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Simple Summary: Many wild felines are on the verge of extinction, and the monitoring of wildlife
diversity is particularly important. Using surveillance videos of wild felines to monitor their behav-
iors has an auxiliary effect on the protection of wild felines. Through the actions of wild felines, such
as standing, galloping, ambling, etc., their behaviors can be inferred and judged. Therefore, research
on the action recognition of wild felines is of great significance to wildlife protection. The currently
available methods are all aimed at experimental animals and design-specific feature descriptors for
specific animals (such as color, texture, shape, edge, etc.), thus lacking flexibility and versatility. The
proposed state-of-the-art algorithm using spatial-temporal networks combines skeleton features with
outline features to automatically recognize the actions of wild felines. This model will be suitable for
researchers of wild felines.

Abstract: Behavior analysis of wild felines has significance for the protection of a grassland ecological
environment. Compared with human action recognition, fewer researchers have focused on feline
behavior analysis. This paper proposes a novel two-stream architecture that incorporates spatial and
temporal networks for wild feline action recognition. The spatial portion outlines the object region
extracted by Mask region-based convolutional neural network (R-CNN) and builds a Tiny Visual
Geometry Group (VGG) network for static action recognition. Compared with VGG16, the Tiny VGG
network can reduce the number of network parameters and avoid overfitting. The temporal part
presents a novel skeleton-based action recognition model based on the bending angle fluctuation
amplitude of the knee joints in a video clip. Due to its temporal features, the model can effectively
distinguish between different upright actions, such as standing, ambling, and galloping, particularly
when the felines are occluded by objects such as plants, fallen trees, and so on. The experimental
results showed that the proposed two-stream network model can effectively outline the wild feline
targets in captured images and can significantly improve the performance of wild feline action
recognition due to its spatial and temporal features.

Keywords: wild feline action recognition; spatial temporal features; two-stream network; deep learn-
ing

1. Introduction

In the past few decades, human activities have caused serious damage to the natural
ecological environment, which directly leads to the extinction of a large number of species,
including felines. In response, the subject of animal welfare has attracted increasing atten-
tion from researchers. Especially, behavioral analysis of wild felines is of great significance
to promote animal welfare and helps to enhance the researcher’s understanding of feline
habits [1]. The feline population can be more sensitive to public changes, and effective
measures can be taken to prevent extinction. The most well-known of the felines are big
cats such as lions, tigers, and leopards [2]. Research on their behaviors would promote the
development of wild feline welfare [3].
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Traditionally, manual annotation of feline activity records is very time-consuming and
vulnerable to observers’ prejudice and mental fatigue [4]. Moreover, most of their research
objects are confined to a small captive environment [5], which is unable to provide an ideal
environment for natural behavior, such as hunting (“hide, track, and chase”) [6,7]. With
the development of the Internet of Things technology, the animal information collected
by sensors is also used to detect animal behaviors [8–10]. However, it may damage the
animal’s natural environment and can cause abnormal behaviors to a certain extent [11].

With the rise in computer vision and pattern recognition technology, impressive
progress has been made in image classification [12] and object detection [13], motivat-
ing researchers to apply artificial intelligence for action recognition of animals, such as
mice [14–17], domestic animals (cows and pigs) [18–21], Tibetan antelope [22], and ants [23].
However, some of these methods limit the research subjects to small animals in the lab-
oratory [14–17] while other methods usually make simple judgments about abnormal
behaviors of animals [18–22]. Research on wild felines is extremely scarce. Only the work
of [24] focuses on tiger behavior. In [24], handicraft characteristics of tigers are extracted
and a support vector machine (SVM) is used to classify tiger behaviors.

In order to make up for the absence in feline action recognition, inspired by Pereira
et al. [25], who used deep learning to detect Drosophila body parts to analyze its gait
patterns, we constructed a two-stream network that incorporates spatial and temporal
information for recognizing the action of wild felines, including tigers, lions, and leopards.
The spatial element utilizes Mask region-based convolutional neural network (R-CNN)
to build an outline detection model and builds a lightweight VGG (Visual Geometry
Group) network model by reducing the convolutional layers of VGG16 [26] for action
recognition. The temporal part detects the bending angles of the knee joints based on the
neural network–based model for animals, called LEAP (Leap Estimate Animal Pose) and
recognizes the moving action using LSTM (Long Short-Term Memory) networks.

Our contributions: the contributions of this paper are threefold.

1. We propose a novel two-stream architecture that incorporates spatial and temporal
networks for wild feline action recognition. The two-stream network architecture
combines the advantages of both the outline features for static action detection and
the moving features of the leg skeleton for moving action detection.

2. We build a Tiny VGG network for classifying the outline features extracted by Mask
R-CNN. This method can improve the robustness against complex environments due
to Mask R-CNN. The Tiny VGG network can also reduce the number of network
parameters and avoid overfitting.

3. We present a skeleton-based action recognition model for wild felines. The bending
angle fluctuation amplitude of knee joints in a video clip is used as the temporal
feature to represent three different upright actions. This model can improve the
performance of moving action recognition based on the temporal features, particularly
when the animals are occluded by many objects, such as growing plants, fallen trees,
and so on.

Organization: the rest of the paper is organized in the following way. Section 2
describes recent studies related to our work. Section 3 presents a two-stream network,
including an outline-based spatial stream and a skeleton-based temporal stream, for wild
feline posture recognition. The experimental results are discussed in Section 4, while the
conclusions are drawn in Section 5.

2. Related Work

Deep learning algorithms have been widely applied to image classification and hu-
man behavior recognition due to their excellent performance and abilities that are suitable
for large-scale learning [27–30]. Some researchers have built deep convolutional neural
network models for species identification [31–36]. Gómez et al. [31] constructed a deep
convolutional neural network (DNN) for classifying wild animal images. However, these
methods require substantial human effort. To fill the gap between field image data acquisi-
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tion and data analysis, the automatic image analysis system, ClassifyMe, was designed to
automatically identify animal species [32]. In [31], the experimental images were manually
cropped, and then, those cropped patches containing the animals were selected. Chen
et al. [33] tried to automatically crop animals from images and to classify wild animal
species based on a deep convolutional neural network but only reached an accuracy of
38%, thus leaving much room for improvement. To improve the classifying performance
for wild animal species, Norouzzadeh et al. [34] trained nine different DNN models and
formed an ensemble of the trained models by averaging their predictions. Although the
accuracy was increased to more than 95% in the Snapshot Serengeti dataset, training nine
DNN models is clearly computationally expensive.

Besides classifying wild animal species, a few researchers have focused on harnessing
machine learning algorithms to identify the behaviors of wild animals. In [21], two binary-
classifier support vector machines were performed in a hierarchical manner, but they
could only make simple judgments, such as whether the pigs have aggressive behaviors.
Luo et al. [22] analyzed the behavior of Tibetan antelope (panthoops hodgsonii) in the
Tibetan Plateau and was the first to call the behavior standing for a certain time as “puppet
resting behavior”, which is an adaptive form of rest. Norouzzadeh et al. [34] attempted
to identify the species, to count the animals, to describe the animal behaviors, and to
determine the presence of young. Zhang et al. [35] used Omni-supervised joint pose
estimation and detection for kangaroos in a dataset that was collected in several national
parks across Queensland State during 2013 in Australia. The ZooMonitor application (app)
was designed by Lincoln Park Zoo to monitor the behavior, habitat use, and appearance of
animals in a low-cost, flexible manner [36]. Considering the difficulty in acquiring animal
behavior images, Zuffi et al. [37] tried to build a statistical shape model of the 3D poses
and shapes of animals and then fitted this model to 2D image data. The experimental
dataset was developed from 3D scans of toy figurines in arbitrary poses. Bod’ová et al. [22]
proposed a probabilistic model of animal behavior that combined deterministic dynamics
and stochastic switching between these states. In [23], two interacting ants were chosen
as an example to capture a wide variety of complex individual and collective behaviors.
However, the performance of these two models needs to be further validated for behavior
analysis and pose detection of wild animals living in uncontrolled natural environments.
Zhang et al. [35] mainly focused on multi-class wildlife detection in an Omni-supervised
learning setting. In [35], the pose estimation for kangaroos was also briefly introduced, but
the types of poses only included scenes where the body parts faced the camera. In a strict
sense, poses do not belong to the behaviors of wild animals and are barely related to actual
behaviors, such as standing, galloping, ambling, etc.

The most closely related work is [23]. To our best knowledge, this is the only attempt to
identify the actions of wild animals using real camera-trap images. In [36], some common
actions, such as standing and resting, were identified by an ensemble model that averaged
the prediction results of nine different trained DNN models. Obviously, this model not only
requires costly hardware configurations but also is computationally expensive due to the
need to train nine different DNN models. Furthermore, this model also cannot recognize
moving actions such as ambling and galloping.

3. Methods and Materials

Unlike most object detection tasks, wild feline detection has markedly more difficult
challenges due to illumination changes and a complex background [38]. Figure 1 provides
some examples of such challenging images. The felines can be occluded by many objects
such as growing plants, fallen trees, etc. (see Figure 1a). In autumn, the color of feline hair
is similar to that of withered grass or leaves, so the animals can be camouflaged by the
surroundings (see Figure 1b). It is, therefore, challenging to detect the existence of felines
in a dark environment at night, as Figure 1c shows.
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Figure 1. Examples of challenging images: (a) an image occluded by other objects, (b) an image
camouflaged by the surroundings, and (c) an image taken at night.

3.1. Pipeline Overview

The pipeline of our framework is depicted in Figure 2. The framework is a two-
stream architecture that incorporates spatial and temporal networks for wild feline action
recognition. In the spatial part, the wild felines are outlined on the basis of the masks
generated by Mask R-CNN (this method is called Outline Mask R-CNN). Then, the outlines
are imported into a lightweight VGG network (named Tiny VGG) to learn the outline
features. In the temporal part, the skeleton features in an animal video clip are extracted by
tracking the animal body parts based on LEAP (Leap Estimate Animal Pose). After that,
the LSTMs are used to learn the temporal features in the skeleton sequences. Finally, the
weighted average operation is used as a fusion strategy to combine the predictions from
both streams.

Figure 2. Workflow of the wild feline action recognition.

3.2. Construction of the Outline Model
3.2.1. Outline Mask RCNN

Mask R-CNN [39] predicts segmentation masks on each Region of Interest (RoI), in
parallel with the branch for classification and bounding box regression. A small FCN (Fully
Convolutional Network) [40,41] is applied to each RoI to predict the segmented mask in a
pixel-to-pixel manner. With its excellent performance, Mask R-CNN is popular in object
detection, instance segmentation, and key-point detection tasks [42–44]. In this paper, we
build a feline object detection model based on Mask R-CNN and then extract the object
outline information.

Here, we use transfer learning to reduce the need for a large number of data and to
improve the generalization ability of the model. The training data for transfer learning
come from four-legged mammal images that contain the whole animal body in the Snapshot
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Serengeti dataset [45] and the COCO database [46]. Before transfer learning, the object
outlines of the training images must be marked to realize feline segmentation.

In general, we can obtain richer feline characteristics using a deeper network structure.
However, the network can degenerate with the deepening of the network due to gradient
dispersion. The deep residual network ResNet [47] adds identity mapping for skip con-
nection, which can avoid the gradient dispersion of a deep network structure. Therefore,
we use ResNet here to construct an Outline Mask Region-based Convolutional Neural
Network (Outline Mask R-CNN) for wild feline images.

During training, we defined the multitask loss on each sampling RoI using Equation
(1):

loss = mrcnn_bbox_loss + mrcnn_class_loss + mrcnn_mask_loss+
rpn_bbox_loss + rpn_class_loss

(1)

where the functions mrcnn_bbox_loss, mrcnn_class_loss, mrcnn_mask_loss, rpn_bbox_loss,
and rpn_class_loss represent mask edge regression loss, mask classification loss, mask
average binary cross-entropy loss, regional recommendation regression loss, and regional
recommendation classification loss, respectively. These loss functions are identical to those
defined in [39].

In the proposed method, the objects recognized are only the felines, and other objects
such as trees, flowers, and grass are treated as background. Therefore, a very deep network
is not a reasonable choice. Thus, we simplified the layers of the ResNets and adjusted the
network parameters continuously to build a feline object detection model based on Mask
R-CNN. The numbers of layers of the simplified ResNets changed from 50 to 101. The
parameters of the three simplified ResNets are shown in Table 1.

Table 1. The structures of the ResNets: ResNet50, ResNet98, and ResNet101 represent that the
number of layers is 50, 98, and 101, respectively.

Layer Output Size ResNet50 ResNet101 ResNet98

Conv_1 112× 112
[

7× 7 64
]

Conv_2 28× 28

 1× 1 64
3× 3 64
1× 1 256

×
3

 1× 1 64
3× 3 64
1× 1 256

×
3

 1× 1 64
3× 3 64
1× 1 256

×
3

Conv_3 14× 14

 1× 1 128
3× 3 128
1× 1 512

×
4

 1× 1 128
3× 3 128
1× 1 512

×
4

 1× 1 128
3× 3 128
1× 1 512

×
3

Conv_4 7× 7

 1× 1 256
3× 3 256
1× 1 1024

×
6

 1× 1 256
3× 3 256
1× 1 1024

×
23

 1× 1 256
3× 3 256
1× 1 1024

×
22

Conv_5 7× 7

 1× 1 512
3× 3 512
1× 1 2048

×
3

 1× 1 512
3× 3 512
1× 1 2048

×
3

 1× 1 512
3× 3 512
1× 1 2048

×
3

Average
Pooling 1× 1 1000 dimensions

Afterwards, we used the function “ploy” in the Matplotlib image library to extract
the outlines of the masks generated by Mask R-CNN. As shown in Figure 3, Outline Mask
R-CNN can effectively detect the object outlines of wild feline images captured in some
complex field environments (such as occluded felines (e.g., Figure 3A), camouflaged felines
(e.g., Figure 3B), and animal images taken at night (e.g., Figure 3C).
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Figure 3. Example results of the Outline Mask region-based convolutional neural network (R-CNN)
(Top: original images of felines in different poses; middle: masks extracted by Mask R-CNN; and
bottom: outline extracted by Outline Mask R-CNN).

3.2.2. Tiny VGG for Action Classification

VGG (Visual Geometry Group) was proposed by Oxford Visual Geometry Group in
2015, which investigated the efforts of a convolutional network depth on its accuracy in a
large-scale image recognition setting. VGG can help to learn more robust features from
graph structure data. Rather than using relatively large size convolution kernels [48], the
VGG uses very small 3× 3 convolution kernels throughout the whole network. In view
of this, a lightweight convolutional neural network Tiny VGG was constructed to reduce
the number of network parameters and to avoid overfitting when classifying the different
actions of wild animals. As shown in Figure 4, similar to the network structure of VGG,
the parameters of Tiny VGG are provided in Table 2. To obtain the final prediction, we
connected two fully-connected layers after the last convolutional layer to map the extracted
features to the categories. Then, we ran a SoftMax [48] operation, which is widely used
in classification tasks, on the output to obtain the predicted probabilities. The predicted
probability p of output y for the nth class given a sample vector x and a weighting vector
w is defined using Equation (2):

p(y = n|x) = exTwn

∑K
k=1 exTwk

, (2)

where xTw denotes the inner product of x and w. This can be seen as the composition of K
linear functions.

Figure 4. Illustration of Tiny Visual Geometry Group (VGG).
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Table 2. The structures of the ResNets: the convolutional layer parameters are denoted as “Conv
(receptive field size [49]) (number of channels)”; the ReLU [50] activation function is not shown for
brevity.

Layer Patch Size Stride

Conv1_64 3 × 3 1
Max Pooling — 2
Conv3_128 3 × 3 1

Max Pooling 2 × 2 2
Conv3_256 3 × 3 1

Max Pooling 2 × 2 2

3.3. The Construction of the Skeleton Model
3.3.1. Tracking the Position of the Animal’s Leg Joints

Just as human action is mainly determined by limbs, animals’ actions, such as standing,
ambling, and galloping, are mainly determined by leg movement. Therefore, we used LEAP,
which is an automated and efficient system consisting of a Graphical User Interface (GUI)-
driven workflow for labeling images and a deep-learning-based network for predicting
the positions of animal body parts [23] to track the positions of the animal’s leg joints. The
key frames in the wild feline video clip were extracted by k-means clustering [51]. The
joint positions of the key frames were labeled and used to train the LEAP network. After
that, the LEAP network generated body-part estimates for the remaining images in the
video clip. We also used these estimates as the initial values in the GUI (Graphical User
Interface) to predict a new video clip. As shown in Figure 5a, we tracked 18 distinct points
to describe the poses of the head, body, tail, and legs and chose 6 points of two uncovered
legs on the outer side to express the status of leg movement. The bending degree of the
knee joints is shown in Figure 5b.

Figure 5. Joint point-labeled skeleton: (a) the eighteen tracked points; (b) the bending degrees of the
knee joints (zoom in).

3.3.2. Action Identification Based on Skeleton

As shown in Figure 5b, taking the tiger’s hind limb as an example, the knee joint
(denoted as “15” in Figure 5b) is the vertex of the bending angle, and the smaller included
angle between the femur and tibia is defined as the bending angle of one knee joint. The
bending degrees of the knee joints obviously vary according to the animal posture. When
the longitudinal axis of the feline is parallel to the screen plane, the bending angle is
computed using Equation (3):

L12 =
√
(x14 − x15)2 + (y14 − y15)

2

L13 =
√
(x14 − x16)2 + (y14 − y16)

2

L23 =
√
(x16 − x15)2 + (y16 − y15)

2

Bending_Angle = arccos( L12
2+L23

2−L13
2

2×L12×L23
)

(3)
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where xk and yk are the coordinates of the kth key-point.
However, when the longitudinal axis of the feline is not parallel to the screen plane,

there will be a certain error when calculating the bending angle using Equation (3). In this
case, the closer the angle between the feline’s spine direction and the screen plane is to 0◦,
the more accurate the calculation of the bending angle is; on the contrary, the closer the
angle between the feline’s spine direction and the plane is to 90◦, the greater the deviation
of the bending angle calculation is. Until the feline’s spine is spatially perpendicular to the
plane, no matter what movement state the animal is in, the joints of the feline will form
a straight line (Figure 6). In this situation, it is unable to distinguish different movement
states by the bending angle change.

Figure 6. Images in which felines’ spines are perpendicular to the image plane in space: from this
perspective, the angle of leg joints is almost straight regardless of species and the states of felines.

Under the circumstance that the animal’s spine direction is at an angle (0◦, 90◦) with
respect to the screen plane, there is a certain deviation between the bending angle and the
true angle calculated by Equation (3). However, the change of bending angle is still very
representative. Figure 7 shows the variation in the bending angle in the three video clips
representing three types of different upright actions. The bending angle has the largest
fluctuation amplitude during animal galloping. It fluctuates between approximately 80◦

and 180◦, while the bending angle of the ambling posture fluctuates less. The bending
angle of the standing posture has the smallest fluctuation amplitude, which ranges from
approximately 140◦ to 160◦. Hence, we can draw the conclusion that, over time, the angles
of leg joints vary obviously under different movement states of animals.

We computed the variation in the bending angles in a video sequence instead of
a single image or adjacent frame. LSTM [52] is a variant of RNN (Recurrent Neural
Networks) [53], which contains multiple LSTM cells. Each cell follows the ingenious gating
mechanism (first, the forget gate decides what to discard in the previous cell state; then, the
input gate updates information; and finally, the output gate transmits filtered information
to the next cell state), which makes LSTMs capable of learning long-term dependencies.
Therefore, we used LSTMs to recognize the different actions of the animals according to
the sequence of the bending angles in the video clip.

3.4. Score Fusion

To exploit the complementation between outline-based Tiny VGG and skeleton-based
LSTMs, we next took the weighted average as the fusion strategy and obtained the final
prediction. Let yp and ys denote the scores of the outline and skeleton stream, respectively.
The final prediction y is defined as Equation (4):

y = ∂ · yp + (1− ∂) · ys, (4)

where ∂ is the relative weight of the two stream predictions and the range for ys, yp, y and
∂ is (0, 1).
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Figure 7. Video representative frames and variation in the bending angle: from the first row to the
fourth row are video representative frames of three upright actions and the fifth row is the variation
curves of the bending angles (blue and red represent the variation curves of the front legs and hind
legs, respectively) for (a) standing, (b) galloping, and (c) ambling.

3.5. Materials
3.5.1. Configurations

For machine learning, the larger the sample size and the more images the machine
learns, the more accurately the network can recognize different actions of wild felines.
For this research, the machine needs very powerful processing and computing power.
Therefore, we set up a TensorFlow-GPU environment in our local personal computer (PC)
to conduct all experiments. Additionally, the environment has an NVIDIA GEFORCE
RTX 2080Ti graphics card that supports TensorFlow-GPU version 1.6.0 and Windows 10
operating system for image processing. CUDA version 10 provides additional processing
power for the computer to use the video card when training the model. Additional
commercial or third party software were also used: MathWorks MATLAB R2018a and
Python 3.6.4. The required libraries were installed via the pip package manager: numpy
(v.1.14.1), h5py (v.2.7.1), tensorflow-gpu (v.1.6.0), keras (v.2.1.4), scipy, pillow, cython,
matplotlib, scikit-image, opencv-python, and imgaug.

3.5.2. Data Collection

In this paper, we recognized wild feline action by using video sequences. At present,
all the public datasets released for researches on wildlife recognition are on the basis of
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the images of wildlife. It is not easy to record videos of wild felines because of the shy
characteristics of wild felines and the restrictions to their living environment. Therefore,
video datasets for wild felines are scarce, and there is no public video dataset available
for this particular task. Hence, by using a Python script adapted from a web scraping
tool created by Hardik Vasa [54], 90 full high-definition (HD) resolution documentaries
were collected from http://www.05jl.com and other websites about wild felines. In a
similar process, Kody G. Dantongdee of California State University San Luis Obispo
also used a similar process to complete the image collection work for his project [55].
These documentaries can help to accurately reflect the living conditions of wild felines.
Based on the criteria that the animal movement patterns can be clearly observed from a
side perspective, we manually intercepted meaningful video clips from documentaries
about wild felines. Each video clip at 30 frames per second (FPS) contains the process of
performing a single action of the target feline.

3.5.3. Data Preprocessing

The dataset contains three types of felines, namely tigers, lions, and leopards. The
experimental data were segmented into about 2700 small video clips lasting less than
ten seconds, with three different actions (standing, galloping, and ambling) labeled, as
shown in Figure 8. Each action dataset contained about 900 video clips, 500 of which were
randomly selected for training, with the remaining 400 video clips used for testing. To
make learning easier for the neural networks, data processing is necessary. For LEAP, to
ensure consistency in output image size after repeated pooling and upsampling in the
neural network of LEAP, we followed standard practices in scaling down the images to
192 × 192 pixels. Then, we converted all video clips to HFD5 files using the Python code
and used self-describing HDF5 files as input to train the network. For Outline Mask RCNN,
we converted video clips into continuous frame images using the Python code. Then, the
images in each video clip were resized to 112 × 112 for instance segmentation.

Figure 8. Example of the dataset.

4. Results and Analysis
4.1. Outline Classification-Based Action Recognition
4.1.1. Outline Mask R-CNN

The model’s backbone, ResNet, was initialized with the publicly released weight
pre-trained on the COCO dataset and then fine-tuned with our object box annotations. All
the pixels in one image were divided into only two categories: the background type and
the target feline involved in the posture. Twenty epochs were used in the training process,
and each epoch was iterated 100 times.

As mentioned in Section 3.2.1, the number of the layers in simplified ResNets changed
from 50 to 101. Figure 9 shows that, even in unfavorable external environments (nights and
heavy snow) or terrain obstacles (weeds and river water) where part of the wild feline’s
legs were covered, the animal regions extracted were comparatively complete, regardless
of whether the layers were 50, 98, or 101 (named ResNet50, ResNet98, and ResNet101,
respectively). However, detailed information, such as tails, could not be detected, and two
adjacent limbs sometimes could not be separated. The five loss functions mentioned in
Section 3.2.1 were used for convergence of the three different ResNet-size networks. As
shown in Figure 10, the convergence of ResNet50 was substantially slower than those of

http://www.05jl.com
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ResNet101 and ResNet98. Meanwhile, the test time of ResNet98 (0.57s per image) was
less than that of ResNet101 (0.59s per image). According to the experimental results, the
number of layers was set to 98 by considering the balance between the convergence and
time-consuming of ResNet-size networks.

Figure 9. Instance segmentation results for four different actions (first row: ResNet98, second row: ResNet50,
and last row: ResNet101; from left to right: ambling, two different types of standing, and galloping).

Figure 10. The convergence curves of the six loss functions with different numbers of layers.
(ResNet50, ResNet98, and ResNet101 represent the number of layers being 50, 98, and 101, re-
spectively. The blue, green, and red lines correspond to convergence of the loss function when the
number of ResNet network layers is 50, 98, and 101, respectively.)
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4.1.2. Tiny VGG for Action Classification

This model was optimized by the Adam optimization algorithm [56], which dynami-
cally adjusts the learning rate of each parameter to make the parameters change steadily,
and the learning rate was set to 0.01. The cross-entropy loss was selected as the loss function
for the recognition task. Thirty epochs were used in the training process with 100 iterations
per epoch for a total of 3000 iterations.

In image classification, VGG16, Mobile Net V2 [57], and Inception V3 [58] are three
classic deep learning networks, but if these networks are trained directly on our data, it is
likely to cause problems such as network degradation and overfitting. Thus, by simplifying
the model to adapt to this task, we constructed three tiny convolutional networks based
on Inception V3, MobileNet V2, and VGG, respectively. Tiny Inception V3 applies three
convolution kernels with different scales (1 × 1, 3 × 3, and 5 × 5) to train the network,
and the parameters of simplified Inception V3 are shown in Table 3. Tiny MobileNet V2
is a lightweight network structure based on depthwise separable convolution, and the
parameters of simplified MobileNet V2 are shown in Table 4.

Table 3. Structure of Tiny Inception V3: the building blocks are shown, with the size of the filter bank
and the numbers of stride stacked.

Layer Filter Shape/Stride

Conv2d_bn 1 × 1 × 32/1
Conv2d_bn 3 × 3 × 32/1
Conv2d_bn 3 × 3 × 64/2
Max Pooling Pool 3 × 3/2

Conv2d_bn_1_1 1 × 1 × 64/1
Conv2d_bn_1_5 1 × 1 × 48/1
Conv2d_bn_1_5 5 × 5 × 64/1
Conv2d_bn_1_3 1 × 1 × 64/1
Conv2d_bn_1_3 3 × 3 × 96/1
Average Pooling Pool 1 × 1/1
Conv2d_bn_Pool 1 × 1 × 32/1
Conv2d_bn_2_1 1 × 1 × 64/1
Conv2d_bn_2_5 1 × 1 × 48/1
Conv2d_bn_2_5 5 × 5 × 64/1
Conv2d_bn_2_3 1 × 1 × 64/1
Conv2d_bn_2_3 3 × 3 × 96/1
Conv2d_bn_2_3 3 × 3 × 96/1
Average Pooling -
Conv2d_bn_Pool 1 × 1 × 64

Max Pooling -
SoftMax classifier

Table 4. Structure of Tiny MobileNet V2: each line describes a sequence that repeats the same layer
n times. All layers in the same sequence have the same number c of output channels. The module
repeats stride s for the first time, and all others use stride 1. The expansion factor t is always applied
to the input size.

Operator t c n s

Conv2d 3 × 3 - 32 1 2
Bottleneck 1 16 1 2
Bottleneck 6 24 2 2

Conv2d 1 × 1 - 64 1 2
MaxPool 7 × 1 - - 1 -
Conv2d 1 × 1 - 3 - -

As shown in Figure 11, the convergence rate of Tiny VGG is faster than that of the other
two models. Table 5 shows the classifying accuracy of the three convolutional networks.
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The mean accuracy of Tiny VGG reached 92%, which is 10% higher than Tiny MobileNet V2.
Therefore, Tiny VGG was used to recognize the three actions of the wild felines according
to the outline feature extracted by Outline Mask R-CNN.

Figure 11. Convergence curve of the loss function for the three tiny convolutional networks: the blue,
red, and green lines represent the convergence of the loss functions of the recognition networks Tiny
VGG, Tiny Inception V3, and Tiny MobileNet V2, respectively.

Table 5. Results of the three outline-based convolutional networks: different actions of wild felines
produce different results for different networks.

Tiny MobileNet V2 Tiny Inception V3 Tiny VGG

Galloping 79% 77% 96%
Standing 88% 89% 95%
Ambling 82% 74% 84%

Average accuracy 83% 80% 92%

4.2. Skeleton Classification-Based Action Recognition

We carried out comparative experiments on tracking joint points to determine the
tradeoffs between speed and accuracy in the three models (the LEAP model, DeepLabCut
model [59], and DeepPoseKit model [60]). Figure 12a shows the error distribution and ac-
curacy. The violin plot is good at expressing the distribution status and probability density
between different categorical variables. The wider the area, the more data distributed [61].
The overall error distribution of LEAP is almost equal to that of DeepLabCut but less than
that of DeepPoseKit. The accuracy of LEAP is superior to that of DeepLabCut and almost
equal to that of DeepPoseKit. Figure 12b reveals the training time to convergence. The box
plot compares the distribution characteristics of different networks in the training time,
which mainly contains 6 key nodes: the data, the upper edge, the upper quartile Q3, the
median, the lower quartile Q1, and the lower edge. When a data point is outside the range
of [Q1 − 1.5IQR, Q3 + 1.5IQR] (where IQR = Q3 − Q1), it is considered an outlier [62].
The time needed for training LEAP is shorter than that of the two other models. Thus, the
LEAP model was used to track the joint points of wild felines.

The Adam optimization algorithm was used to optimize the model. The initial
learning rate was set to 0.001 and reduced by a factor of 10 until the validation loss was
no longer reduced. The mean squared error between the predicted and ground-truth map
was selected as the loss function for skeleton estimation.
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Figure 12. Accuracy and training time for the three models tracking joint points: (a) violin plots denote the overall error
distribution, and the error bars denote the 25th and 75th percentiles; (b) the red, blue, and green boxes plot the training
times of LEAP (Leap Estimate Animal Pose), DeepLabCut, and DeepPoseKit, respectively.

4.3. Our Two-Stream Model

Because of the lack of research on wild feline posture classification, we can only
compare our two-stream model with the two single-stream models proposed in this paper.
The outline-only model sometimes failed to distinguish ambling actions from standing
actions because the outline features of ambling are similar to those of standing, particularly
when the two limbs are adjacent. As shown in Table 6, the outline-only model presents a
strong performance for galloping (96%) but fails with ambling (84%). The skeleton-only
model can accurately distinguish ambling and standing due to temporal features. However,
the variation of the bending angle is not always obvious for some galloping actions, which
may be confused with ambling. As shown in Table 6, the skeleton-only model achieved
a good performance for ambling (91%) but underperformed for galloping (83%). After
fusion, the proposed two-stream method provided robust performance in recognizing the
three actions. Figure 13 shows the confusion matrixes of the three actions classified by the
outline-only model, skeleton-only model, and our two-stream model. The outline-only
model mistook 12.75% of the ambling samples for standing. In the skeleton-only model,
13.25% of the galloping samples were incorrectly classified as ambling. The two-stream
model is thus superior to the two single-stream models.

Table 6. Accuracy (%) of the ablation study: the outline-only method applies Outline Mask RCNN
for target feline outline and Tiny VGG for action recognition; the skeleton-only method use LEAP to
obtain target feline skeleton and Long Short-Term Memory (LSTM) for action recognition; and the
two-stream method incorporates the above two methods for action recognition.

Galloping Standing Ambling Average Accuracy

Outline-only method 96% 95% 84% 92%
Skeleton-only method 83% 93% 91% 89%
Two-stream method 97% 97% 93% 95%

Figure 13. Confusion matrix for the three proposed models: all correct predictions are located on the diagonal of the matrix; it is easy
to visually inspect the number of feline actions with incorrect predictions, as they are represented by values outside the diagonal.
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5. Conclusions and Future Work

This paper is the first to present an action recognition method for wild felines. This
method can effectively outline the wild animal region and can recognize standing and gal-
loping actions. However, this method sometimes fails to distinguish between ambling and
standing, particularly when the two limbs are adjacent. Therefore, a novel skeleton-based
action recognition model is established to use the bending angle fluctuation amplitude
of knee joints as temporal features. The model offers superior performance in classifying
ambling and standing, but it sometimes incorrectly identifies galloping as ambling when
the variation of the knee bending angle is not obvious. To take advantage of both, this paper
proposed a novel two-stream architecture that incorporates spatial and temporal networks.
The proposed two-stream network model can significantly improve the performance of
wild feline action recognition based on spatial and temporal features.

Although we successfully applied a two-stream network for feline action recognition,
there is still a lot of improvement to be made. In the future, we will collect more gait
videos, such as trot, pace, canter videos, etc., to delve into the behavior of wild felines.
Additionally, events such as unfavorable weather conditions (fog, rain, etc.) or the presence
of tall terrain obstacles that occlude the whole legs or most of the body will be considered
to make the research more comprehensive. Theoretically, this method is suitable for action
recognition of other four-legged mammals. We will use this algorithm in the assessment
of other animal species, e.g., Cervidae in Europe or small mammals. In order to improve
the robustness of the system, video noise and other artifacts affecting the quality of the
images will be further added to train the network. Meanwhile, inspired by two-person
interaction action recognition [63,64], we will try to apply the GNN (graph neural network)
algorithm [65] to the recognition research of multi-animal interaction behavior by transfer
learning. Furthermore, an attention mechanism [66] will be introduced to pay more
attention to the changes in joints and bones caused by animal movement, not only changes
in leg joint angle, so that animal moving images taken from all angles can be accurately
identified by the network. Therefore, we will design a more robust, comprehensive network
for estimating wildlife action recognition in the future.
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