
Research Article
On the Effectiveness of Nature-Inspired
Metaheuristic Algorithms for Performing Phase Equilibrium
Thermodynamic Calculations

Seif-Eddeen K. Fateen1 and Adrian Bonilla-Petriciolet2

1 Department of Chemical Engineering, Cairo University, Giza 12316, Egypt
2 Department of Chemical Engineering, Aguascalientes Institute of Technology, 20256 Aguascalientes, AGS, Mexico

Correspondence should be addressed to Seif-Eddeen K. Fateen; fateen@eng1.cu.edu.eg

Received 27 March 2014; Accepted 30 April 2014; Published 20 May 2014

Academic Editor: Xin-She Yang

Copyright © 2014 S.-E. K. Fateen and A. Bonilla-Petriciolet.This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium problems in
applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and efficiency of
eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium problems. These
algorithms are the cuckoo search (CS), intelligent firefly (IFA), bat (BA), artificial bee colony (ABC), MAKHA, a hybrid between
monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES), magnetic charged system
search (MCSS), and bare bones particle swarm optimization (BBPSO). The results clearly showed that CS is the most reliable of all
methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising nature-inspired
optimization method to perform applied thermodynamic calculations for process design.

1. Introduction

Applied thermodynamic calculations in chemical engineer-
ing often involve the repeated solution of phase stability and
phase equilibrium problems as their solutions are needed
during the design of several equipment and separation pro-
cesses. These problems can be formulated as minimization
problems, for which the global minimum represents the
required result. These calculations are challenging due to the
high nonlinearity of thermodynamicmodels used to describe
the equilibrium phases, the potential nonconvexity of the
thermodynamic functions used as objective, and the presence
of trivial solutions in the feasible search space. Thus, the
solution of this type of problems via global optimization
algorithms remains to be an active area of research. These
problems generally feature local minima that are comparable
to the global minimum, which accentuates the need for
reliable global optimizers [1, 2]. For example, the features of
reactive phase equilibrium calculations increase the dimen-
sionality and complexity of the optimization problembecause

the objective functions are required to satisfy the chemical
equilibrium constraints [1, 2].

The global stochastic optimization methods show high
probabilities to locate the global minimumwithin reasonable
computational costs, and thus they offer a desirable balance
between reliability and efficiency for finding the global
optimum solution. Moreover, stochastic methods do not
require any assumptions for the optimization problem at
hand, are more capable of addressing the nonlinearity and
nonconvexity of the objective function, and are relatively
easier to program and implement, among other advantages
[3].

The application of stochastic global optimization meth-
ods for solving phase equilibrium thermodynamic problems
has grown considerably during last years. To date, the most
popular stochastic global optimization methods have been
used and applied for solving phase equilibrium thermody-
namic problems, for example, simulated annealing, genetic
algorithms, tabu search, differential evolution, particle swarm
optimization, and ant colony optimization (ACO) [4–15].
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For example, a variant of ACO was tested in the global
optimization of thermodynamic problems and was found
to be robust in solving vapor-liquid equilibrium parameter
estimation problems [4]. Zhu et al. [5] used an enhanced sim-
ulated annealing algorithm to solve multicomponent phase
stability problems. Bonilla-Petriciolet and his coworkers
compared different variants of PSO [6] and different variants
of simulated annealing [14] for solving phase equilibrium
problems. Repulsive particle swarm optimization was also
studied by Rahman et al. [8]. Rangaiah and his co-workers
studied the differential evolution [9, 10], tabu search [11], and
genetic algorithms [12] for solving phase stability and phase
equilibrium problems.

The above studies have analyzed the capabilities and
limitations of stochastic optimizers. But there exists no
conclusive evaluation of those methods in comparison to one
another for the solution of phase stability and phase equilib-
rium problems. Typically, each algorithm is introduced and
compared with some of the other algorithms in a research
publication. However, to the best of our knowledge, there
exists no study that presents to the scientific community a
ranking of the efficiency and reliability of those algorithms
for the purpose of solving phase equilibrium and stability
problems.

The aim of this study is provide a definitive ranking of
the performance of a set of nature-inspired metaheuristic
algorithms. To do so, we have selected eight of the most
promising nature-inspired optimization methods based on
the performance reported in the literature or obtained from
our previous studies. These algorithms are cuckoo search
(CS), intelligent firefly (IFA), bat (BA), artificial bee colony
(ABC), monkey and krill herd hybrid (MAKHA), covariance
matrix adaptation evolution strategy (CMAES), magnetic
charged system search (MCSS), and bare bones particle
swarm optimization (BBPSO). We systematically used those
methods on some of the difficult phase stability and phase
equilibrium problems reported in the literature and then
analyzed their performance in terms of clear reliability and
efficiency metrics.

The remainder of this paper is organized as follows. The
eight optimization methods and the rationale for their selec-
tion are briefly presented in Section 2. A brief description
of the phase stability and equilibrium problems is given in
Section 3, including the implementation details of the eight
algorithms. Section 4 presents the results and discussion of
their performance in solving these thermodynamic calcula-
tions. Finally, the conclusions of this study are summarized
in Section 5.

2. Selection and Description of the Nature-
Inspired Metaheuristic Algorithms

Each of the eight selected metaheuristics is presented below.
Only brief introductions aremade here. Interested readers are
referred to the primary sources of those algorithms for more
information.

Cuckoo search (CS) is an optimization algorithm inspired
by the obligate brood parasitism of some cuckoo species

by laying their eggs in the nests of other host birds [16].
Intelligent firefly algorithm (IFA) [17] is a variant of firefly
algorithm [18], a metaheuristic algorithm, inspired by the
flashing behavior of fireflies to attract other fireflies.MAKHA
is a hybrid between monkey algorithm (MA) [19], which
is inspired by the simulation of the climbing processes of
monkeys to find the highest mountaintop, and krill-herd
algorithm (KHA) [20], which is based on the simulation of
the herding behavior of krill individuals. Covariance matrix
adaptation evolution strategy (CMAES) [21] is a stochastic
and derivative free method for numerical optimization of
nonlinear nonconvex problems. Artificial bee colony (ABC)
[22] is an optimization algorithm based on the intelligent
foraging behavior of honey bee swarm. Bat algorithm (BA)
[23] is another bioinspired optimization algorithm based on
the echolocation behavior of microbats with varying pulse
rates of emission and loudness. Magnetic charged system
search (MCSS) [24] is a variant of charged system search [25],
which is based on the application of physics principles such
as Coulomb law and Newtonian laws of mechanics to model
how charged particles affect one another during their move
towards the largest bodies. InMCSS, magnetic forces are also
considered in addition to electrical forces. Finally, a variant
of bare bones particle swarm optimization (BBPSO) [26] is
based on the original particle swarm optimization [27], but
without parameters and with the incorporation of mutation
and crossover operators of DE to enhance the global search
capability.

Since it was not possible to include all global stochastic
optimizationmethods available in the literature for this com-
parative study, a screening process was performed to select
the most promising ones. This process depended mainly on
the results of solving phase stability and phase equilibrium
problems using global optimization methods as reported in
the literature. In several publications, limited comparisons
were reported between some GSO methods. For example,
CMAES was selected as it was shown to perform better than
shuffled complex evolution in solving phase equilibrium and
phase stability problems [28]; IFA performed better than
FA in general [17], CS better than integrated differential
evolution [29], MCSS better than CSS for phase equilibrium
and phase stability problems [30], and BBPSO better than
PSO [26]. In addition, our preliminary calculations showed
thatMAKHAperformed better thanMA andKHA, andABC
and BA performed better than FA.

One approach to solving phase stability and phase equi-
librium problems is to start the optimization process with
a stochastic global optimizer, as the methods studied in
this work. Once a certain stopping criterion is satisfied, we
follow with a local optimizer, such as sequential quadratic
programming, to close down to the minimum within the
vicinity of the best value found by the global optimizer. This
approach has been proven successful in previous studies [28–
30] and it would complement any of the methods studied
above. However, we restricted this study to the performance
of the stochastic global optimizers without the use of a local
optimizer to focus on the strength and weakness of the
studiedmethods free from any artificial enhancement of their
results.
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3. Description of Phase Stability and
Phase Equilibrium Problems Used for
the Evaluation

3.1. Objective Functions. In this study, the phase stability and
equilibrium problems are stated as a global optimization
problem. Therefore, the global optimization problem to be
solved is as follows:minimize𝐹(X) with respect to𝐷 decision
variables: X = (𝑋

1
, . . . , 𝑋

𝐷
). The upper and lower bounds

of these variables are (𝑋1max, . . . , 𝑋
𝐷

max) and (𝑋
1

min, . . . , 𝑋
𝐷

min),
respectively.

The phase stability, phase equilibrium, and reactive phase
equilibrium calculations for testing the performance of global
optimization methods are explained briefly in Table 1, which
shows the problem formulation, objective function, decision
variables, and constraints used for those thermodynamic
calculations. Specifically, the phase stability analysis was
performed using the globalminimization of the tangent plane
distance function (TPDF) [31], while the global optimization
of the Gibbs free energy was used for phase equilibrium cal-
culations with or without chemical reactions [2]. The mathe-
matical formulation for phase stability and phase equilibrium
calculations for nonreactive systems is an unconstrained
minimization of the objective function, while the constrained
Gibbs free energy minimization in reactive systems was
performed using the penalty function method according to
the approach reported by Bonilla-Petriciolet et al. [1]. For
interested readers, several references provide a detailed
description of these thermodynamic calculations [1, 2, 4, 10,
12].

Previouswork reported the evaluation of global optimiza-
tion methods for solving twenty-four problems [4, 28, 30].
In this work, we focused on the nine most difficult ones. The
basis for the selection was the relatively lower success rates
that optimization methods obtained when solving them in
the previous studies.These problems are presented in Table 2.

3.2. Details of Numerical Implementation and Performance
Metrics Used for Testing the Algorithms. All thermodynamic
problems and the different optimization algorithms were
coded in the MATLAB technical computing environment.
The codes for CS and BA were obtained from MATLAB file
exchange server as uploaded by their developers and used
without change. The code for IFA was developed by the
authors throughminormodifications of the FA code that was
obtained from the MATLAB file exchange server as well. The
codes for CMAES and ABC were obtained from the develop-
ers’ web sites and used without change. The code for MCSS
was written by the authors based on the developer’s published
work [24, 25]. MAKHA was developed and coded by the
authors.The code for BBPSOwas obtained from its developer
[26]. Each problem was solved 30 times independently and
with different random initial seeds to determine the reliability
of the optimization algorithms. Calculations were performed
for a certain number of iterations and then stopped. This
maximum value for the number of iterations was different for
different algorithms. The maximum values were selected to
give the same number of function evaluations at the end of

the run. Table 3 shows the values selected for the parameters
of the eight optimization algorithms, which were determined
using preliminary calculations.

The methods were evaluated according to the reliability
and efficiency for finding the global optimum.The efficiency
is determined by recording the number of function evalu-
ations NFE for each optimization algorithm, where a low
value of NFE means a higher efficiency. Note that NFE is an
unbiased indicator of the computational costs required by a
certain algorithm and is independent of the host hardware. In
previous studies [1, 4, 6, 26, 28, 30], reliability was measured
by the success rate at certain number of iterations.The success
rate is defined as the ratio of number of runs in which
the global minimum was attained within a tolerance at this
iteration number to the total number of runs. In this work, we
present a different reliability metric: a plot of the average best
value against the number of function evaluations. The best
values are averaged over all the runs and plotted against NFE,
which is calculated at each iteration. Since theNFEneeded for
each iteration differs amongst the optimization methods, the
plot of average best value against NFE is a better indication of
reliability versus efficiency of the optimization method.

For a comparative evaluation of the global optimiza-
tion methods, we have employed performance profile (PP)
reported by Dolan and Moré [32], who introduced PP as
a tool for evaluating and comparing the performance of
optimization software. In particular, PP has been proposed to
represent compactly and comprehensively the data collected
from a set of solvers for a specified performance metric such
as the computing time or the number of function evaluations.
The PP plot allows visualization of the expected performance
differences among several solvers and comparing the quality
of their solutions by eliminating the bias of failures obtained
in a small number of problems.

Consider 𝑛
𝑠
solvers (i.e., optimization methods) to be

tested over a set of 𝑛
𝑝
problems. For each problem 𝑝 and

solver 𝑠, the performance metric 𝑡
𝑝𝑠

must be defined. In
our study, reliability of the stochastic method in accurately
finding the global minimum of the objective function is
considered as the principal goal, and hence the reliability
performance metric is defined as

𝑡
𝑝𝑠
= 𝑓calc − 𝑓

∗
, (1)

where 𝑓∗ is the known global optimum of the objective
function and𝑓calc is the mean value of that objective function
calculated by the metaheuristic over several runs. We have
also used another performance metric for the evaluation
of the efficiency of the method in obtaining the global
minimum. This metric is the minimum number of NFE
needed to reach with 10−5 of the global minimum.

For the performance metric of interest, the performance
ratio, 𝑟

𝑝𝑠
, is used to compare the performance on problem 𝑝

by solver 𝑠 with the best performance by any solver on this
problem. This performance ratio is given by

𝑟
𝑝𝑠
=

𝑡
𝑝𝑠

min {𝑡
𝑝𝑠
: 1 ≤ 𝑠 ≤ 𝑛

𝑠
}

. (2)
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Table 3: Selected values of the parameters used in the implementa-
tion of the eight nature-inspired metaheuristic algorithms.

Metaheuristic Parameter Selected value

MAKHA

𝑛 40𝐷
𝐵 0.5
𝐶 −0.1
𝐷 0.1
𝐷max 0
𝐶
𝑡

0.5
𝑉
𝑓

0.2
𝑊
𝑓

0.1

IFA

𝛼
𝑜

0.5
𝛽min 0.2
𝛾 1
𝑛 20𝐷
𝜙 0.05

CMAES 𝜎 0.2
𝑛 20𝐷

ABC
𝑛 20𝐷

Food number 𝑛/2

limit 100

BA
𝑛 20𝐷
𝐴 0.25
𝑟 0.5

MCSS

CMCR 0.95
PAR 0.1
𝑁 20𝐷

CMS 𝑛/4, if integer
𝑛/2, if 𝑛/4 is not integer

CS 𝑛 20𝐷
𝑝 0.25

BBPSO 𝑛 20𝐷

The value of 𝑟
𝑝𝑠

is 1 for the solver that performs the best
on a specific problem 𝑝. To obtain an overall assessment of
the performance of solvers on 𝑛

𝑝
problems, the following

cumulative function for 𝑟
𝑝𝑠
is used:

𝜌
𝑠
(𝜁) =

1

𝑛
𝑝

size {𝑝 : 𝑟
𝑝𝑠
≤ 𝜁} , (3)

where𝜌
𝑠
(𝜁) is the fraction of the total number of problems, for

which solver 𝑠 has a performance ratio 𝑟
𝑝𝑠
within a factor of

𝜁 of the best possible ratio.The PP of a solver is a plot of 𝜌
𝑠
(𝜁)

versus 𝜁; it is a nondecreasing, piecewise constant function,
continuous from the right at each of the breakpoints [32]. To
identify the best solver, it is only necessary to compare the
values of 𝜌

𝑠
(𝜁) for all solvers and to select the highest one,

which is the probability that a specific solver will “win” over
the rest of solvers used.

In our case, one PP plot compares how accurately the
stochasticmethods canfind the global optimumvalue relative
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Figure 1: The evolution of the mean best value calculated via the
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Figure 2: The evolution of the mean best value calculated via the
eight metaheuristics versus NFE for problem T8.

to one another, and so the term “win” refers to the stochastic
method that provides the most accurate value of the global
minimum in the benchmark problems used. The other PP
plot compares how fast the stochastic methods can find the
global minimum with a tolerance level of 10−5, so the term
“win”, in this case, refers to the method that reaches the
solution fastest for the problems used.

4. Results and Discussion

The results are presented in three different ways. For each
problem, themean best values are plotted versusNFE for each
of the eight algorithms. These plots are found in Figures 1–9.
TheminimumNFE required to reach a certain tolerance from
the known global minimum for each problem was calculated
and presented in Table 4. The performance profiles for the
reliability and efficiency metrics are shown in Figures 10 and
11, respectively. A detailed discussion of the results follows.
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4.1. Phase Stability Problems. Problem T7 is a nine-variable
phase-stability problem that is extremely difficult to solve.
The means of the minimum values obtained by all methods
were not close enough to the global minimum except for
CS. As shown in Figure 1 and Table 4, ABC and MCSS were
able to get to within 10−3 of the global minimum. On the
other hand, CS was able to find the global minimum down
to a tolerance of 10−7. To reach the global minimum within a
tolerance of 10−5, it required 109280 function evaluations.
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Figure 11: Performance profile (PP) of the efficiency metric of
the eight metaheuristics for the 9 phase stability and equilibrium
problems.

Problem T8 is also a difficult phase stability problem.
Figure 2 shows how all problems were able to reach values
close to the global optimum. However, close analysis at the
vicinity of the global minimum, as depicted in the inset of
Figure 2, at the level of 10−5, revealed that MAKHA and
BA failed to find the global minimum up to the end of
the runs. CMAES was the most efficient as it converged
to the global minimum in the least NFE by at least one
order of magnitude. None of the methods was able to
reach within 10−6 of the global minimum, as shown in
Table 4.

Problem T9 is the last of the three phase stability prob-
lems. Even though, MAKHA was quite fast in approaching
the global minimum, as depicted in Figure 3, it failed at
converging to within 10−5 of the global minimum. IFA was
also not able to find the global minimum. CMAES was the
most efficient method in getting down to 10−5 distance from
the global minimum but was not able to get any closer. CS,
again, was the only method to converge reliably down to 10−7
of the global minimum.

For the phase stability problems, CS is clearly the most
reliable method. It may not be as efficient in its initial
approach to the global minimum as other methods such as
BA or CMAES, but it outperforms the rest in terms of finding
the global minimum. An open area of development for CS
would be to make it more efficient via hybridization with
some of the other methods in their initial approach to the
global minimum.
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Table 4: Minimum NFE for the average best value to reach 1E-3, 1E-4, 1E-5, 1E-6, and 1E-7 from the known global minimum.

Metaheuristic 𝜀
Phase equilibrium thermodynamic problem

T7 T8 T9 G4 G6 G7 G8 R4 R7

MAKHA

1E-3 ∞ 2164 601 121 301 481 4328 ∞ 10845
1E-4 ∞ 45444 1803 121 602 4329 39493 ∞ 40006
1E-5 ∞ ∞ ∞ 484 903 ∞ ∞ ∞ 40488
1E-6 ∞ ∞ ∞ 2299 1806 ∞ ∞ ∞ 40729
1E-7 ∞ ∞ ∞ 2783 ∞ ∞ ∞ ∞ 41211

IFA

1E-3 ∞ 8820 1400 40 400 1600 19980 17300 9440
1E-4 ∞ 24840 5200 40 3500 18880 36720 ∞ 14480
1E-5 ∞ 39600 ∞ 1040 9000 ∞ 52560 ∞ 20080
1E-6 ∞ ∞ ∞ ∞ 15400 ∞ 73260 ∞ 25040
1E-7 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 30160

CMAES

1E-3 ∞ 3961 201 41 101 161 3961 ∞ ∞

1E-4 ∞ 5761 201 41 101 2721 5401 ∞ ∞

1E-5 ∞ 7381 5801 ∞ 101 4801 7021 ∞ ∞

1E-6 ∞ ∞ ∞ ∞ 101 8641 8821 ∞ ∞

1E-7 ∞ ∞ ∞ ∞ 2401 11681 10621 ∞ ∞

ABC

1E-3 9840 8010 4100 60 850 2480 6570 9750 9560
1E-4 ∞ 12150 9700 60 1950 7920 11790 24959 48236
1E-5 ∞ 17010 21500 1220 3850 34644 19530 ∞ ∞

1E-6 ∞ ∞ 58104 12460 8650 ∞ 27990 ∞ ∞

1E-7 ∞ ∞ ∞ 33092 ∞ ∞ 41850 ∞ ∞

BA

1E-3 ∞ 1980 400 80 200 320 1800 ∞ ∞

1E-4 ∞ 2340 400 80 200 5760 3240 ∞ ∞

1E-5 ∞ ∞ 43200 6960 400 ∞ 16920 ∞ ∞

1E-6 ∞ ∞ ∞ 8400 3700 ∞ ∞ ∞ ∞

1E-7 ∞ ∞ ∞ 8440 ∞ ∞ ∞ ∞ ∞

MCSS

1E-3 87520 35640 800 40 400 640 26460 ∞ 21200
1E-4 ∞ 80820 6200 40 1100 36800 104400 ∞ 34160
1E-5 ∞ 178920 78000 3520 3300 157600 ∞ ∞ 64320
1E-6 ∞ ∞ ∞ 7880 11000 ∞ ∞ ∞ ∞

1E-7 ∞ ∞ ∞ 9120 49600 ∞ ∞ ∞ ∞

CS

1E-3 41440 17460 7400 120 1700 7840 22140 16100 10640
1E-4 79200 35100 11800 120 4100 26400 44820 30900 17680
1E-5 109280 61380 57400 1160 5500 52960 74700 50300 30000
1E-6 132640 ∞ 93400 3480 6700 93280 112500 70300 39760
1E-7 155040 ∞ 131400 4440 24100 140000 152820 87300 53840

BBPSO

1E-3 ∞ 9900 2800 40 600 1760 7380 ∞ 9440
1E-4 ∞ 14040 7400 40 1700 12640 11340 ∞ 17920
1E-5 ∞ 18720 21600 920 3300 ∞ 15300 ∞ 21440
1E-6 ∞ ∞ ∞ 2200 6000 ∞ 19080 ∞ 23360
1E-7 ∞ ∞ ∞ 5120 ∞ ∞ 22500 ∞ 28400

4.2. Phase Equilibrium Problems. Problem G4 is a two-
variable phase equilibrium problem that is relatively easy to
solve. However, CMAES seemed to have been trapped in a
local minimum and was unable to find its global minimum,
within a tolerance of 10−5, as shown in Figure 4. IFA did
slightly better than CMAES, but was unable to reach the
global minimumwithin a tolerance of 10−6. MAKHAwas the
most efficient in finding the global minimumwithin 10−6 and
10−7, with BBPSO and CS performing quite well.

Despite the fact that CMAES was not able to solve
problem G4, it was superior in solving problem G6. With
only 101 NFE, CMAES reached down to 10−6 of the global
minimum, as is shown in Figure 5. All methods converged
to 10−6 from the global minimum, but only CMAES, CS, and
MCSS converged to 10−7, with CMAES being ten times more
efficient. This convergence pattern was repeated in problem
G7.OnlyCMAES andCS solved the problemdown to the 10−6
and 10−7 levels, with CMAES being one order of magnitude
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more efficient, as is clear in Figure 6 and Table 4. MAKHA,
BA, and BBPSO were not able to converge at the 10−5 level.

Problem G8 was successfully solved at the 10−5 level
by IFA, CMAES, ABC, BA, CS, and BBPSO, as shown in
Figure 7. Only CMAES and CS solved the problem down to
the 10−7 levels, with CMAES being one order of magnitude
more efficient. In fact, CMAES was quite efficient at all
tolerance levels, as shown by the NFE numbers in Table 4.

The convergence profiles of the four phase equilibrium
problems (G4, G6, G7, and G8) indicated that CS is the most
reliable of all algorithms as it was the only one to be able to
solve all problems down to the 10−7 tolerance level. CMAES
was the most efficient as it required one order of magnitude
less NFE to solve three of the four problems down to the
same tolerance level. However, CMAES failed to solve the
two-variable problem that was successfully solved by all other
methods, except IFA, down to the 10−7 level.

4.3. Reactive Phase Equilibrium Problems. Regardless of the
number of variables, the reactive phase equilibrium problems
are more difficult than the nonreactive phase equilibrium
problems because the chemical reaction equilibria con-
straints must be satisfied. Problem R4, see Figure 8, was
successfully solved down to the 10−5 tolerance level by CS,
which was also able to converge to the global minimum at
the 10−6 and 10−7 levels. MAKHA, CMAES, BA, MCSS, and
BBPSO were not able to arrive even at a level of 10−3 from the
global minimum. Similarly, CMAES and BA were not able to
reach the 10−3 level for Problem R7. However, MAKHA, IFA,
CS, and BBPSO converged down to 10−7 distance from the
global minimum, with IFA being the most efficient down to
the 10−5 level and BBPSO at the 10−6 and 10−7 levels.

The complete failure of CMAES to solve reactive phase
equilibrium problems is remarkable. CMAES functions
extremely well in certain types of problems and extremely
bad in others. On the other hand, CS solved the reactive
phase equilibrium problems just as it reliably solved all other
problems in this study. Since CS uses Lévy walk, instead of
random walk, in its global search, it can explore the search
space more efficiently and avoid entrapment in local minima,
as was demonstrated by our results. However, CS requires
significantly large NFE to allow it to converge to the global
minimum. Any attempt to improve CS performance should
target its slow convergence behavior.

Our results are summarized in the PP plots of Figures
9 and 10. The reliability ranking, as extracted from the
reliability PP plot of Figure 9, is as follows. CS is the most
reliable, followed by CMAES, BBPSO, and MCSS, on the
second level. The third level contains MAKHA, ABC, IFA,
and BA, in that order. The efficiency ranking starts with
CMAES, BBPSO, and ABC.The second level contains CS and
IFA. The third level contains BA, MAKHA, and MCSS.

5. Conclusions

In this study, we have selected eight promising nature-
inspired metaheuristic algorithms for the solution of nine

difficult phase stability and phase equilibrium problems.
These thermodynamic problems were systematically solved
by the different metaheuristics and the results were tracked
and compared. The results clearly show that CS is the most
reliable of all tested optimization methods as it successfully
solved all problems down to the 10−5 tolerance from the
global minima. Any attempt to improve the performance
of CS should target its slow convergence behavior. Recently
developed CS variants [33] could provide more efficient
performance for the solution of phase stability and phase
equilibrium problems. These variants could be evaluated in
a future study in an attempt to find the most reliable and
efficient algorithm for this application. On the other hand,
CMAES was the most efficient in finding the solution for
the problems it was able to solve. However, it was not able
to converge to the global minimum for some of the tested
thermodynamic problems.

Nomenclature

𝐴: Parameter used in BA
ABC: Artificial bee colony
𝐵: Parameter used in MAKHA algorithm
BA: Bat algorithm
BBPSO: Bare bones particle swarm optimization
𝐶: Parameter used in MAKHA algorithm
CMAES: Covariance matrix adaptation evolution

strategy
CMCR: Parameter used in MCSS
CMS: Parameter used in MCSS
CS: Cuckoo search
𝐶
𝑡
: Empirical and experimental

constants—used in MAKHA
𝐷: Dimension of the problem, Parameter

used in MAKHA Algorithm
𝐷max: Maximum diffusion speed—used in

MAKHA
𝐹, 𝐹obj: Objective function
FA: Firefly algorithm
𝐺: Gibbs free energy
g∗: Global minimum
𝐼: A counter
𝑖, 𝑗: Index of the component, or index used in

an algorithm
IFA: Intelligent firefly algorithm
𝐾eq: Equilibrium constant
𝑚: Dimension of the problem, that is,

number of variables
MAKHA: Monkey Algorithm-Krill Herd Algorithm

hybrid
MCSS: Magnetic charged system search
𝑁: The number of iterations (criterion

maximum number)
𝑛: Population number
NFE: Number of function evaluations
𝑁max: Maximum induced speed
𝑁
𝑃
: Population size (number of points)

𝑛
𝑝
: Number of problems
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nref: Column vector of moles of each of the
reference components

𝑛
𝑠
: Number of solvers

NV: Dimension of the problem, that is,
number of variables

𝑝: Parameter used in CS
PP: Performance profile
𝑅: The half-range of boundaries between the

lower boundary and the upper boundary
of the decision variables (𝑋)—used in
MAKHA

𝑟: Parameter used in BA
𝑟
𝑝𝑠
: The performance ratio

TPDF: Tangent plane distance function
𝑡
𝑝𝑠
: Performance metric

𝑉
𝑓
: Foraging speed—used in MAKHA

𝑤
𝑓
: Inertia weight—used in MAKHA

𝑋: Decision variables
𝑥: Decision variables
𝑌: Decision variables
𝑦: Decision variables
𝑐: Number of components.

Greek Letters

𝜁: The simulating value of 𝑟
𝑝𝑠

𝜍: The counter of 𝜌 points
𝜁max: The maximum assumed value of 𝑟

𝑝𝑠

𝛽: Transformed decision variables used
instead of mole fractions

𝜀: Vector of random numbers in FA
𝜙: Fugacity coefficient, Fraction of top

fireflies to be utilized in the
move—Parameter used in IFA

𝛾: Activity coefficient, Parameter used in IFA
𝜋: Number of phases
𝜇: Chemical potential
𝛼
𝑜
: Parameter used in IFA

𝛽
𝑜
: Parameter used in IFA

𝜌: The cumulative probabilistic function of
𝑟
𝑝𝑠
and the fraction of the total number of

problems
𝜎: Parameter used in CMAES.

Subscripts

𝐹: Feed
𝐼: Index for the components in the mixture
min: Minimum value
𝑂: Initial value of the parameter
𝑦: At composition 𝑦
𝑧: At composition 𝑧.

Superscripts

0: Pure component.
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