagnostic and therapeutic applications [12]. 
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bumin (HSA). It is a water soluble protein that maintains the osmotic pressure, binding, 
and transport of nutrients to the cells [13]. It can be used as an eco-friendly biomaterial in 
drug delivery because of its biocompatibility and easy degradation without toxicity. Bo-
vine serum albumin (BSA) micelles have been developed to improve the bioavailability 
of these drugs and reduce their toxicity [14]. Histological observations demonstrated that 
bovine albumin has no adverse effects following frequent administration by the intranasal 
route [15]. Additionally, the application of BSA as a drug delivery agent was shown in an 
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Figure 1. The chemical structure of carnosic acid.

Nanoparticle-based drug delivery systems can enhance the bioavailability and anti-
tumor activity of chemotherapeutic drugs [8]. Also, these formulations may change the
biodistribution of the drugs, reduce drug resistance, diminish nonspecific toxicity and
protect the drugs from enzymatic degradation [9,10]. Polymeric nanoparticles have been
developed for various drug-delivery applications due to their biocompatibility, simplic-
ity, and low cost of fabrication [11,12]. Currently, nanomedicine plays a central role in
biomedical applications, such as diagnostic and therapeutic applications [12].

Albumin is an attractive macromolecule carrier that can be obtained from a various
sources, including egg white (ovalbumin), bovine serum albumin, and human serum
albumin (HSA). It is a water soluble protein that maintains the osmotic pressure, binding,
and transport of nutrients to the cells [13]. It can be used as an eco-friendly biomaterial
in drug delivery because of its biocompatibility and easy degradation without toxicity.
Bovine serum albumin (BSA) micelles have been developed to improve the bioavailability
of these drugs and reduce their toxicity [14]. Histological observations demonstrated that
bovine albumin has no adverse effects following frequent administration by the intranasal
route [15]. Additionally, the application of BSA as a drug delivery agent was shown in
an MCF-7 xenograft mouse model where the in vivo antitumor evaluation of FA-Rg5-BSA
NPs were shown to be more effective in inhibiting tumor growth than Rg5 [16,17].

The activity of γ-glutamylcysteine synthetase is associated with elevated GSH levels in
various cancer types [18]. Glutamate cystyl ligase catalyzed subunit (GCLC) is an essential
enzyme involved in GSH biosynthesis and has been mentioned to be abnormally expressed
in tumor tissue [19]. In colorectal cancer, GCLC has been shown to overexpress liver
metastases and encourage cancer cell survival. Also, many reports have shown that GCLC
activation is related to antitumor drug resistance in breast cancer [20,21].

Cyclooxygenase-2 (COX-2) is an inducible enzyme that catalyzes the synthesis of
prostanoids, including prostaglandin, which is considered a significant mediator of inflam-
mation and angiogenesis [22]. Moreover, COX-2 is overexpressed in cancer cells which
causes progressive tumor growth and resistance of those cells to conventional therapy [23].
The Bcl-2 protein, encoded by the Bcl-2 gene, plays an anti-apoptotic role and inhibits the
programmed [24]. The impact of CA on the expression of GCLC, COX-2, and BCL-2 may
clear the mechanism of its antitumor activity. This work intended to study the anticancer
molecular mechanisms of CA loaded in polymeric nanoparticles in breast cancer (MCF-7)
and colon cancer (Caco-2) cell lines.

For this purpose, carnosic acid was encapsulated in different polymeric nanoparticles,
namely chitosan (CH), bovine serum albumin (BSA), and cellulose (CL). The prepared
nanoformulations were characterized to select the best formula. The selected formula was
utilized as a treatment for MCF-7 and Caco-2. The antitumor activity was followed via
MTT assay and cell cycle analysis. Moreover, GCLC, BCL-2, and COX-2 gene expressions
were also evaluated before and after treatment.



Molecules 2022, 27, 4102 3 of 13

2. Materials and Methods
2.1. Materials

Breast cancer cells (MCF-7) and colorectal cancer (Caco-2) were purchased from VAC-
SERA, Giza, Egypt. Carnosic acid standard (purity 99%), chitosan (Deacetylation degree
95%, molecular weight 80 kDa), and BSA were purchased from Sigma Aldrich. Ethyl
acetate and hexane were purchased from Fisher Scientific. Sodium tripolyphosphate (TPP)
and glutaraldehyde were purchased from Merck. All the other chemicals and reagents
were analytical grade.

2.2. Preparation of Nanoparticles
2.2.1. Synthesis of CA-Loaded Albumin Nanoparticles

The preparation of carnosic acid-loaded albumin nanoparticles was carried out ac-
cording to the previous report [25]. Typically, 100 mg of BSA was dissolved in 10 mL of
deionized water containing 10 mg of carnosic acid. The dissolved albumin was precipitated
as NPs by adding 40 mL of ethanol. Then, 16 mM 8% glutaraldehyde was added for
crosslinking of precipitated protein. The obtained CA-BSA-NPs were collected by centrifu-
gation at 12,000 rpm for 20 min. The empty carrier was obtained by the same method
without adding carnosic acid.

2.2.2. Synthesis of CA-Loaded Chitosan Nanoparticles

Chitosan nanoparticles loaded with carnosic acid (CA-CH-NPs) were prepared by the
ionic gelation method [26]. Initially, 100 mg of chitosan was dissolved in 2% aqueous acetic
acid (20 mL), and then 10 mg of carnosic acid was added. The 0.1% (w/v) polyanionic
solution was prepared by dissolving TPP in deionized water. The nanoparticles are formed
by mixing the two solutions by dropping the TPP into the chitosan solution with continuous
stirring. Then, the nanoparticles were centrifuged at 10,000 rpm for 15 min, washed with
distilled water, and lyophilized. Similarly, empty chitosan nanoparticles were prepared
like the previous method without adding carnosic acid.

2.2.3. Preparation of CA-Loaded Cellulose Nanoparticles

The cellulose extraction from Chlorella vulgaris algae was described by Hamouda et al.
2021 [27]. In brief, Five grams of dried Chlorella vulgaris algae powder were extracted with
68 mL of toluene and 32 mL of ethanol. The residue was collected by filtration, suspended
in 100 mL of 4% aqueous NaOH, and heated for two hours at 80 ◦C. After washing with
distilled water, the pellets were heated for two hours at 70 ◦C in 100 mL of 10% sodium
hypochlorite pH 4.8. Finally, the residue was heated in sulfuric acid (65% wt/v) at 45 ◦C
for 45 min. Pure cellulose was obtained after dialysis using distilled water until the pH
became 7.

Preparation of cellulose nanoparticles loaded with carnosic acid (CA-CL-NPs) was
performed according to the previously described method [28]. Eight milligrams of CA
dissolved in 50 mL of acetone was gradually added to CL (40 mg) water suspension. The
mixture was allowed to be stirred overnight. CA-CL-NPs were collected by centrifugation
at 10,000 rpm for 10 min, freeze-dried, and stored at 4 ◦C.

2.2.4. Evaluation of Drug Loaded Efficiency

Carnosic acid encapsulation efficiency (EE%) and loading capacity (LC%) were calcu-
lated according to Equations (1) and (2) [29]. Briefly, the formed nanoparticles (CA-CH-NPs,
CA-BSA-NPs, and CA-CL-NPs) were separated from the aqueous medium containing the
free drug by centrifugation at 9000 rpm for 30 min. The amount of remaining CA was esti-
mated by measuring the absorbance at 298 nm using a UV spectrophotometer (Jenway 6305,
Staffordshire, UK).

EE(%) =
Initial amount o f CA− Remaning amount o f CA

Initial amount o f CA
× 100 (1)
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Loading Capacity (%) =
Initial amount o f CA− Remaning amount o f CA

weight o f dried NPs
× 100 (2)

2.2.5. In Vitro Drug Release Study

Three release media were prepared as follows: KCl/HCl buffer at pH 1.5 containing
30% ethanol (medium 1), phosphate buffer at pH 7.2 containing 30% ethanol (medium 2),
phosphate buffer at pH 7.9 containing 30% ethanol (medium 3). The release profile of loaded
CA was studied for all formulations (CA-CH-NPs, CA-BSA-NPs, and CA-CL-NPs) in the
release media. Typically, 200 mg of each formulation was suspended in 2 mL of distilled
water and placed in a dialysis bag (Cutoff 70-100KD), and the bag was immersed in 15 mL
of release medium 1 (pH 1.5) and maintained under 37 ◦C and 100 rpm. After two hours,
the dialysis bag was transferred to medium 2 (pH 7.2) for 6 h and finally to medium 3
(pH 7.9) for 2 h. At certain time intervals (t), 1 mL of releasing medium was substituted
with 1 mL of fresh medium. The extracted drug was measured spectrophotometrically
at λ = 298 nm [30]. The results were plotted as cumulative released percent versus time
according to the following equation.

Cumulative release percentage =
t

∑
t=0

CA(t)
CA(i)

× 100

where CA(i) and CA(t) are the initial concentration of CA and at a specific time, respectively.
The best formula (highest EE%, LC%, and in vitro release rate) was selected and used

for further investigations.

2.2.6. Nanoparticle Characterization

The morphology of BSA-NPs and CA-BSA-NPs was investigated by transmission
electron microscopy (TEM) (JEOL, JAM-2100-HR-EM). The hydrodynamic size and zeta
potential were measured by dynamic light scattering (Nicomp Nano Z3000 Zeta Poten-
tial Analyzer).

2.2.7. Cell Lines

The Dulbecco’s Modified Eagle’s Medium (DMEM), and RPMI 1640 medium contain-
ing 10% fetal calf serum, 100 U/mL of penicillin, and 100 µg/mL of streptomycin were used
to culture the MCF-7 and Caco-2 cells. The cells were maintained at 37 ◦C in a humidified
incubator containing CO2 5% (v/v). At 85% confluence, the cells were dissociated using
trypsin (0.25% w/v) and then sub-cultured into 75 cm2 flasks and six-or 96-well plates
(TPP-Swiss) depending on the experiments [31].

2.2.8. Cell Viability Test

The MTT assay was used to determine the viability of MCF-7 and Caco-2 cells [32].
Briefly, in 96-well plates, 1 × 105 cells/well were seeded and exposed to CA, BSA-NPs, and
CA-BSA-NPs at different concentrations (100 µg/mL, 50 µg/mL, 25 µg/mL, 12.5 µg/mL,
and 6.25 µg/mL).After exposure, for 24 h, the culture medium was decanted, and the
plates were washed using phosphate-buffered saline (PBS) pH 7.2 ± 0.2. After adding the
MTT solution (0.5 mg/mL of PBS) to the treated/untreated cells, the plates were incubated
for 4 h at 37 ◦C. One hundred microliters of DMSO was added for 10 µL of MTT. The
absorbance was measured at a wavelength of 570 nm using an ELISA reader apparatus
(ELX-800n, Biotek, Winooski, VT, USA). The cell viability for treated cells was represented
as a percentage to control cells. The IC50 values of CA, BSA-NPs, and CA-BSA-NPs at 24 h
was calculated using the Microcal Origin 6.0 Professional analysis software and used for all
subsequent assays.

2.2.9. Cell Cycle Arrest

A specific culturing media containing CA-BSA-NPs, 2.60 µg/mL for Caco-2 cells and
6.02 µg/mL for MCF-7 cells was prepared. The cells (3 × 105 cells/well) were seeded
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and cultured for 24 h. The cells were fixed overnight at −4 ◦C in ethanol 75% and then
incubated in the dark with PI staining solution (50 ng/mL) and RNase A (0.1 mg/mL) for
15 min. Flow cytometry (BD FACSCalibur-USA) was used to determine the DNA content
of the cells [31,33].

2.2.10. Cell Apoptosis Assay

The Annexin V-FITC/PI apoptosis staining was performed by the Annexin V-FITC
apoptosis staining kit (Annexin V-FITC-BD Bioscience PharmingenTM, San Diego, CA,
USA) [32]. In brief, the Caco-2 and MCF-7 cells were cultured and treated as mentioned
above (Section 2.2.9). The cells were collected and incubated in a mixture of 100 µL of 1X
Binding Buffer002Cx and 100 µL of Annexin V. Annexin V-FITC (5 µL) and propidium
iodide (5 µL) were incubated at room temperature for 15 min in the dark, then added to
400 µL of 1X binding buffer and processed by flow cytometry within one hour for maximal
signal. The cells were examined by flow cytometry (BD FACSCalibur-USA).

2.2.11. Gene Expression by Real-Time PCR

As mentioned in Section 2.2.9, the Caco-2 and MCF-7 cells were incubated with the
proper concentration of CA-BSA-NPs. Primer designs were performed by the Primer-
BLAST tool, NCBI (Table 1). Total RNAs were extracted from untreated and treated cells
using the RNeasy mini-Kit (Qiagen, Valencia, CA, USA CAT. No. (EN0525)) according to
the manufacturer’s instructions.

The quantitative assessment of COX-2, GCLC, and BCL-2 gene expression, was carried
out using StepOne Plus thermal cycler (Applied Biosystems, Warrington, UK) according to
the following procedure. Firstly, the cDNA synthesis was performed using a High-Capacity
cDNA Reverse Transcriptase kit (Applied Biosystems, Waltham, MA, USA). After that,
the cDNA was amplified with the Syber Green I PCR Master Kit (Fermentas) using the
Step One instrument (Applied Biosystems, USA CAT. NO. (4368814)) as follows: 10 min
at 95 ◦C for enzyme activation, followed by amplification step: 40 cycles of 15 s at 95 ◦C,
20 s at 55 ◦C, and 30 s at 72 ◦C. The target gene’s expression changes were normalized
relative to the mean critical threshold (CT) values of β-actin as a housekeeping gene by the
∆Ct method.

Table 1. The primer sequence of target genes and housekeeping gene.

Primer’s Name Sequences of Primers

COX-2 forward
COX-2 reverse

5′-GAATGGGGTGATGAGCAGTT-3′

5′-CAGAAGGGCAGGATACAGC-3′

BCL-2 forward
BCL-2 reverse

5′-CCTGTGGATGACTGAGTACC-3′

5′-GAGACAGCCAGGAGAAATCA-3′

GCLC forward
GCLC reverse

5′-GGCACAAGGACGTTCTCAAGT-3′

5′-CAAAGGGTAGGATGGTTTGGG-3′

β-actin forward
β-actin reverse

5′-GTGACATCCACACCCAGAGG-3′

5′-ACAGGATGTCAAAACTGCCC-3′

3. Results
3.1. Encapsulation Efficiency and Loading Capacity

According to equation 1, the encapsulation efficiencies of CA-CL-NPs, CA-BSA-NPs,
and CA-CH-NPs were 22.40%, 40.80%, and 42.43%, respectively, while the loading capaci-
ties were 4.16%, 8.02%, and 8.34%, respectively.

3.2. In-Vitro Drug Release Study

In the current study, we assessed the release profile of carnosic acid from albumin,
chitosan, and cellulose nanoparticles at three release media with pH values of 1.5, 7.2, and
7.9, respectively. The release of CA from CA-CH-NPs starts after 30 min with approximately
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10.3% to 11.5% at 1.5 pH and 16.1 to 18.7% at 7.2 and 7.9. Release of CA from CA-CL-NPs
was approximately 16–30% at 1.5 pH, 37–59% at 7.2 pH, and 60% at 7.9 pH. Finally, the
release of CA from CA-BSA-NPs was the greatest; it was approximately 39% at 1.5 pH, 75%
at 7.2 pH, and 80% at 7.9 pH (Figure 2).
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Figure 2. In vitro drug release study of carnosic acid from albumin, chitosan, and cellulose NPs at
three pH values. Medium 1 (pH 1.5) for two hours, then medium 2 (pH 7.2) for 6 h, and finally
medium 3 (pH 7.9) for 2 h.

3.3. Characterization of Carnosic Acid Load on BSA-NPs

The TEM images showed spherical shape particles of BSA-NPs and CA-BSA-NPs with
a size range from 39.35–59.78 nm and 97.29–144.26 nm, respectively (Figure 3A,B). Moreover,
BSA-NPs revealed hydrodynamic sizes ranging from 208 to 604 nm, with a prominent
peak at 291 nm, polydispersity index (PDI) of 0.29, and zeta potential of −29.20 mV
(Figure 4A,B). CA-BSA-NPs had a hydrodynamic size range of 330 to 662 nm after CA
loading, with a primary peak at 520 nm, polydispersity index (PDI) of 0.119, and zeta
potential of −21.03 mV (Figure 5A,B).
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3.4. Cell Viability

The IC50 values of free CA against Caco-2 and MCF-7 cells were 8.29 µg/mL and
27.43 mg/mL, respectively. Interestingly, the CA-BSA-NPs significantly reduced the IC50
values to 2.60 and 6.02 µg/mL for Caco-2 and MCF-7, respectively. Furthermore, after
treatment with the same concentration, the MTT assay showed a significant decrease in the
cell viability after treatment with CA-BSA-NPs, while the BSA-NPs and free CA showed
nonsignificant cytotoxicity (Figure 6A,B).
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3.5. DNA Content Analysis

The flow cytometry was used to evaluate the effect of CA-BSA-NPs on the distribution
of cell cycle phases. Results showed that CA-BSA-NPs cell growth arrest was at G2/M with
32.75% for Caco-2 cancer cells compared to control, 11.87%, as shown in Figure 7A,B. Also,
CA-BSA-NPs cell growth arrest was at G2/M with MCF7 cancer cells compared to control,
13.49% for MCF7 cancer cells, as shown in Figure 8A,B.

3.6. Cell Apoptosis Assay

Annexin V-FITC/PI staining was used to identify apoptosis in the treated and un-
treated cancer cell lines. Data in Figure 9A showed that total apoptosis (undergone early
and late apoptosis) in untreated cells was 0.64%, while CA-BSA-NPs-treated Caco-2 cancer
cells yielded 17.74% (Figure 9B). On the other hand, CA-BSA-NPs had a lower effect on
MCF-7 cells. As Figure 10B displayed, the percentages of apoptotic cells (including early
and late apoptotic cells) in MCF-7-treated cells were increased to 10.45% compared with
control (1.05%) in Figure 10A. As a result, the data displayed that CA-BSA-NPs induce
apoptosis on both MCF-7 and Caco-2 cell lines.
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3.7. Gene Expression

The current study evaluated the expression of BCL-2, COX-2, and GCLC genes in
Caco-2 and MCF-7 cells (Figure 11A–C). Results revealed that in MCF-7, the treatment of
CA-BSA-NPs (6.02 µg/mL) has significantly downregulated BCL-2 and COX-2 (FC = 0.469 and
0.29, respectively), while the expression level of GCLC was significantly increased (FC = 3.7)
(Figure 11A,C).

In Caco-2, the GCLC gene was also significantly upregulated (FC = 2.03), while
the expression of BCL-2 and COX-2 were significantly decreased in CA-BSA-NPs-treated
cells (FC = 0.73 and 0.37, respectively) (Figure 11B,C) compared to control cells (p < 0.05
for each).
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4. Discussion

The growth of and migration cancer cells of have been reported to be inhibited by
carnosic acid [34]. Indeed, CA induces the ROS-mediated mitochondrial pathway to cause
apoptosis in liver cancer cells [7]. However, the therapeutic efficacy of CA is limited due to
low solubility and diminished bioavailability [35]. This work intended to develop a CA-
nanoformula to improve its bioavailability and therapeutic activity. Also, the current study
deals with the impact of CA on apoptosis via following the expression of one oncogene
(GCLC) and two anti-apoptotic genes (BCL-2 and COX-2). In nanodrug delivery, the high
EE%, LC%, and sustained in-vitro releasing are related to the increased medical value of
the nano-formulated bioactive substances [36].

In this study, CA-CH-NPs and CA-BSA-NPs showed a comparable value of EE% and
LC%. However, CA-BSA-NPs showed better release profiles over 10 h, which resulted in
the release of 75% of encapsulated CA compared with 61% for CA-CH-NPs and 15.6% for
CA-CL-NPs. So, the CA-BSA-NPs was chosen as the most promising formula and used in
the following experiments.

The physicochemical properties of a nanocarrier, such as particle size, shape, and
surface charge, play a crucial role in antitumor activity [37]. Indeed, the small particle size
enhances nanoparticle penetration ability and retention in tumor tissue. Also, zeta potential
is a valuable parameter for nanoparticles’ physical stability [38]. In the current study, TEM
imaging indicates the spherical uniform size of both BSA-NPs and CA-BSA-NPs. The
small PDI value confirmed the uniform size and successful preparation of BSA-NPs and
CA-BSA-NPs. Moreover, the high negative value of zeta potential indicates the stability of
the prepared nanomaterials.

The cell-based analysis showed a significant effect of CA-BSA-NPs on Caco-2 and
MCF-7 cells. The IC50 of CA was significantly decreased by encapsulation in BSA-NPs.
Interestingly, using the same concentration, both CA and empty carrier showed nonsignifi-
cant activity. Moreover, the considerable reduction in the cell viability after treatment with
CA-BSA-NPs indicates that the encapsulation of CA in nanocarrier enhanced its cellular
uptake and bioavailability. Similar results have been reported in the literature [39,40].

The molecular mechanisms triggering the cytotoxicity and apoptotic action of CA-
BSA-NPs were investigated using cell cycle arrest analyses. The data showed the capability
of CA-BSA-NPs to stimulate G2-phase cell cycle arrest on the treated cells [41,42].

Apoptosis is a characteristic mark of cell cytotoxicity [43]. In the current work, CA-
BSA-NPs have been demonstrated to inhibit proliferation and promote apoptosis induction
in the tested cells. Furthermore, the results revealed that CA-BSA-NPs treatment has a
more noticeable effect on the Caco-2 than MCF-7 cells in the G2/M stage. This is in line
with prior research, which found that CA inhibits DNA synthesis in Caco-2 cells and causes
a brief cell cycle arrest in the G2/M phase. Treatment with CA-BSA-NPs appears to cause
cell necroptosis in MCF-7 cells in a p21-dependent manner [31].

The induction of apoptosis via alterations of regulatory genes has become a focus
of extensive research [44]. The downregulation of COX-2 and BCL-2 gene expression, in
addition to the upregulation of GCLC gene expression, are main triggering factors for the
cells to go through apoptosis [45]. In agreement with this fact, Caco-2 and MCF-7 cells
treated with CA-BSA-NPs showed upregulated expression of the GCLC gene and down-
regulated expression of BCL-2 and COX-2 genes in Caco-2 and MCF-7 cells in comparison
to control cells.

5. Conclusions

A novel composite (CA-BSA-NPs) was developed and evaluated for its antitumor
activity against MCF-7 and Caco-2. The obtained results revealed the significance of using
CA in nanoformulation, as indicated by comparing cell viability after exposure to free CA
and CA-BSA-NPs.

Furthermore, cell cycle analysis showed the CA-BSA-NPs’ efficacy in triggering apop-
tosis and arresting cells in the G2/M phase, demonstrating the antiproliferative action of our
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formulation. Also, CA-BSA-NPs induced apoptosis in MCF-7 and Caco-2. RT-PCR-based
gene expression analysis showed an upregulation of the GCLC gene and downregulation
of the BCL-2 and COX-2 genes in the treated cells compared to control cells. In conclusion,
this study concludes that CA-BSA-NPs represent an efficient composite to improve the
biomedical activity of CA in treating colon and breast cancers.
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