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Abstract

Motivation: Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq), couples the measurement
of surface marker proteins with simultaneous sequencing of mMRNA at single cell level, which brings accurate cell
surface phenotyping to single-cell transcriptomics. Unfortunately, multiplets in CITE-seq datasets create artificial cell
types (ACT) and complicate the automation of cell surface phenotyping.

Results: We propose CITE-sort, an artificial-cell-type aware surface marker clustering method for CITE-seq. CITE-sort
is aware of and is robust to multiplet-induced ACT. We benchmarked CITE-sort with real and simulated CITE-seq
datasets and compared CITE-sort against canonical clustering methods. We show that CITE-sort produces the best
clustering performance across the board. CITE-sort not only accurately identifies real biological cell types (BCT) but
also consistently and reliably separates multiplet-induced artificial-cell-type droplet clusters from real BCT droplet
clusters. In addition, CITE-sort organizes its clustering process with a binary tree, which facilitates easy interpretation

and verification of its clustering result and simplifies cell-type annotation with domain knowledge in CITE-seq.
Availability and implementation: http://github.com/QiuyuLian/CITE-sort.

Contact: wec47@pitt.edu or jgu@tsinghua.edu.cn or kocb@pitt.edu

Supplementary information: Supplementary data is available at Bioinformatics online.

1 Introduction

Accurate cell-type identification is critical to single-cell analysis
(Aevermann et al., 2018; Klein and Treutlein, 2019). Surface markers
are the most reliable biomarkers for cell-type classification (Cui et al.,
2019; Spitzer and Nolan, 2016). Numerous studies in recent decades
have used cell surface markers to isolate and characterize cellular pop-
ulations with distinct biological functions and have discovered many
novel cell types in the process (Ahmed et al., 2019; Barcenilla et al.,
2019). Recent advancement in single-cell RNA sequencing (scRNA-
seq) technologies enabled direct cell identity assessment through dis-
secting single-cell gene expression profiles. However, due to technical
limitations, such as low efficiency in reverse transcription
(Kharchenko et al.,, 2014; Schwaber ez al., 2019), dropout events
(sequencing fails to capture any transcript of active genes) (Li and Li,
2018; Macosko et al., 2015) and low sampling rate (Macosko et al.,
20135; Stegle et al., 2015), the RNA-derived cell identities may signifi-
cantly deviate from the surface marker phenotyping result.

The recent introduction of Cellular Indexing of Transcriptomes
and Epitopes by sequencing (CITE-seq) (Stoeckius et al., 2017), which
concurrently measures the abundance of both surface marker and
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messenger RNA (mRNA) in individual cells, enables simultaneous cell-
type identification based on surface marker and RNA profiles. In a
CITE-seq dataset, surface markers are specifically labeled by antibody-
derived tags (ADTs), which are individually barcoded. ADTs act as
pseudo-transcripts and could be sequenced together with mRNA.
CITE-seq has gained popularity in a wide range of biological and clin-
ical studies, such as resolving tumor heterogeneity (Ortega et al., 2017,
Wagner et al., 2019) and dissecting cell populations in complex tissues
or organs (Cuevas-Diaz Duran et al., 2017; Cui et al., 2019; Klein and
Treutlein, 2019; Landhuis, 2018; Schiller et al., 2019).

Figure 1A and B shows an example of cell-type classification
results of a peripheral blood mononuclear cells (PBMCs) CITE-seq
dataset, using its RNA and surface marker (ADT) profiles separate-
ly. For RNA (Fig. 1A), cells are clustered into separate groups using
scanpy (Wolf et al., 2018), based on the similarities in RNA profiles
between cells; whereas for surface markers (Fig. 1B), cells are clus-
tered using Gaussian mixture model (GMM). We use manually
annotated cell types, which are hand curated with domain know-
ledge (Maecker et al., 2012), as truth. In both plots, cells are
embedded in 2D planes, according to the tSNE transformation (Van
Der Maaten, 2014) of their RNA or ADT profiles, respectively.
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Fig. 1. Clustering results of an example PBMC CITE-seq dataset. (A) Droplets are
clustered and arranged according to their RNA expression profiles. (B) Droplets
are clustered and arranged based on their surface marker (ADT) profiles. Ground
truths in both plots are obtained through manual gating over the surface marker
(ADT) space. ACT, artificial cell type; C-mono, classical monocyte; CD4+ T cell,
helper T cell; CD8+ T cell, cytotoxic T cell; DC, dendritic cell; NC-mono, non-
classical CD16" monocyte; iNK, intermediate CD16~ NK cell; mNK, vast major-
ity of NK cell

Different cell types are highlighted with distinct colors. By compar-
ing the classification results of both modalities, we observe that clas-
sification based on RNA profiles struggles to separate biologically
similar but functionally unique cell types, such as cytotoxic T cells
and helper T cells, even though such cell types are distinctly separ-
able in the surface marker space. A more detailed analysis between
gene expressions and surface markers, such as the correlation ana-
lysis between them and RNA dropout analysis are provided in
Supplementary Figure S1. While GMM achieves a greater fidelity in
the surface marker (ADT) space, it is still imperfect. In Figure 1B,
GMM misclassifies a portion of the CD4™ T cells as some other cell
types and fails to separate [iINK, mNK] and [C-mono, DC] cell types
into distinct clusters.

Automated cell-type classification with surface markers in CITE-
seq is further complicated by hard-to-remove multiplets. Multiplets,
where more than one cell is found per droplet, are technical artifacts
induced during library preparation (Macosko et al., 2015; Stoeckius
et al., 2018). In single-cell sequencing, ideally, a droplet is designed
to capture just a single cell, which forms a singlet. In practice, it is
impossible to avoid having two or more cells being encapsulated
into a single droplet, which forms multiplets (see Fig. 2A). Handling
multiplets becomes an even more pressing problem when investiga-
tors super-load the library prep equipment, in order to cut reagent
cost, eliminate inter-sample batch effect or simply scale up samples
in a single experiment. Multiplets confound cell-type identification
(McGinnis ef al., 2019; Wolock et al., 2019). Figure 2B shows an
example of multiplets creating artificial cell types in a PBMC CITE-
seq dataset. When a multiplet contains cells of different types, it gen-
erates droplets with biologically impossible surface marker profiles.
For instance, in the above example (Fig. 2B), there exists a sizable
CD3*"CD19" droplet cluster which is rarely observed in PBMCs.
Prior work has shown that such droplets are all multiplets and rec-
ommends subsequent removal of such droplets from downstream
analysis (Xin et al., 2019). In this work, we call cell types that truly
exist as biological cell types (BCT) and cell types created by CITE-
seq multiplets as artificial cell types (ACT).

Since it is impossible to avoid the occurrence of ‘multiplets” due
to experimental limitations, we proceed to assess the impact of the
multiplets on conventional clustering algorithms. Figure 2C and D
shows the results of two popular clustering algorithms, GMM and

than the three BCT clusters

k-means++, for two surface markers, CD3 and CD19. With domain
knowledge, the surface marker space should be divided into four
quadrants with each quadrant containing a different cell type clus-
ter, where top left are CD19" cells, bottom left are CD3~CD19~
cells, bottom right are CD3" cells and the top right are the joint
CD3"-and-CD197%-cell ACT multiplets (Fig. 2E). For this example,
neither GMM nor k-means++ could isolate the top-right ACT clus-
ter from the BCT clusters. This is due to the imbalance in cluster
sizes between ACT and BCT clusters, where ACT clusters are sig-
nificantly smaller than BCT clusters. The phenomenon where con-
ventional clustering methods could fail when applied to datasets
with mixing coefficient imbalances has been extensively studied and
documented (Krawczyk, 2016; Lu et al., 2019; Naim and Gildea,
2012; Xuan et al., 2013).

Interpreting the clustering result is equally important (Kiselev
et al., 2019). Biologists have already established a mature pipeline to
identify cell populations using a recursive selection process called
gating, which is widely used in flow and mass cytometry analysis
(Maecker et al., 2012; Verschoor et al., 2015). The gating process
recursively selects a sequence of surface markers to stratify cells,
until a homogeneous population emerges. The ordering of surface
markers in gating is determined by domain knowledge. Figures 3
illustrates an example gating strategy for PBMCs. For instance, to
select the cytotoxic T cells, which are marked by high expressions in
both CD3 and CD8 and low expressions in both CD4 and CD19, a
biologist would first select the CD3"CD19~ cell cluster in the CD3:
CD19 scatter plot and then select the CD8"CD4 ™ cell cluster in the
CD4: CD8 scatter plot (Fig. 3B). Similar to how a gating strategy
guides cell-type annotation in manual gating, a good clustering
framework should provide a comprehensive interpretation for its in-
ternal mechanics and facilitate biologists to annotate resulting cell
clusters according to domain knowledge. Ideally, the interpretation
should match the format of a gating strategy, such as the one dem-
onstrated in Figure 3A.

To address these challenges, we propose an interpretable, un-
supervised single-cell clustering algorithm, named CITE-sort, to sys-
tematically identify both BCTs and ACTs based on a recursive
GMM framework. In each iteration, CITE-sort selects a low-
dimensional surface marker subspace, generally defined by one or
two surface markers, and performs clustering with GMM. In this
manner, CITE-sort collapses numerous highly imbalanced clusters
in the original high-dimensional surface marker space into fewer yet
more balanced hybrid clusters in lower dimensional subspaces,
which improves clustering performance. CITE-sort partitions the
whole dataset into subpopulations through recursive bi-partitioning
and constructs a binary sort tree for visualization, verification and
guided cell-type annotation. CITE-sort terminates when a
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Fig. 3. (A) An example gating strategy for PBMCs. (B) The gating process for the ex-
ample PBMC dataset. NK cells, natural killer cells; DCs, dendritic cells

subpopulation cannot be further divided, which creates a leaf node
that is either an ACT or a BCT. The sort tree resembles a manual
gating strategy and thus is comprehendible to biologists. The sort
tree facilitates easy cell-type annotations and accurate ACT cluster
identifications. We applied CITE-sort to both real and simulated
CITE-seq datasets and found that CITE-sort is able to achieve super-
ior clustering performance compared to other popular clustering
methods. Especially, CITE-sort is the only method that constantly
and robustly segregate ACT clusters from BCT clusters. In addition,
the sort tree generated by CITE-sort is consistent with existing gat-
ing strategies and provide rich biological insights.

2 Materials and methods

2.1 Overlapping, imbalanced clusters in CITE-seq
CITE-seq uses a matrix to store the ADT counts of each surface
marker in every droplet. While the ADT count of a surface marker
does not quantify the absolute number of the marker proteins on a
cell surface, it retains a strong correlation (Stoeckius et al., 2017).
Droplets that exhibit relatively large ADT counts of a specific sur-
face marker, suggest that the cell(s) in these droplets have relatively
high expression(s) of that surface marker. When multiple cells col-
lide into a single droplet, forming a multiplet in the process, the final
ADT counts of the droplet can be perceived as the sum of ADT
counts over its member cells.

Similar to other surface marker quantification technologies, a
CITE-seq dataset is pre-processed with the centered-log-ratio (CLR)
normalization (Stoeckius et al., 2017), prior to clustering. The for-
mula of the CLR normalization is shown below:

- Cij
% =08 W

In Equation (1), ¢;; is the molecule count of marker (ADT) j in
droplet i and g(c;) is the geometric mean of ¢; across all droplets. All
surface marker (ADT) scatter plots in this paper are CLR
normalized.

CITE-seq datasets contain many imbalanced and overlapping
clusters. Compared to BCT clusters, ACT clusters have much
smaller population sizes. In a CITE-seq experiment, the multiplet
rate is often controlled at a moderate level for quality assurance.
Previous work has shown that the proportion of multiplets increases
as the number of cells in library prep increases (Macosko et al.,
20135; Stoeckius et al., 2018; Xin et al., 2019). Therefore, ACT
droplets typically have non-negligible but still much smaller presen-
ces than BCT droplets, creating imbalance in cluster sizes.

In the CLR normalized surface marker space, ACT clusters are
often in close proximity to multiple BCT clusters, similar to the ex-
ample in Figure 2B. Each ACT droplet contains multiple cells of dif-
ferent types. Since the ADT counts of an ACT droplet equals to the
sum of the ADT counts of its member cells, also because the loga-
rithm dampens small-scale changes in the ADT counts [such as
log(2 - ¢) = log(c) + log(2) ~ log(c), with ¢ > 2], when individual
cells merge into an ACT droplet, in the surface marker space, after
CLR, the ACT droplet is positioned as slightly exceeding the highest

coordinate in each surface marker dimension, across all of its mem-
ber cells (Xin et al., 2019). Mathematically, assuming Cp is the set
of cells included in an ACT droplet D, then the CLR-transformed
surface marker count vector xp of D approximately equals

Xp, R %%ﬁ(xc)

The produced ACT droplets, therefore, share similar ADT (CLR
normalized) values to its member cells in many, but not all, surface
marker dimensions. This creates the phenomenon where an ACT
cluster is always close to some BCT clusters.

Aside from ACT clusters, BCT clusters may also share extensive
similarities and form groups of closely positioned clusters in the sur-
face marker space. Biologically, many cell types in a tissue share ex-
tensive common sections in their lineages. As a result, many of them
share similar distributions in many surface markers. For instance,
helper T cells (CD4" T) and cytotoxic T cells (CD8* T) are both T
cells. As such, they have very similar, if not identical, ADT value dis-
tributions in many surface markers. Likewise, both T cells and B
cells are lymphoid cells and their surface marker expression profiles
also share significant similarities, albeit to a lesser extent than the
helper and cytotoxic T cells (as T and B cells are more distant in the
cell lineage tree).

Consequently, when observed in lower dimensions, especially
when the most differentiating surface markers are excluded, BCT
clusters often collapse with each other and merge into fewer clusters.
Figure 4 shows an example surface marker (ADT) distribution
(CLR-transformed) of the previously introduced PBMC dataset. In
this dataset, when viewed in 1D, many surface markers exhibit a
mixture distribution of a few (mostly just two) Gaussian compo-
nents. Also evident in Figure 4, these Gaussian components are sel-
dom well separated. In many surface marker dimensions,
components are close to each other and share small overlaps.

Combined with the property that ACT clusters are close to BCT
clusters, in a CITE-seq dataset, there are many closely positioned
clusters in a very compact surface marker space. This increases the
difficulty in separating them through clustering. Additionally, ACT
clusters encompass much fewer cells than BCT clusters; and there
could be many more ACT clusters than BCT clusters. According to
Xin et al. (2019), with a total of k& BCT clusters, there could be as
many as 2% — k — 1 ACT clusters.

Altogether, a CITE-seq dataset is likely to share the following
properties in the surface marker space: (i) it may contain a large
number of clusters; (ii) clusters vary dramatically in size; and (iii)
clusters are not well separated and may contain similar distributions
in individual dimensions.

2.2 Convergence of the EM algorithm on CITE-seq

datasets

The expectation-maximization (EM) algorithm for GMM struggles
to converge to the global optima in CITE-seq datasets. Inherently, in
GMM, the EM algorithm does not consistently converge when (i)
the dataset has high dimensions; (ii) the cluster number is large; (iii)
clusters overlap; and (iv) there exists significant imbalance in the
mixing coefficients. Let px denote the ground truth means of K
Gaussian components in a d-dimensional Gaussian mixture dataset
and let

Rinin :rgl%i/nHu? -wll,

where p; and p; denote the ground truth means of component 7/ and
j, denote the minimum distance between the means of any two com-
ponents. Zhao et al. (2020) provides a convergence guarantee of the
EM algorithm to the global optima, as long as the following condi-
tion is true:

T

Rmin Z Comin(d, K) (2)

In Equation (2), Cy is a universal constant. Equation (2) implies
that it requires a greater distance between the means of components
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Fig. 4. Distributions of CLR normalized ADT values of the example PBMC dataset
on individual surface markers

in a Gaussian mixture to provide the same convergence guarantee as
the cardinality of dimensions and the number of clusters increase.
Increasing dimensions or adding more components without increas-
ing the distance between clusters will eventually undermine the con-
vergence of the EM algorithm.

Naim and Gildea (2012) and Ma et al. (2000) have theoretically
and empirically shown that having imbalanced mixing coefficients
and overlaps between components also impedes the convergence of
the EM algorithm. Specifically, Naim and Gildea (2012) showed
that in the presence of overlaps between clusters, the condition num-
ber associated with EM increases (the convergence rate decreases) as
the imbalance in mixing coefficients increases; hence a slower con-
vergence of the EM algorithm.

CITE-seq datasets, unfortunately, often contain all four traits
that hinder the convergence of the EM algorithm for GMM: there
are many ACT clusters due to multiplets; ACT and BCT clusters
often share overlaps; ACT clusters are much smaller in size than
BCT clusters, which creates imbalance in mixing coefficients; and
CITE-seq datasets usually have decent numbers of dimensions (often
at the scale of 10 or more). As a result, the EM algorithm exhibits
poor performance at fitting a GMM model on a CITE-seq dataset,
as shown in Figure 2C and D.

2.3 Overview of CITE-sort

CITE-sort exploits a property of CITE-seq datasets where clusters of
distinct cell types tend to collapse into fewer Gaussian components
in lower dimensions. Therefore, when inspected in a lower dimen-
sional subspace, the distribution can be fitted with much fewer com-
ponents. Working with fewer components in a low-dimensional
space improves the likelihood of the EM algorithm reaching to the
global optima [recall Equation (2)]. For example, when viewed in
1D, the four Gaussian components in Figure 5C collapses into only
two components, as Figure SA shows. When directly applying the
EM algorithm on all four components in the 2D space, the EM algo-
rithm fails to converge to the global optima and is unable to separate
the four clusters, as with the example in Figure 2C. However, by
applying 1D GMM iteratively on CD3 (Fig. 5A) and then on CD19
(Fig. 5B and C) in a two-step fashion, the EM algorithm is able to re-
liably crop out all four clusters, as displayed in Figure 5. When clus-
tering on CD3, the two Gaussian components have more balanced
cluster sizes; hence leading to a more consistent convergence for the
EM algorithm. When processing the CD3% component on CD19
(Fig. 5C), although there still exist non-trivial mixing coefficient im-
balance between the CD3*CD19" component (an ACT cluster) and
the CD3*CD19~ component (a BCT cluster), compared to the ori-
ginal two-component, four-cluster scenario in Figure SA, which har-
bors mixing coefficient imbalance between the CD3*CD19~ ACT
cluster and all three other BCT clusters, the imbalance is now
restricted between just a single pair of components. Combined with
having fewer clusters in the mixture and operating in lower dimen-
sions, the EM algorithm is able to converge accurately and separate
the CD3"CD19" and the CD3"CD19™ cluster.

Overall, CITE-sort clusters droplets by iteratively fitting GMM
models in low dimensions. In each iteration, CITE-sort selects the
lowest dimensional subspace where droplets can still be distributed
into separate hybrid clusters. If there exist multiple qualifying sur-
face marker subspaces with equal cardinalities, CITE-sort prioritizes
the surface marker subspace whose GMM model returns the largest

Fig. 5. Demonstration of CITE-sort fitting GMM models in lower dimensions. (A)
Fitting a GMM model in single dimensions. (B) and (C) Fit GMM models with
CD19 on CD3— and CD3+ subpopulations from the previous step, respectively
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Fig. 6. An example of merging Gaussian mixture components. (A) Illustration of the
five original Gaussian components in a 1D GMM model. (B) Merging components into
component complexes. (C) The final component complexes after merging. The dashed
lines represent the density curves of the two merged component complexes ff and y

likelihood in describing the data distribution. CITE-sort repeats the
low-dimensional clustering process on each child cluster, until no
cluster can be further subdivided. In this manner, CITE-sort reduces
the number of clusters, the cardinality of the dimension, and the de-
gree of imbalance among clusters in each clustering step and main-
tains high quality clustering throughout the entire process.

For simplicity, CITE-sort uses binary partition: in each iteration,
CITE-sort picks the largest hybrid cluster as one part and merges all
other components together as the other part. CITE-sort then repeats
the low-dimensional clustering process on each part, until it can no
longer be further divided. We call the binary tree emerged from the
iterative bi-partitioning process the sort tree (sort for cell sorting).

2.4 Clustering in low dimensions

When clustering in low dimensions, clusters may not always perfect-
ly stack on each other and form perfect Gaussian components as the
example in Figure 6A. Sometimes, the density distribution of a sur-
face marker cannot be decomposed into two perfectly disjoint
Gaussian components. Rather, it requires multiple components,
some of which overlap with each other. CITE-sort fits a GMM
model by minimizing Bayesian information criteria (BIC) score.
Components that share significant overlaps, such as the example dis-
tribution shown in Figure 6A, are merged subsequently. CITE-sort
computes the Bhattacharyya distance (Bouveyron et al., 2019;
Hennig, 2010) to measure the degree of overlap between two com-
ponents. Given a surface marker subspace S and two Gaussian com-
ponents a and b in S, let m,, m; denote the surface marker mean
vectors of a and b, and Z,, £, denote the corresponding covariance
matrices of g and b. The Bhattacharyya distance (Bouveyron et al.,
2019; Hennig, 2010) between a and b equals:

B (m, — m;,)ti (m, — my) 1 >
d= +210g 55 )

3)

If he Bhattacharyya distance between a pair of components falls
below a parametrized threshold ¢, then the two components are
merged into a component complex. After merging, the same process
is repeated on all pairs of component/component complexes, until
no pairs of component/component complex can be merged.
Figure 6B demonstrates the hierarchical merging process of combin-
ing Gaussian components of Figure 6A. There are five Gaussian
components. Component pairs, [3, 4] and [1, 2], are first merged
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into a component complex « and 7, respectively. Then o is merged
with component 5, becoming 8. f and 7 do not share sufficient over-
lap. Hence, they remain two separate component complexes.
Figure 6C shows the final component complexes, f and 7y, in the
density histogram plot. CITE-sort sets ¢ to 0.1 by default.

2.5 Constructing the sort tree

As CITE-sort iteratively subdivides droplets into smaller subpopula-
tions, CITE-sort records the surface marker(s) involved in each div-
ision in the sort tree. Each node in the sort tree represents a
subpopulation. The root node represents the whole dataset. The
label of each node denotes the surface markers employed in further
subdividing the subpopulation. CITE-sort stops subdividing a node
if (i) the population size falls below a parametrized minimum cluster
threshold 6, or (ii) the subpopulation cannot be subdivided into
more than one component/component complex in all subspaces.

While CITE-sort prefers clustering in low dimensions, not all
surface marker subspaces are qualified for subdivisions. Many sur-
face subspaces have a single-component complex left after merging.
Without more than one independent component/component com-
plex, the subdivision process comes to a halt. To avoid terminating
the iterative clustering process prematurely, CITE-sort skips surface
marker subspaces with a single-component complex (or if there are
no multiple components to begin with). When there exist multiple
qualifying surface marker subspaces with equal cardinalities, CITE-
sort computes the likelihood of the fitted GMM in describing the
distribution of the data and selects the surface marker subspace with
the largest likelihood for further division.

The sort tree facilitates accurate annotations of cell types, justifi-
able verification of the clustering result, and accessible interpret-
ation of the model. The sort tree displays three items at each node:
the surface marker(s) chosen for clustering and bi-partition; the dis-
tribution of the current droplet subpopulation in the chosen surface
marker subspace; and all component complexes derived from the
subpopulation. The two subpopulations after bi-partition are high-
lighted separately with matching-color edges in the sort tree to em-
phasize their sorting trajectory. An example sort tree is provided in
Figure 9A in Section 4.

The sort tree lets end users to inspect the distribution in the sur-
face marker subspace at each stage and assess the fidelity of the clus-
tering decisions made by CITE-sort. The sort tree also enables users
to follow the sorting trajectory of any terminal cell population and
register surface markers where the population have high or low lev-
els of expressions. End users can then compare the sorting trajectory
of each terminal cell population with existing gating strategies and
annotate cell types according to domain knowledge.

2.6 Pseudo code

Let D = {x1,...,xn} denote a CLR-transformed ADT dataset. Let
N denote the number of droplets and F = {f1,...,fm} denote the
M-dimensional surface marker space of the dataset. CITE-sort takes
D as input and returns the root node of the binary sort tree 7. Each
node in 7 stores the surface marker subspace selected for clustering,
the current subpopulation of the node and pointers to children nodes
(leaf nodes point to NULL). The pseudo code of CITE-sort is pro-
vided in Algorithm 1.

3 Datasets

3.1 Real datasets

We tested CITE-sort with three in-house PBMC CITE-seq dataset as
well as five public CITE-seq datasets. For the three in house data-
sets, cells were drawn from two healthy donor described in a previ-
ous study (Sun et al., 2019). The cell assays were prepared using the
10x Genomics platform with Gel Bead Kit V2, and was subsequent-
ly sequenced on an Illumina HiSeq with a depth of 50K reads per
cell. We measured 10 surface markers on every cell. They were:
CD3, CD4, CD8, CD11¢c, CD14, CD16, CD19, CD56, CD127 and
CD154. We performed downstream analysis with CellRanger-3.0.

Algorithm 1. The pseudo code of CITE-sort.

ALGORITHM: CITE_SORT(D, &, ¢, 0)

INPUT: Dataset D. Merging threshold ¢, defaults to 0.1.
Upper bound of subspace cardinality ¢, defaults
to 2.
Minimum cluster size 0, defaults to 10.
OUTPUT: A binary tree 7.

7+ new BTreeNode
7 .subpupulation — D
T leftopig, T-righty;q < NULL
I*** STEP 0 Stop criteria | ***/
IFD < 0
RETURN 7
I*** STEP 1 Generate subspace candidates ***/
Fs—1[]
FOREACH 7t IN 1 :¢
FOREACHfC F, f=+
GMMy — Merge components in subspace f with
threshold .
IF GMM¢ Beomponenrcomplex > 1
Fs.append(f)
ENDFOR
IF length(Fs) >0
BREAK
ENDFOR
[*** STEP 2 Stop criteria Il ***/
IF length(Fs) ==0
RETURN 7
/*** STEP 3 Score subspaces ***/
(baseline) — log\ (D|u, %)
S<1]
FOREACH f IN F,
FOREACH ¢ IN GMMj.component ey
Bi-partition By, < {Do : {xi|x; € c¢},Dy : {xi|x; & c} }
£(Bre) — Ypeo.1% k - 108N (Dilpy, Zp), opp = Di/D
S — Z(Bf‘c) — /(baseline)
S.append(Sy.)
ENDFOR
ENDFOR
/*** STEP 4 Bi-partition and update mixing weights ***/
By o +— argmax(S)
T.key — f*
D07D'| — Bfavc&
[*** STEP 5 Recursion ***/
T.leftch”d — CITEsorT (Do, &, t, ())
T‘rightchi]d «— CITEsorT (D1 JE, L, 9)
RETURN 7

Public datasets include three PBMC datasets, one marginal zone B-
cell tumor (MALT: mucosa-associated lymphoid tissue) dataset and
one cord blood mononuclear cells (CBMCs) dataset (Stoeckius
et al., 2017). Detailed information of all real datasets is summarized
in Table 1.

We focus our evaluation of CITE-sort with the PBMC_16k data-
set. For the PBMC_16k dataset, in addition to CITE-seq, we also
performed cell hashing (Stoeckius ez al., 2018) with four hashtags.
Cell hashing enables technicians to increase the population of cells
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Table 1. Overview of CITE-seq datasets A i Performance under variable number of cell types
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PBMC_16k 15 839 10 In house g 5 G
. . 02 021 ISNE & GMM
(Wlth cell hashlng) . ) | PCA & GMM
L 10 15 0 25 0% 10 15 0 25

in a single scRNA-seq run, and it facilitates analytical identification
of a significant fraction of multiplets. Previous work has demon-
strated analytical classification of putative homogeneous droplet
populations into ATCs and BTCs with cell hashing (Xin et al.,
2019). In a cell-hashed scRNA-seq dataset, droplets are categorized
into either multi-sample multiplets (MSM) or single-sample droplets
(SSDs). Prior work (Xin et al., 2019) has established that ACT clus-
ters have MSM percentages approaching and exceeding 1 — 1/H,
where H is the number of hashtags used in cell hashing (assuming
even cell distributions among samples in cell hashing). For the
PBMC_16k dataset, we used H = 4 hashtags. If a putative homoge-
neous droplet cluster in PBMC_16k has an MSM ratio approaching
or exceeding 75%, then it is highly likely to be an ACT cluster. We
used GMM-Demux (Xin ef al., 2019) to classify droplets into
MSMs and SSDs.

It is important to establish the evaluation of CITE-sort with cell-
hashed CITE-seq datasets. The MSM ratio of a cluster serves as an
important signature of whether the cluster is an ACT or BCT. The
ratios of MSMs in suspicious ACT clusters can be used to validate
the efficacy of CITE-sort in separating ACT clusters from BCT clus-
ters: high MSM content in suspicious ACT clusters and low MSM
content in BCT clusters suggest that CITE-sort achieves high preci-
sion in isolating ACT clusters from BCT clusters; while the opposite
indicates that the suspect ACT clusters have absorbed excessive BCT
droplets because of poor clustering performance. Given that
PBMC_16k is the only available cell-hashed CITE-seq dataset, we
focus the evaluation of CITE-sort over the PBMC_16k dataset.

3.2 Simulation datasets

We generated a number of CITE-seq simulation datasets according
to the droplet formation model described in Xin ef al. (2019).
Specifically, we assumed that cells were randomly distributed into a
finite number of droplets. We prepared synthetic cells by sampling
droplets from the in-house PBMC dataset. All synthetic cells are
hand curated into one of the five BCT through manual gating, which
is summarized in Supplementary Table S1. Synthetic cells are ran-
domly distributed to droplets. If a droplet is assigned with a single
cell, then the raw ADT (yet to be CLR normalized) profile of the
droplet equals to the raw ADT counts of its member cell. Otherwise,
if a droplet is assigned with multiple cells, the raw ADT profile of
the droplet equals to the sum of raw ADT counts over all member
cells. Empty droplets are removed after simulation.

Droplets are labeled according to their member cell(s). ACT
droplets that have different cell type compositions are assigned dif-
ferent labels. With M biological cell types in a simulation, there
could be as many as 2M — 1 distinct droplet labels, including M
BCT labels and up to 2 —M — 1 ACT labels. The droplet labels
from simulation are used as the ground truth.

We performed two sets of simulations. In the first set, we con-
trolled the percentage of ACT droplets at 5% and gradually
increased the number of BCT in each simulation, from 2 to 5. In the
second set, we fixed the number of BCT at 4 but gradually increased
the ACT droplet percentage, from 5% to 25% with a 5% increase
per step.

ACT droplet percentage (%) ACT droplet percentage (%)

Fig. 7. Performances of CITE-sort compared against six other common clustering
methods under (A) variable number of cell types (fixing ACT droplet percentage at
5%) and (B) variable ACT droplet percentages (fixing the number of biological cell
types at 4)

4 Results

4.1 Accuracy evaluation on simulated datasets

We compared CITE-sort against six other clustering methods: k-
means++, k-means++ with PCA, k-means++ with tSNE, GMM,
GMM with PCA and GMM with tSNE. For both PCA- and tSNE-
based clustering, we reduced the dimensions of each dataset to three.
For k-means++, we used the elbow method with inertia
(Bholowalia and Kumar, 2014) to select the number of clusters K;
for GMM, we used the Dirichlet process to infer K from the data
(Blei and Jordan, 2006; Goriir and Rasmussen, 2010).

We benchmark CITE-sort against the other six clustering meth-
ods on both sets of simulation datasets. We compare the clustering
outcome of each clustering method based on both the Adjusted
Rand Index (ARI) score and the Adjusted Mutual Information
(AMI) score against the ground truth. As shown in Figure 7, CITE-
sort has the best performance across the board in both experimental
settings. Especially, when measured in AMI score, CITE-sort always
leads other methods by at least 0.1 on average. Previous work
(Romano et al., 2016) has shown that AMI creates more accurate
measurements than ARI, under scenarios where the cluster sizes are
highly unequal in ground truth. Therefore, maintaining a command-
ing lead in AMI scores under low ACT droplet percentages proves
that CITE-sort outperforms other clustering methods when clusters
contain significant mixing coefficient imbalances. k-means++,
GMM and their variants, on the other hand, have much inferior
AMI scores under low ACT droplet percentages.

The clustering results of each simulation dataset is presented in
Figure 8. Comparing to the other six clustering methods, CITE-sort
produces clustering results that are most consistent with the ground
truth. The reason that the clustering accuracy of GMM and k-mean-
s++ increases when more cell types are added to the simulation
under a fixed ACT percentage threshold (5%) is that ACT droplets
are distributed into a rapidly increasing number of ACT clusters (the
number of ACT clusters grows exponentially as more cell types are
added). With much more diluted ACT clusters, the influence of ACT
clusters in disrupting the separation of BCT clusters decreases.
Hence GMM and k-means++ register better performances.
Eventually, as ACT clusters become increasingly sparse, we estimate
that the performances of GMM and k-means++ will climb to the
same level as CITE-sort. Nevertheless, to reduce the ACT percent-
age, technicians will have to drastically limit the number of cells
loaded in a cell assay, which significantly limits the applicability of
GMM and k-means++ in real datasets.

4.2 Constructing sort trees in real datasets

Figure 9A demonstrates the sort tree of the PBMC_16k dataset. In
this dataset, clustering is performed in either 1D or 2D surface
marker subspaces in each step. Depending on the dimension of the


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa467#supplementary-data

i548

Q.Lian et al.

Setting Truth CITE-sort k-means++ GMM
(5% ACTs)
# cell type s
2 i '
- ® ACTs
L]
3 i
®ACTE
4 e
L
® ACTs
5 ol vl
(4 ;:il;ép_‘res) . ®ACTs
10% f
“‘1
LY . ®ACTs
Y 5
15% i
& ®ACTs
g
20% i .
L
®ACTs
25% H E -

Fig. 8. Clustering results of CITE-sort, k-means++ and GMM with regard to eight
simulation datasets. Different colors denote distinct clusters

surface marker subspace, each inner node is visualized with either
a histogram or a 2D scatter plot. In each plot, we use red and blue
to highlight the two parts after bi-partition and assigned colors to
edges in the sort tree correspondingly. Each leaf node is annotated
according to a standard PBMC gating strategy (Maecker et al.,
2012). We labeled leaf nodes that cannot be explained by the
standard gating strategy as suspect ACT clusters. Leaf nodes are
supplemented with its population percentages and MSM percen-
tages. As mentioned in Section 3.1, according to GMM-Demux,
droplet clusters with MSM percentages approaching and exceeding
75% (H = 4 in this dataset) are ACT droplet clusters. We observe
that most suspect ACT clusters have high MSM percentages.
Overall, we find an estimated 19.3% of all droplets that are ACT
droplets.

The sort tree of PBMC_16k is highly consistent with existing gat-
ing strategies (see Fig. 3). Compared to manual gating (Fig. 3),
CITE-sort achieves greater clustering resolutions. In particular,
CITE-sort subdivides NK cells into majority NK cell and intermedi-
ate NK cell subtypes; monocytes into classical monocytes and non-
classical monocytes; and DCs into CD4" DCs, CD8" DCs and
myeloid DCs. CITE-sort also splits double negative (CD4"CD8™) T
cells from other T cells. Such resolution is hard to guarantee in man-
ual gating. The resemblance between the sort tree and common gat-
ing strategies validates the clustering logic of CITE-sort. GMM and
k-means++, on the other hand, lacks interpretability and thus ren-
ders their clustering results more difficult to verify.

Figure 9B presents the CITE-sort clustering result of PBMC_16k
in a 2D tSNE plot. Compared to GMM (Fig. 9D), CITE-sort cluster-
ing is more consistent with human-supervised manual clustering
(Fig. 9C). Further comparison shows that major cell types in PBMC
have highly consistent scopes in both CITE-sort (Fig. 9B) and man-
ual gating (Fig. 9C) clustering results, showcasing the accuracy of
CITE-sort in cell sorting.

Figure 10 illustrates the effectiveness of CITE-sort in segregat-
ing ACT clusters. In Figure 10B, we combine all hand-curated
ACT clusters into a single ACT class. We use GMM-Demux to
classify droplets into MSMs and SSDs (Fig. 10A). Comparing
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Fig. 9. (A) The single-cell sort tree of PBMC_16K. Each node represents a subpopulation. The title of each inner node represents the surface markers subspace for subdivision.

Red and blue colors represent the two parts in bi-partition. Edges are colored accordingly. Leaf nodes are hand curated and are annotated with domain knowledge. Cell types
that should not exist are labeled as suspect ACT clusters. Suspect ACT clusters are characterized by their population percentages in the overall dataset (denoted by ‘prop’) and
their MSM percentages (denoted by ‘MSM’). (B) CITE-sort clustering result. (C) Manual clustering result. (D) GMM clustering result. All clustering results are projected over
the tSNE-transformed 2D surface marker pane. iNK, intermediate CD16~ NK cells; mNK, vast majority of NK cells; C-mono, classical monocytes; NC-mono, non-classical
CD16" monocytes; DC, dendritic cell; mDC, myeloid dendritic cell; DNT, double negative T cells
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Fig. 10. tSNE visualization of (A) MSMs identified through cell hashing, (B) suspect
ACT clusters identified by CITE-sort and (C) doublets identified by scrublet. The x
and y axis are the first and second dimensions, respectively, given by tSNE.
Percentages of ACTs/doublets identified by CITE-sort/scrublet are presented in the
top right corner

Figure 10A and B, we observe that the combined ACT super-
cluster accurately outlines major MSM-rich regions. As previous-
ly discussed, high MSM concentrations in suspect ACT clusters
and low concentration of MSMs in BCT clusters prove the
accuracy of CITE-sort in segregating ACT clusters from BCT
clusters.

We also compared the ACT annotation over CITE-sort against
an RNA-based doublet identification method, scrublet (Wolock
et al., 2019). The classification result of scrublet is shown in
Figure 9C. Scrublet identifies doublets by analyzing the RNA ex-
pression profile of a scRNA-seq experiment. It simulates artificial
doublets from the dataset and checks if a droplet has an expres-
sion profile that matches the expression profile of any simulated
doublet. Comparing to Figure 9B, Figure 9C only highlights a
fraction of the multiplets (19.3% versus 6.4%) and completely
misses a few doublet clusters (highlighted in circles). Since it
leaves a large number of ACTs unidentified, it denies the possibil-
ity of clustering droplets after removing all ACTs. Removing all
MSMs is also insufficient. Not all droplets in ACT clusters are
MSMs while not all droplets in BCT clusters are SSDs. Removing
MSMs does not completely erase ACT clusters. Other doublet re-
moval tools, such as GMM-Demux requires pre-preparation of
droplets into clusters and can only checks if an entire cluster is an
ACT cluster. Overall, CITE-sort is the only ACT-aware CITE-seq
clustering method.

In addition to PBMC_16k, we also tested CITE-sort on the other
seven CITE-seq datasets. We benchmarked CITE-sort against GMM
and its variants. Detailed description of each method and results are
provided in the Supplementary Method S1. Unfortunately, without
cell hashing, we are unable to benchmark the accuracy of ACT clas-
sifications by CITE-sort. Instead, we measure the likelihood of the
final model in describing the distributions of the datasets. CITE-sort
achieves the highest likelihood in all datasets and terminates in com-
parable time against other methods.

5 Discussion

CITE-sort is the first ACT-aware surface marker clustering method
for CITE-seq datasets. CITE-sort specifically targets datasets where
clusters in high-dimensional space collapse into fewer, more bal-
anced clusters in low-dimensional subspaces. CITE-sort is not a
universal clustering method. While it is possible to construct data-
sets where CITE-sort produces inferior clustering results than
GMM; or CITE-sort has to scan through a large number of low-
dimensional subspaces before finding a qualifying candidate, in
real CITE-seq datasets, most cell types collapse into very few
Gaussian components when viewed in any single or dual surface
marker subspaces. In fact, popular manual gating tools, such as
FlowJo (Tree Star, Inc., 2020) and Kaluza (Beckman Coulter,
2020) are built upon this observation where cells are always
grouped into few Gaussian clusters when viewed in low dimensions
(usually in 2D). Given these characteristics of CITE-seq datasets,
CITE-sort is able to scale to higher dimensional surface marker
spaces, even as the number of surface markers grows up to 100 and
beyond in future CITE-seq datasets.

6 Conclusion

In this article, we introduced CITE-sort, an interpretable clustering
framework for CITE-seq datasets, which groups droplets into clus-
ters in an unsupervised manner. CITE-sort is robust to ACT that
stem from multiplets. CITE-sort is the first clustering method for
CITE-seq that is aware of ACT. CITE-sort generates biologically
meaningful interpretations to its clustering results. We applied
CITE-sort on both real and simulated CITE-seq datasets and show
that CITE-sort not only outperforms canonical clustering methods
in accuracy, but also generates a single cell sort tree, which helps in
annotating cell types, validating clustering results and identifying
artificial-type droplet clusters.

Funding

This work was supported by National Institutes of Health [ROTHL137709 to
W.C. and K.C.]; and National Natural Science Foundation of China
[61922047, 81890993 and 61721003].

Conflict of Interest: none declared.

References

Aevermann,B.D. et al. (2018) Cell type discovery using single-cell transcrip-
tomics: implications for ontological representation. Human Mol. Genet.,
27,R40-R47.

Ahmed,R. et al. (2019) A public BCR present in a unique
dual-receptor-expressing lymphocyte from type 1 diabetes patients encodes
a potent T cell autoantigen. Cell, 177,1583-1599.e1516.

Barcenilla,H. ez al. (2019) Mass cytometry identifies distinct subsets of regula-
tory T cells and natural killer cells associated with high risk for type 1 dia-
betes. Front. Immunol., 10, 982.

Beckman Coulter. (2020) Kaluza. http://www.beckmancoulter.com (10
January 2020, date last accessed).

Bholowalia,P. and Kumar,A. (2014) EBK-means: a clustering technique based
on elbow method and k-means in WSN. Int. J. Comput. Appl., 105, 17-24.

Blei,D.M. and Jordan,M.I. (2006) Variational inference for Dirichlet process
mixtures. Bayesian Anal., 1,121-143.

Bouveyron,C. et al. (2019) Model-Based Clustering and Classification for
Data Science: With Applications in R. Cambridge University Press,
Cambridge.

Cuevas-Diaz Duran,R. et al. (2017) Single-cell RNA-sequencing of the brain.
Clin. Transl. Med., 6, 20.

Cui,Y. et al. (2019) Single-cell transcriptome analysis maps the developmental
track of the human heart. Cell Rep., 26, 1934-1950.e1935.

Goriir,D. and Rasmussen,C.E. (2010) Dirichlet process Gaussian mixture
models: choice of the base distribution. J. Comput. Sci. Technol., 25,
653-664.

Hennig,C. (2010) Methods for merging Gaussian mixture components. Adv.
Data Anal. Classif., 4, 3-34.

Kharchenko,P.V. et al. (2014) Bayesian approach to single-cell differential ex-
pression analysis. Nat. Methods, 11, 740-742.

Kiselev,V.Y. et al. (2019) Challenges in unsupervised clustering of single-cell
RNA-seq data. Nat. Rev. Genet., 20,273-282.

Klein,A.M. and Treutlein,B. (2019) Single cell analyses of development in the
modern era. Development, 146, dev181396.

Krawczyk,B. (2016) Learning from imbalanced data: open challenges and fu-
ture directions. Progr. Artif. Intell., 5,221-232.

Landhuis,E. (2018) Single-cell approaches to immune profiling. Nature, 557,
595-597.

Li,W.V. and LiJ.J. (2018) An accurate and robust imputation method
scImpute for single-cell RNA-seq data. Nat. Commun., 9, 1-9.

Lu,Y. et al. (2019) Bayes imbalance impact index: a measure of class imbal-
anced dataset for classification problem. IEEE Trans. Neural Netw. Learn.
Syst., 1,1-13.

Ma,]. et al. (2000) Asymptotic convergence rate of the EM algorithm for
Gaussian mixtures. Neural Comput.,12,2881-2907.

Macosko,E.Z. et al. (2015) Highly parallel genome-wide expression profiling
of individual cells using nanoliter droplets. Cell, 161, 1202-1214.

Maecker,H.T. et al. (2012) Standardizing immunophenotyping for the human
immunology project. Nat. Rev. Immunol., 12,191-200.


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa467#supplementary-data
http://www.beckmancoulter.com

i550

Q.Lian et al.

McGinnis,C.S. et al. (2019) DoubletFinder: doublet detection in single-cell
RNA sequencing data using artificial nearest neighbors. Cell Syst., 8,
329-337.e324.

Naim,I. and Gildea,D. (2012) Convergence of the EM algorithm for Gaussian
mixtures with unbalanced mixing coefficients. In: Proceedings of the 29th
International Conference on Machine Learning (ICML-12), pp. 1655-1662.
Edinburgh, Scotland.

Ortega,M.A. et al. (2017) Using single-cell multiple omics approaches to re-
solve tumor heterogeneity. Clin. Transl. Med., 6, 46.

Romano,S. et al. (2016) Adjusting for chance clustering comparison measures.
J. Mach. Learn. Res., 17,4635-4666.

Schiller,H.B. et al. (2019) The Human Lung Cell Atlas: a high-resolution refer-
ence map of the human lung in health and disease. Am. J. Respir. Cell Mol.
Biol., 61, 31-41.

Schwaber,]. et al. (2019) Shedding light: the importance of reverse transcrip-
tion efficiency standards in data interpretation. Biomol. Detect. Quantif.,
17,100077.

Spitzer,M.H. and Nolan,G.P. (2016) Mass cytometry: single cells, many fea-
tures. Cell, 165, 780-791.

Stegle,O. et al. (2015) Computational and analytical challenges in single-cell
transcriptomics. Nat. Rev. Genet., 16, 133-145.

Stoeckius,M. et al. (2017) Simultaneous epitope and transcriptome measure-
ment in single cells. Nat. Methods, 14, 865-868.

Stoeckius,M. et al. (2018) Cell hashing with barcoded antibodies enables multi-
plexing and doublet detection for single cell genomics. Genome Biol., 19, 224.

Sun,Z. et al. (2019) A Bayesian mixture model for clustering droplet-based sin-
gle-cell transcriptomic data from population studies. Nat. Commun., 10,
1649.

Tree Star, Inc. (2020) Flow]o. http://www.flowjo.com/vX/en/ws.boolean.html
(5 January 2020, date last accessed).

Van Der Maaten,L. (2014) Accelerating t-SNE using tree-based algorithms. J.
Mach. Learn. Res., 15,3221-3245.

Verschoor,C.P. et al. (2015) An introduction to automated flow cytometry
gating tools and their implementation. Front. Immunol., 6, 380.

Wagner,]. et al. (2019) A single-cell atlas of the tumor and immune ecosystem
of human breast cancer. Cell, 177, 1330-1345.e1318.

Wolf,F.A. et al. (2018) SCANPY: large-scale single-cell gene expression data
analysis. Genome Biol., 19, 15.

Wolock,S.L. et al. (2019) Scrublet: computational identification of cell dou-
blets in single-cell transcriptomic data. Cell Syst., 8,281-291.e289.

Xin,H. et al. (2019) Sample demultiplexing, multiplet detection, experiment
planning and novel cell type verification in single cell sequencing. bioRxiv,
2019, 828483. doi:10.1101/828483.

Xuan,L. et al. (2013) Exploring of clustering algorithm on class-imbalanced
data. In: 2013 8th International Conference on Computer Science &
Education, pp. 89-93. IEEE. Colombo, Sri Lanka.

Zhao,R. et al. (2020) Statistical convergence of the EM algorithm on Gaussian
mixture models. Electron. |. Statist., 14, 632-660.


http://www.flowjo.com/vX/en/ws.boolean.html

