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Cav1.2 plays an essential role in learning and memory, drug addiction, and neuronal
development. Intracellular calcium homeostasis is disrupted in neurodegenerative
diseases because of abnormal Cav1.2 channel activity and modification of
downstream Ca2+ signaling pathways. Multiple post-translational modifications of
Cav1.2 have been observed and seem to be closely related to the pathogenesis of
neurodegenerative diseases. The specific molecular mechanisms by which Cav1.2
channel activity is regulated remain incompletely understood. Dihydropyridines (DHPs),
which are commonly used for hypertension and myocardial ischemia, have been
repurposed to treat PD and AD and show protective effects. However, further studies
are needed to improve delivery strategies and drug selectivity. Better knowledge of
channel modulation and more specific methods for altering Cav1.2 channel function
may lead to better therapeutic strategies for neurodegenerative diseases.

Keywords: Cav1.2, PTM (post-translational modification), neurodegenerative disease, phosphorylation,
ubiquitination

INTRODUCTION

Cav1.2, encoded by the CACNA1C gene, is a high-voltage-activated (HVA), long-lasting (L-type),
and dihydropyridine (DHP)-sensitive calcium channel. Cav1.2 mediates depolarization of the cell
membrane potential, calcium (Ca2+) influx, and activation of intracellular Ca2+ signaling cascades
that alter gene expression, protein phosphorylation, and neurotransmitter release. Cellular
excitability and signal transduction are affected by factors that modulate Cav1.2 activity. Cav1.2
channels are located in the cardiovascular system, the nervous system, and endocrine glands
(Mikami et al., 1989), where they serve important physiopathological functions; for example,
gain-of-function mutations in the CACNA1C gene cause Timothy Syndrome (Splawski et al.,
2004; Moon et al., 2018). In neurons, two different L-type calcium channels (LTCCs) are
expressed: Cav1.2 and Cav1.3 (Hell et al., 1993; Ertel et al., 2000). Cav1.2 is the major calcium
channel isoform in neurons, constituting about 80% of neuronal LTCCs (Hell et al., 1993). Cav1.2
participates in learning and memory, drug addiction, and neuronal development (Striessnig et al.,
2014). Large-scale genome-wide association studies have shown a strong association between
susceptibility to psychiatric disorders and single nucleotide polymorphisms (SNPs) in the
CACNA1C gene (Bhat et al., 2012). Yet, understanding of Cav1.2 function in the brain and its
role in neurodegenerative disease remains limited.

The genetic regulation and channel modulation of Cav1.2 have been studied intensively. At the
post-transcriptional level, alternative splicing of Cav1.2 increases protein diversity. Different splice
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variants have distinct channel properties, with tissue- and
disease-specific variability (Wang et al., 2006). At the post-
translational level, Cav1.2 is altered by a variety of
modifications, which will be further discussed below.

Cav1.2 is an important drug target in the cardiovascular
system. DHPs form a class of LTCC blockers and are the most
widely prescribed drugs for hypertension and myocardial
ischemia (Zamponi et al., 2015). In this review, we summarize
the post-translational modifications of Cav1.2 and its role in
neurodegenerative diseases, and further discuss the potential of
Cav1.2 as a drug target for Alzheimer’s disease (AD) and
Parkinson’s disease (PD).

STRUCTURE AND FUNCTION OF CAV1.2 IN
THE CNS

Voltage-gated calcium channels play an important role in
neuronal function (Goonasekera et al., 2012). Cav1.2 is a
multi-protein complex. It generally consists of three subunits:
a pore-forming subunit α1, a β subunit, and an α2δ subunit; in
skeletal muscle, a γ subunit is also found (Goonasekera et al.,
2012). The α1 subunit contains about 2000 amino acid residues,
which forms four homologous domains (DI–DIV) connected by
intracellular loops (Dai et al., 2009; Alves et al., 2019). Each
domain consists of six transmembrane segments: S1 to S6 (Dai
et al., 2009; Alves et al., 2019). Of these, S5 and S6 form the pore;
and the S4 segment serves as a voltage sensor. The gating
mechanism is shown in Figure 1. At rest, the S4 segments
stay inward (“down”) under the influence of the electrical field

and lock the channel in its closed state. In this state, the S6 helices
converge on the intracellular side, preventing ion penetration.
When the membrane is depolarized, the S4 segments are released
and move outward. The pore will be unlocked when all four S4
segments leave the “down” position. During continuous
depolarization, the S6 gate disengages. When all the four S6
segments disengage and are in the “up” position, the pore opens.
When returned to the resting potential, the deactivated voltage-
sensing segment moved toward a “down” position while the pore
is still open. Subsequently, the channel returns to its closed
conformation at a rest state (Beyl et al., 2009; Hering et al., 2018).

The α1 subunit is the binding site of most regulators and drugs
that act on the channel (Zamponi et al., 2015), whereas the main
functions of the other subunits are transportation, anchoring, and
regulation (Hofmann et al., 2014). Cav1.2 channels usually
require intense depolarization to activate and have long-lasting
activity (Hofmann et al., 2014). Ca2+ entering through Cav1.2
participates in a series of physiological processes as an important
second messenger.

Cav1.2 is distributed universally in the brain. In humans,
moderate-to-high mRNA level is detected in the cerebral cortex,
the pituitary gland, the amygdala, the basal ganglia, and the
cerebellum (Splawski et al., 2004). In mice, the olfactory region,
the basal ganglia, the hippocampal formation, the amygdala, and the
thalamus show moderate-to-high mRNA level of Cav1.2 (Hell et al.,
1993; Splawski et al., 2004; Hetzenauer et al., 2006). At the protein
level, the hippocampal formation, the thalamus, and the
hypothalamus have moderate-to-strong signal intensity. At the
subcellular level in neurons, Cav1.2 is in the soma and at the
synapses (Alves et al., 2019).

FIGURE 1 |Cav1.2 state transitions during activation [modified after (Beyl et al., 2009) (Hering et al., 2018)]. The channel gating is determined by two functionally distinct
processes: a voltage-sensing mechanism and a conducting pore. These two processes defined 4 states: R, at rest, pore is closed and S4 segments in the “down” position
lock the pore. A,whendepolarized, voltage-sensingmechanism is activated andS4 segmentsmove to the “up” position and release the pore; but the pore remains closed.O,
during continuous depolarization, all four S4 segments are in the “up” position; the pore is open. D, when returned to the resting potential, the deactivated voltage-
sensing segment moved toward a “down” position while the pore is still open. Subsequently, the pore will transit to its closed conformation and at a resting state.
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Cav1.2 plays an important role in the regulation of synaptic
plasticity. Researchers found that mice with an inactivated form
of the CACNA1C gene in the hippocampus and neocortex display
severely impaired hippocampus-dependent spatial memory
(Moosmang et al., 2005). Cav1.2 is involved in the formation
of long-lasting long-term potentiation (LTP) in the hippocampus
(Moosmang et al., 2005; Moon et al., 2018; Nanou and Catterall,
2018). Long-lasting LTP needs activation of gene expression and
protein synthesis (Malenka and Bear, 2004). The calcium entry
from Cav1.2 activates Calmodulin-dependent protein kinase II
(CamKII), which binds the C-terminus of Cav1.2; and
downstream CamKIV, which phosphorylate CREB and
activate downstream gene expression (Cohen et al., 2015). In
another pathway, the calcium-regulated phosphatase calcineurin
that binds to the C-terminal domain of Cav1.2 is also activated
and dephosphorylates the transcription factor NFAT (nuclear
factor of activated T-cells), allowing it to translocate into the
nucleus and activate gene expression (Murphy et al., 2014). The
above signaling cascade increases the synthesis of mRNA
encoding synaptic proteins, causing long-lasting changes in
synaptic function (Nanou and Catterall, 2018). Moreover,
recent studies have found a β2-adrenergic receptor and Cav1.2
signaling complex that regulates synaptic plasticity. β2-
adrenergic receptors affect calcium channel activity and long-
term postsynaptic plasticity through their interactions with the
C-terminus of Cav1.2 channels (Qian et al., 2017).

During aging, the viability of Cav1.2 channels increases,
leading to high intracellular calcium (Navakkode et al., 2018)
that may modulate the processing of amyloid precursor protein
(APP) and promote AD pathogenesis (Anekonda and Quinn,
2011). The calcium hypothesis of AD holds that disturbing the
intracellular Ca2+ balance affects intracellular signal
transmission, leading to the formation of Aβ plaques and
neurofibrillary tangles, which alter the plasticity of synapses
and ultimately lead to the death of neurons (Khachaturian,
1989). Furthermore, Ca2+ imbalance promotes the
phosphorylation of tau and leads to disordered autophagy in
neurons (Anekonda and Quinn, 2011). Endoplasmic reticulum
stress (ER stress) and subsequent tau hyperphosphorylation are
increased in human chronic traumatic encephalopathy.
Administration of docosahexaenoic acid, an endoplasmic
reticulum stress inhibitor, lowers intracellular calcium
concentration, which results in the decrease of tau
hyperphosphorylation and improves cognitive performance
(Begum et al., 2014; Lucke-Wold et al., 2016). Separately,
salubrinal, a modulator of cellular stress, can reduce
neuroinflammation in mice via decreasing ER stress and
oxidative stress (Logsdon et al., 2016).

POST-TRANSLATIONAL MODULATION OF
CAV1.2 AND ITS ROLE IN
NEURODEGENERATIVE DISEASES
Post-translational modulation (PTM) is a process that converts
synthesized proteins to mature proteins through covalent or
enzymatic modifications. These modifications range from the

enzymatic hydrolysis of peptide bonds to the covalent addition
of specific chemical groups, lipids, carbohydrates, and even entire
proteins and amino acid side chains. These chemical modifications
after polypeptide chain biosynthesis expand the scope of the amino
acid structure and properties, thereby diversifying the structure and
function of proteins. PTM can occur at any point and regulates
protein activity, localization, and interactions with other molecules
(Knorre et al., 2009; Walker and Nestler, 2018).

Cav1.2 undergoes a series of PTMs before it becomes a mature
and functional Ca2+ channel on the cell surface. These
modifications influence the channel properties, trafficking, and
location and hence significantly alter the channel function.
Cav1.2 modification is dramatically changed in
neurodegenerative disease and may be an important
component of the pathology (summarized in Figure 2).

Phosphorylation
Phosphorylation of a molecule is the attachment of a phosphoryl
group. Protein phosphorylation is the most abundant post-
translational modification in eukaryotes. Phosphorylation can
occur on serine, threonine, and tyrosine side chains (often called
“residues”) through phosphoester bond formation. Neural cells
contain a plethora of protein kinases, protein phosphatases, and
phosphorylated proteins, and many of these are essential for the
regulation of neuronal morphology and for cell functions as
diverse as membrane excitability, secretory processes,
cytoskeletal organization, and cellular metabolism.

Phosphorylation of Cav1.2 channels can enhance Ca2+ influx
four- to six-fold (Sculptoreanu et al., 1993; Kavalali et al., 1997).
Cav1.2 channels can be phosphorylated by many protein kinases
(PKA, PKC, PKG, and CAMKII) but, in most cases, the sites
regulated by these kinases remain uncertain. The identified
phosphorylation sites in Cav1.2 are summarized in Table 1
(Perez-Reyes et al., 1992; De Jongh et al., 1996; Gerhardstein
et al., 1999; Yang et al., 2005; Grueter et al., 2006; Gui et al.,
2006; Yang et al., 2007; Blaich et al., 2010; Fuller et al., 2010; Huttlin
et al., 2010; Bachnoff et al., 2011; Brandmayr et al., 2012; Pankonien
et al., 2012; Lei et al., 2018; Li et al., 2020; Whitcomb et al., 2020).
The central subunit of Cav1.2, α1C, is the major subunit involved in
the PKA-mediated increase in channel activity. The α1C subunit is
phosphorylated by PKA in intact hippocampal neurons, and a two-
fold increase in Ca2+ influx has been observed in hippocampal
neurons in old rats comparedwith adult rats, suggestive of increased
PKA phosphorylation of Cav1.2 with aging. S1700 phosphorylation
plays a greater modulatory role than S1928 phosphorylation in the
heart, which is crucial for calcium homeostasis in cardiomyocytes
and prevention of heart failure (Yang et al., 2016).

However, only S1928 has been shown to increase with normal
aging in the hippocampus (Davare and Hell, 2003) and S1928 is
important for the upregulation of channel activity by PKA.
Protein phosphatase 2A (PP2A) constitutively bound to
Cav1.2 is required for dephosphorylation of S1928 and
subsequent down-regulation of Cav1.2 channel activity (Xu
et al., 2010). Similar to PKA, PKC can also phosphorylate α1C
at the same site (Weiss et al., 2012). The channel activity of Cav1.2
increases because of the convergence of the two kinases. PKC α
and ε expression is decreased with aging in the prefrontal cortex
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and hippocampus (Perovic et al., 2013), and they are
downregulated by Aβ in AD brains (Govoni et al., 1993;
Lucke-Wold et al., 2015). PKC signal cascades along with
altered calcium homeostasis contribute to the development of
NFTs (neurofibrillary tangles) (Lucke-Wold et al., 2014).

The S1928 site is close to the C-terminus of α1C, present only
in full-length α1C. With normal aging, there is a clear increase in
S1928 phosphorylation in the hippocampus but the general levels
of cyclic adenosine monophosphate (cAMP), PP2A, and protein
phosphatase 1 (PP1) inhibitors remain unchanged (Davare and

Hell, 2003). The dentate gyrus is the major region in the
hippocampus where S1928 phosphorylation occurs; no
significant changes are observed in other areas of the
hippocampus (Núñez-Santana et al., 2014). S1928
phosphorylation by A-kinase-anchoring protein (AKAP)-
anchored PKA plays an essential role in enhancing Cav1.2
channel activity and vasoconstriction under conditions of high
glucose or in diabetes (Nystoriak et al., 2017). The level of cAMP
is upregulated in cerebral vessels in AD hippocampus and is
associated with vascular β-amyloid peptide (Aβ) (Martínez et al.,

FIGURE 2 | Schematic representation of the PTM of Cav1.2 and its correlation with neurodegenerative diseases. The PTM changes the channel activity,
degradation, and cell surface expression of Cav1.2. The PTM of Cav1.2 or the disruption of their regulating pathways was also observed in neurodegenerative diseases.

TABLE1 | Identified phosphorylation sites in Cav1.2 α1C and Cavβ2.

Species Subunit Kinases and phosphorylation sites

PKA PKC CaMKII PKG

Human α1 S1898 (Bachnoff et al., 2011) — — —

Mouse α1 S1897 (Whitcomb et al., 2020) — S1512 S1570 (Blaich et al.,
2010)

—

S107, 499, 838, 845, 1680, 1700, 1721, 1744, 1927, 2155 T501, 506 (Huttlin et al., 2010)
β2 S200, 202, 203, 211, 214, 510, 545, 522 T215, 549 (Huttlin et al., 2010)

Rat α1 — — T1604 (Li et al., 2020) —

β2 S478 S479 (Perez-Reyes et al., 1992; Bunemann et al., 1999) — T498 (Grueter et al., 2006) —

Rabbit α1 S1928 (De Jongh et al., 1996) S1700 T1704 (Fuller et al., 2010) S1928 (Yang et al.,
2005)

— S1928 (Yang et al.,
2007)

β2 S296 (Pankonien et al., 2012) S459 S478 S479 (Gerhardstein
et al., 1999)

— — S496 (Yang et al.,
2007)

Guinea
pig

α1 S1574 S1626 S1699 (Lei et al., 2018) — T1603 (Li et al., 2020) —

The publications reporting phosphorylation of a specific amino acid are indicated by a reference in brackets. Notably, amino acids in all the references are not the canonical protein
sequences and differ from each other. Please refer to the original publication for more detail.

Frontiers in Pharmacology | www.frontiersin.org January 2022 | Volume 12 | Article 7750874

Li et al. Cav1.2 Modification and Neurodegenerative Diseases

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


2001). It is well established that patients with type 2 diabetes have
a higher incidence of cognitive decline and morbidity of AD than
the general population (Surguchov, 2020), suggestive of a link
with changes in Cav1.2 activity. In the AD brain, preclinical and
neuropathological data suggest that both adenyl cyclase
(AC)–cAMP–PKA and guanylate cyclase (GC)–cGMP–PKG
signaling are disrupted. Overall PKA activity and nuclear PKA
activity appear to be suppressed in AD (Sanders and Rajagopal,
2020), which may lead to abnormal changes in Cav1.2
phosphorylation state. Furthermore, the mechanism by which
the β2-adrenergic receptor (β2AR) stimulates Cav1.2 channel
activity depends on S1928 phosphorylation and constitutes a
critical component of themolecular mechanism underlying stable
and prolonged theta-tetanus-induced LTP (Qian et al., 2017).
Multiple phosphorylation sites have been found in the C-terminal
domain of the Cav1.2 β subunit in vitro. However, C-terminal
knock-out mice survive with no apparent physiological deficits
and, most importantly, show normal function of Cav1.2 in
ventricular myocytes. Thus, the phosphorylation sites on the
Cav1.2 β subunit may not have essential functional roles in vivo.

Ubiquitination
Ubiquitin (UB) is a highly conserved small protein that is found in
all eukaryotic cells, from single-celled yeast to humans. Its main
function is to mark proteins to be degraded by 26S proteasome
(Lam et al., 2000; Bennett et al., 2005; Swatek and Komander,
2016). UB binds covalently to the lysine residue of the substrate
protein and the ubiquitin-labeled protein is identified and rapidly
degraded. Briefly, this process requires the sequential action of
three enzymes (Swatek and Komander, 2016). The C-terminal
glycine residue of ubiquitin is activated by E1. Next, activated
ubiquitin is transferred to an active cysteine residue of E2. Finally,
ubiquitin links its C-terminus to an ε-amino group of the substrate
protein’s lysine residues (Hershko and Ciechanover, 1998). In a
nutshell, ubiquitination is a dynamic, multifaceted post-
translational modification that is involved in nearly all
physiological processes (Swatek and Komander, 2016). An
abnormal UB signal is closely related to neurodegeneration.

Neurodegenerative diseases are characterized by the loss of
neurons in the brain or spinal cord. Most samples from
patients with neurodegenerative diseases are immunoreactive for
anti-UB antibodies (Popovic et al., 2014) and abnormalities of the
UB-dependent degradation systems and aggregation formation are
associated with neurodegeneration (Hershko and Ciechanover,
1998; Lam et al., 2000; Bennett et al., 2005; Hara et al., 2006).
In PD, α-synuclein in Lewy bodies (a diagnostic marker of PD) is
modified by ubiquitin at lysines 77 and 78 (Popovic et al., 2014).
Ubiquitination likely increases the aggregation and neurotoxicity
of α-synuclein in cultured human dopaminergic cells (Popovic
et al., 2014). In AD, a typical aggregate is ubiquitinated tau protein
(Popovic et al., 2014). Thus, UB-dependent degradation systems,
such as the UB-proteasome system and autophagy, likely play a
role in the pathogenesis of these neurodegenerative diseases
(Bennett et al., 2005; Popovic et al., 2014).

The ubiquitin–proteasome system (UPS) is closely linked to
Cav1.2 degradation (Felix andWeiss, 2017). UB protein has seven
lysine residues at positions 6, 11, 27, 29, 33, 48, and 63 (Ikeda and

Dikic, 2008; Chen and Sun, 2009). Among these, K6/K29 take
part in Cav1.2 degradation (Lai et al., 2019). E3 specifically
recognizes the target proteins’ lysine residue and tags it for
degradation by the proteasome (Hershko and Ciechanover,
1998). Recent studies have shown that the Cavβ subunit may
serve as a molecular switch that prevents the Cav1.2 α subunit
from ubiquitination by the RFP2 ubiquitin ligase and subsequent
transfer of Cav1.2 channels to the endoplasmic reticulum
associated protein degradation (ERAD) complex; thus, the
Cavβ subunit protects Cav1.2 channels from proteasomal
degradation (Felix and Weiss, 2017). Separately, Galectin-1
acts as a negative Cav1.2 channel regulator by binding to the
Cav1.2 I–II loop and exposing the lysine residues inside the loop
to polyubiquitination and ERAD degradation, ultimately
inhibiting channel function (Hu et al., 2018; Loh et al., 2020).
Furthermore, in ovariectomized APP/PS1 mice (an AD animal
model), systemic administration of E2 (17β-estradiol) or the
estrogen receptor α (ERα) agonist propylpyrazoletriol (PPT)
increased ubiquitination of Cav1.2 in the brain, reversed
elevated levels of Cav1.2 protein, and improved cognitive
functioning. The binding of the E3 ligase Mdm2 with Cav1.2
is promoted by activating ERα. In Mdm2-overexpressing
neurons, the intensity of Cav1.2 decreased significantly. These
results suggest that Mdm2-related ubiquitination is critical for
ERα regulation of Cav1.2 protein levels and that a reduction in
Cav1.2 protein levels may contribute to ERα-induced cognitive
improvements (Lai et al., 2019).

N-Linked Glycosylation
N-linked glycosylation is a co-translational or post-translational
modification of new peptide chains in which oligosaccharides are
connected to the amide of asparagine residues. N-linked
glycosylation can be divided into high mannose, compound, and
heterozygous types. N-linked glycosylation consists of three main
steps: synthesis, transfer, and modification. Synthesis and transfer of
N-linked glycosylation are carried out in the endoplasmic reticulum,
whereas modification occurs in both the endoplasmic reticulum and
the Golgi matrix. This progress is necessary for membrane
trafficking and protein expression on the cell surface. Recent
studies showed that external glucose level alters N-glycosylation
(Liu et al., 2014; Villacrés et al., 2015). There are four potential
N-glycosylation sites in the rabbit Cav1.2: N124, N299, N1359, and
N1410. The double mutant (N124, 299Q) showed a positive shift in
the voltage-dependent gating curve; and the quadruplemutant (QM;
N124, 299, 1,359, 1410Q) showed a positive shift in the voltage-
dependent gating curve as well as a reduction of peak current. The
weaker surface fluorescence intensity of QM suggested its lower
surface expression than wild-type Cav1.2 (Park et al., 2015).

The α2δ subunit, an integral component of Cav1.2, is highly
N-glycosylated by a 30-kDa oligosaccharide (Marais et al., 2001).
Mutation of only 6/16 asparagine glycosylation sites was
sufficient to decrease cell surface expression and protein
stability of α2δ1 subunit, as well as α2δ1-mediated peak
current density and voltage-dependent gating of the α1C
subunit. Single mutation N663Q and double mutations
N348Q/N468Q, N348Q/N812Q, and N468Q/N812Q decreased
protein stability and abolished cell surface expression of α2δ1 as
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well as the α2δ1-induced up-regulation of Cav1.2 currents
(Tétreault et al., 2016). However, it is still not clear whether
N-glycosylation of Cav1.2 contributes to the mechanism of Ca2+

interruption in neurodegenerative diseases.

S-Glutathionylation
S-glutathionylation is a process in which glutathione forms a
disulfide bond with cysteine residues of the target protein, and
is a major redox-mediated thiol modulation. Oxidative stress
facilitates S-glutathionylation. The ratio of reduced and oxidized
glutathione (GSH/GSSG) is important for S-glutathionylation.
Glutathionylation is a reversible redox modification: it directly
changes the redox state of Cav1.2 and increases calcium influx
(Tang et al., 2011). However, this process is considered an oxidant-
mediated reaction with low specificity for target proteins. C543 in
the cytoplasmic I-II loop is the major glutathiolation target in
hCav1.2. C543S mutation alters post-translational folding and
shifts the channel open probability, which may lead to the onset
of disease pathology (Muralidharan et al., 2016). Inflammation and
ROS are known to be critical pathological manifestations of
neurodegenerative diseases. Moreover, imbalance of glutathione
homeostasis and dysregulation in glutathione-dependent enzyme
activities are implicated in the induction and progression of
neurodegenerative diseases, including AD, PD, and ALS.
Therefore, impaired S-glutathionylation of Cav1.2 may
contribute to the pathology of neurodegenerative diseases.

CAV1.2 AS A POTENTIAL DRUG TARGET IN
NEURODEGENERATIVE DISEASES

Cav1.2 is a classical drug target for cardiovascular disease.
Members of the dihydropyridine family of calcium channel
blockers (DHPs) have been used as first-line drugs for
hypertension and myocardial ischemia for decades,
including amlodipine, felodipine, and nifedipine (Zamponi
et al., 2015). The sensitivity of LTCCs to DHPs varies in
different tissues. Cav1.2 is more sensitive to DHPs than
Cav1.3 and Cav1.4 (Xu and Lipscombe, 2001). The splice
variants of Cav1.2 in arterial smooth muscle are more
sensitive to DHPs than those in the myocardium (Liao
et al., 2004; Cheng et al., 2009).

Because of the pathophysiological role of Cav1.2 in
neurodegenerative disease, DHPs have been repurposed as a
treatment for these diseases. DHPs have at least two advantages
as drugs for CNS indications: safety and penetration of the
blood–brain barrier (BBB). At therapeutic doses, no obvious
side effects were observed for muscle function, hearing, CNS
function, or insulin secretion, where LTCCs exert important
functions (Levine et al., 2007). Several DHPs can cross the BBB
in some species, including humans (Allen et al., 1983; Uchida et al.,
1997). Intracerebral drug delivery methods have also improved
recently (Patel et al., 2009; Lu et al., 2014).

Because of the known role of Cav1.2 in cognition and the
imbalance in Ca2+ homeostasis found in AD, DHPs have been
repurposed for AD treatment. In a survey of investigating the
association between DHP or non-DHP calcium channel blocker

and risk of developing AD or mortality, researchers found that the
use of DHP did not reduce risk of AD but showed lower relative
risk (Yasar et al., 2005). In vitro, nilvadipine, nitrendipine, and
amlodipine reduced Aβ accumulation by affecting the production
and clearance of Aβ. In vivo, nilvadipine and nitrendipine reduced
Aβ deposition. In transgenic mouse models of AD (Tg APPsw
(Tg2576) and Tg PS1/APPsw), chronic nilvadipine treatment
resulted in lower Aβ levels and improved learning and spatial
memory (Paris et al., 2011). These results suggest that some DHPs
have significant benefits in the treatment of AD. Nilvadipine can
also delay the degeneration of cognitive function in AD patients
(Hanyu et al., 2007; Matsuda et al., 2008). Nitrendipine treatment
reduced the risk of dementia by 55% in hypertensive patients
compared with a control group (Forette et al., 2002). Since
improvements in cognition are observed with non-DHP drugs
like ACEI and thiazide (Bellew et al., 2004; Hanon and Forette,
2004; Fournier et al., 2009; Duron andHanon, 2010), the protective
effects of nivadipine and nitrendipine do not seem to be related to
their antihypertensive effects. Although nilvadipine and
nitrendipine have protective effects, their effectiveness depends
on the severity of AD (Paris et al., 2011). After nilvadipine
treatment, the very mild AD group showed less cognition
decline whereas the moderate AD group showed greater
cognition decline compared with their respective placebo-treated
controls (Abdullah et al., 2020). This study suggests that AD
severity affects the treatment results and nilvadipine may be
restricted to patients with mild AD in the future.

The pathological mechanisms underlying PD are not yet
clear. Symptomatic treatments are aimed at relieving deficits in
motor symptoms and improving quality of life (Schulz et al.,
2016; Obeso et al., 2017). Currently, pharmacotherapy
includes dopamine mimetics (levodopa), synergists of
levodopa (selegiline, carbidopa), dopamine receptor agonists
(bromocriptine), dopamine-releasing drugs (amantadine), and
anticholinergic drugs (trihexsyphenidyl). Neurosurgery and
supportive treatments have been used clinically for many years
(Oertel and Schulz, 2016; Schulz et al., 2016). However, none
of these treatment methods can prevent or slow the
progression of PD and the side effects of the treatments
often limit the long-term benefits of symptomatic therapies.
However, there are a few different drugs currently in
preclinical trials. Because of LTCC-mediated Ca2+ load in
SNc dopaminergic neurons, DHPs are considered for PD
treatment. Studies have shown that isradipine has a
significant neuroprotective effect on substantia nigral
dopaminergic neurons in an MPTP-induced animal model
of PD (Kupsch et al., 1995; Singh et al., 2016; Wang et al., 2017)
and partially restores dopamine content in the striatum (Wang
et al., 2017). Another DHP, nifedipine, was reported to
improve apomorphine-induced rotation behavior in 6-
OHDA-lesioned rats (Wang et al., 2012).

In humans, the ongoing phase III clinical study STEADY-
PD is investigating the potential of the LTCC blocker
isradipine for treatment of PD. Although the study showed
that long-term treatment with immediate-release isradipine
did not slow the clinical progression of early-stage PD, it did
modestly decrease cumulative levodopa equivalent dose and
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the time needed for antiparkinsonian treatment (McFarthing
and Simuni, 2019; Parkinson Study Group STEADY-PD III
Investigators, 2020; Venuto et al., 2021). According to
epidemiological studies (Becker et al., 2008; Ritz et al., 2010;
Pasternak et al., 2012; Lee et al., 2014) and meta-analyses
(Gudala et al., 2015; Lang et al., 2015; Mullapudi et al., 2016),
patients treated with DHPs have a reduced risk of PD.
Although DHPs have a history of safe use, the drug release
time should be prolonged to avoid activation of the
sympathetic nervous system, accompanied by reflex
tachycardia and high cardiac oxygen consumption, flushing,
hypotension, and headache (Carrara et al., 1994; Johnson et al.,
2005). In some countries, extended-release formulations of
isradipine are available and are already in phase II clinical
trials in PD patients (Parkinson Study Group, 2013).

Other potential treatment strategies remain to be studied.
Previous data show that the basal level of Cav1.2 in the
hippocampus and cortex of ovariectomized APP/PS1 mice
is significantly higher than that of wild-type mice. E2 or
PPT could reverse this increased basal level of Cav1.2 by
promoting the ubiquitination and degradation of Cav1.2
(Lai et al., 2019). Thus, ERα agonists (propylpyrazoletriol,
dienestrol) may effectively alleviate the symptoms of AD. Hu
et al. used a Tat-e9c peptide to compete for the Galectin-1
binding site on Cav1.2 and interfere with its ubiquitination
and degradation (Hu et al., 2018), but whether Cavβ-derived
peptides can be used to promote Cav1.2 degradation in the
brain needs further study. The biggest concerns would be how
to transport the peptide across the BBB and how to reduce the
side effects in the cardiovascular system.

CONCLUSION

Cav1.2 plays important roles in the cardiovascular system, the
CNS, and endocrine glands. In the brain, it mediates learning and
memory, drug addiction, and neuronal development. Cav1.2
undergoes a variety of post-translational modifications, which

are altered in neurodegenerative disease states. Recently identified
modifications, such as S-nitrosylation, and their role in pathology
require further study.

DHPs are widely prescribed for hypertension and myocardial
ischemia and have been repurposed for use in neurodegenerative
diseases including AD and PD. Several clinical trials show
promising outcomes (summarized in Table 2). Although clinical
studies have shown that DHPs have protective effects on
neurodegenerative diseases, there are several issues with using
DHPs to treat neurodegenerative diseases. First, achieving the
requisite drug concentrations in the brain while avoiding
fluctuations in blood pressure and cardiac function is a
challenge. This may be addressed by the development of new
drug-delivery strategies. Second, the relative lack of selectivity of
DHPs is a big concern for their use in the CNS; unwanted effects
may arise from antagonism of Cav1.3 channels. Furthermore, the
universal expression of Cav1.2 may result in DHP side effects on
normal brain functions. Further studies on channel modulation and
more-specific methods of altering Cav1.2 channel function may
lead to better therapeutic strategies for neurodegenerative diseases.
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TABLE 2 | Summary of clinical trials and surveys on the effects of DHPs in neurodegenerative diseases

Drug Stage Duration Dose Number Indication Results References

Nitrendipine Survey 3.9 years 10–40 mg/d 148 AD Treatment with nitrendipine
reduced the risk of dementia
by 55%

Forette et al. (2002)

DHP Survey 2 years — 1,092 AD Relative risks were low with the
DHP group

Yasar et al. (2005)

DHP Survey 2 years — 173 PD Exposure to DHP reduced the risk
of incidence, particularly in older
patients, and mortality

Pasternak et al. (2012)

Isradipine Clinical
phase III

36 m 10 mg/d 336 PD Treatment with isradipine did not
slow the clinical progression of
early-stage PD

Parkinson Study Group STEADY-PD III Investigators
(2020)

Isradipine Clinical
phase III

36 m 10 mg/d 166 PD Exposure to DHP reduced the risk
of needing antiparkinsonian
treatment

Venuto et al. (2021)

Isradipine Clinical
phase III

36 m 10 mg/d 162 PD Treatment with isradipine slows
progression of PD disability

https://clinicaltrials.gov/ct2/show/study/
NCT02168842?term�isradipine&cond�Parkinson%
27s+disease&draw�2&rank�2
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