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Abstract. Anesthetic agents are used in surgical operations 
to reversibly reduce consciousness and pain. Sevoflurane is 
an inhalational anesthetic. Propofol is a short‑acting intra-
venous general anesthetic. The mechanism of anesthetic 
agents at pathway level on individual patients has not been 
reported to date. In the present study, pathway aberrance in the 
human atrial tissue in response to anesthetics was examined. 
Microarray data of anesthesia‑treated samples were down-
loaded from the Array Express database. Pathway information 
was obtained from the Reactome Pathway Database. The 
individual pathway aberrance score (iPAS) was introduced 
to identify dysregulated pathways in individual patients. The 
present data demonstrated 157 dysregulated pathways in the 
sevoflurane group, and 44 pathways were identified with the 
least P‑values. A subset of 49 differentially expressed genes 
(DEGs) that were shared between the expression profiling 
results and the dysregulated pathways results were constructed 
into a co‑expression network. The top 5 ranked DEGs, nuclear 
receptor subfamily 4 group A member 3 (NR4A3), JUNB 
proto‑oncogene, MYC proto‑oncogene, tachykinin precursor 
1 and nicotinamide phosphoribosyltransferase, were identified 
as important in the topology analysis. In the propofol group, 
87 dysregulated pathways were identified and 44 pathways had 
the least P‑values. In total 28 DEGs were constructed into a 
co‑expression network, of which 5 DEGs were important in the 
topology analysis, NR4A3, suppressor of cytokine signaling 3, 
cyclin dependent kinase inhibitor 1A, C‑C motif chemokine 
ligand 2 and C‑X‑C motif chemokine ligand 1. A total of 72 
dysregulated pathways were identified in common in the two 
groups. In conclusion, the two types of anesthetics induced 
partially similar mechanisms. The pathways enriched by 
DEGs, particularly those that were unique to sevoflurane and 

propofol, may affect surgical outcomes and aid the prevention 
of complications from anesthetics.

Introduction

Anesthetic reagents are used in surgical operations to reduce 
consciousness and pain reversibly. They have been used 
for ~150 years due to their efficacy and safety (1). Sevoflurane 
is an inhalational anesthetic used for general anesthesia. It 
dissolves poorly in blood, and can be breathed out quickly by 
the lungs, providing rapid recovery. Propofol is a short‑acting, 
most commonly used, intravenous general anesthetic and 
it is administered as an alkylphenol formulated in a lipid 
emulsion (2). It dissolves from the blood to the surrounding 
tissues and central nerve systems quickly. In addition, propofol 
exhibits rapid clearance from the body (3). Since these two 
types of anesthetic are widely used in surgery, a better under-
standing of their effect in biological processes is warranted.

Although the study of Lucchinetti et al (4) provided insights 
into the gene expression effects mediated by anesthetics 
administration inhuman atrial tissues, pathway aberrance in 
individual patients remains unknown.

Gene‑based pathway analysis is becoming an important 
method for understanding disease mechanisms. Especially 
pathway analysis based on differentially expressed genes 
(DEGs) has become an important approach to study 
pathogenesis mechanisms in an individual sample (5). The 
analysis of altered pathways in an individual patient may 
help to understand the disease status and suggest customized 
therapies. Although the personalized interpretation of 
pathways can be demanding, most current pathway analyses 
have been developed to investigate deregulated pathways 
between two phenotype groups. Three methods were described 
by Khatri et al (6), overrepresentation analysis, functional 
class scoring and pathway topology‑based approach. They 
were mainly focused on pathway aberrance between normal 
samples and cancer samples, but not suitable for an individual 
sample. The method of individual pathway aberrance 
score (iPAS) proposed by Ahn et al (5), which is based on 
overrepresentation analysis and functional class scoring, 
provides a series of analyses steps, containing four parts: Data 
processing, gene‑level statistics, iPAS and a significance test, 
with the clinical importance of this method being to provide 
pathway interpretation of a single cancer sample.
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With the development of molecular biology and bioin-
formatics, network analysis has become a more informative 
and powerful approach to study disease mechanisms  (7). 
The relationship of disease to a specific network, especially 
a co‑expression network, provides valuable information to 
analyze gene regulation (8). The topological characteristics 
may reflect the properties of the network and may be used to 
investigate the underlying implications of the network.

To test the hypothesis that sevoflurane and propofol may 
induce pathway aberrance, microarray data of human atrial 
tissue treated with sevoflurane and propofol were examined 
separately. DEGs and individual pathway aberrance were 
identified using individual pathway analysis and co‑expression 
network analysis.

Materials and methods

Datasets
Gene expression data. Microarray data of E‑GEOD‑4386 (4), 
and its annotation file were downloaded from the Array 
Express database (http://www.ebi.ac.uk/arrayexpress/). The 
dataset includes 10 sevoflurane‑treated atrial tissues, 10 
propofol‑treated atrial tissues and 10 matched non‑anes-
thetic‑treated atrial tissues. The tissues were obtained from 
patients who underwent coronary artery bypass graft (CABG) 
surgery and were given the corresponding anesthetics. 
The sample platform that was used in the study was the 
A‑AFFY‑44‑Affymetrix Gene Chip Human Genome U133 
Plus 2.0 [HG‑U133_Plus_2]. According to platform annotation 
files, probes were mapped to gene symbols by filtering with 
the function of the feature Filter (9). The model description 
was as follows: We used (w, b) as the coefficients and intercept 
of L1 logistic regression.

� (1)

where L was the loss function, λ was a regularization parameter 
which had the ability to dispose high dimensional data, 
xn ϵRN was the n‑th feature and yn ϵ RN was the label of the 
n‑th sample. After performing ID transformation with the get 
SYMBOL function (10), 20,102 genes were obtained.

Pathway data. Information from gene sets representing 
biological pathways was obtained from the Reactome Pathway 
Database (http://www.reactome.org) (11). Pathways with large 
number of genes are more difficult to understand for human 
experts. Therefore, pathways with gene set size >100 were 
filtered out (5). Considering that information from different 
platform may vary, we filtered out the pathways that had no 
transformational gene symbols. Eventually 1,005 pathways 
were obtained, including 4,852 genes.

DEG analysis
DEG screening. At present, many methods are routinely 
used to screen for DEGs, including Linear Models for 
Microarray Data (Limma) (12), significant analysis of micro-
arrays (13), statistical methods for ranking (14), and R package 
siggenes (15) In the present study, the Limma package was 
selected to screen for DEGs. With this method, we obtained 
a P‑value for all the genes. The genes with log |fold change 

(FC)|≥2 and P≤0.01 were selected for further analysis. In total, 
269 DEGs were obtained from the sevoflurane samples, and 
129 DEGs were obtained from the propofol samples.

Co‑expression gene analysis. To explore the interactive 
relationship between genes under different conditions, differ-
entially co‑expressed genes were constructed using the DEGs, 
with the following functions in the weighted gene co‑expres-
sion network analysis (WGCNA) package (16).

	  � (2)

	 � (3)

	 � (4)

where sij is the absolute value of the correlation coefficient 
between the profiles of nodes i and j, aij encodes the network 
connection strength between nodes i and j, and τ is the ‘hard’ 
threshold parameter. A total of 180 co‑expression relationships 
(813 gene pairs) were identified when samples were treated 
with sevoflurane, and 119 co‑expression relationships (1,216 
gene pairs) with propofol. Then a network was constructed by 
linking atrial genes with the selected gene signatures using 
Cytoscape  (17), a free software package for visualizing, 
modeling and analyzing the integration of biomolecular inter-
action networks with high‑throughput expression data and 
other molecular states for further analysis in the topological 
characteristics.

Pathway analysis. Pathway analysis has become important in 
capturing clinical information. An iPAS model was introduced 
to identify altered pathways in an individual sample  (18). 
Normal tissue data were represented as nRef. The process of 
this analysis was described as follows.

Gene level statistics. Gene level statistics was described by 
Irizarry et al (19,20) by making use of multichip averages. 
Genes from normal samples were normalized by the function:

	  � (5)

where  represents the unit diagonal, and 
qk=(qk1,...,qkn ) for k=1,..., p represents the vector of the k‑th 
quantiles for all n arrays For normal controls, the mean and 
standard deviation of gene expression level were calculated. 
For individual tumor cases, quantile normalization was 
performed after combining the single tumor microarray with 
all nRef samples. The gene‑level statistics of individual tumor 
samples were standardized using the mean and standard 
deviation of the reference. The formula was:

	 �  (6)

where Zi indicates the standardized expression value of i‑th 
gene and n represents the number of genes belonging to the 
pathway (5).
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Pathway statistics. For each pathway, the pathway statistics is 
the average of all the gene level statistics which was extracted 
from the same pathway, calculated as:

	 � (7)

Where zi symbolizes the standardized expression value of i‑th 
gene belonging to the pathway, and n symbolizes the number 
of genes belonging to the pathway. The clinical characteristics 
of a single anesthesia sample can be obtained by measuring its 
difference against common characteristic of normal samples, 
which was represented as nRef in our study.

Dysregulated pathways. Significance test was performed to 
assess altered pathways associated with anesthetics admin-
istration. To assess the statistical significance, pathway 
statistics, were tested by the two‑group comparison method 
Wilcoxon (21), with the function of:

	  � (8)

	   � (9)

	  �  (10)

where n is the number of samples. The significance levels 
were revised by false discovery rate (FDR) (22). Finally, each 
pathway yielded a P‑value. A pathway with P<0.01 was consid-
ered to be significantly different between the anesthetics group 
and the normal group.

Individual altered pathway. Significance can be obtained 
against the null distribution generated from normal samples. 
The statistic of the null distribution was obtained by comparing 
every normal sample with all nRef samples. The P‑value of 
each pathway was obtained by comparing each anesthetic 
sample with the null distribution. P<0.05 was considered to be 
significant difference.

Analysis of DEGs in dysregulated pathways. DEGs in 
dysregulated pathways were mapped to co‑expression networks 
to analyze the co‑expression relationships among these DEGs. 
In the sevoflurane group, 49 DEGs were constructed into a 
network. In the propofol group, 28 DEGs were constructed 
into a network. The procedure for analysis of topological 
characteristics of the networks was performed with the 
following steps.

The degree for counting the number of interactions 
of a given node was measured as described  (23). Stress 
centrality (24) for the number of nodes in the shortest path 
between two other nodes was calculated as follows:

	  � (11)

Closeness centrality (24) for measuring the average length of 
the shortest paths to access all other proteins in the network 
was calculated with the function of

	  � (12)

Betweenness centrality (24) for determining how the neigh-
bors of a node are inter‑connected was calculated with the 
function of

	  � (13)

Where σst is the total number of shortest paths from node s 
to node t and σst (v) is the number of those paths that pass 
through v. dG (s, t) represents the length of the shortest path 
between two nodes s and t in graph G, which is the sum of the 
weights of all edges on this shortest path.

Stat ist ical analysis.  All data were expressed as 
mean ± standard deviation. The Student's t‑test was used for 
comparisons between groups unless otherwise noted. P<0.05 
was considered to indicate a statistically significant difference.

Results

DEG data analysis. In the sevoflurane group, 269 DEGs were 
identified with logFC≥2 and P≤0.01, and they were mapped to 
189 pathways. In the propofol group, 129 DEGs were identi-
fied, and they were overlapped to 140 pathways.

Dysregulated pathway analysis. Pathway statistics of 
anesthetic‑treated samples and normal samples were obtained 
by using the method of iPAS. The pathway statistics of the 
pathways in which most DEGs were participating were 
displayed in Figs. 1 and 2 to illustrate the difference between 
the two groups. Fig. 1 presents pathway statistics for each of 
the samples and controls for the ‘chemokine receptors bind 
chemokines’ pathway, as this was the pathway that most DEGs 
were associated with in the sevoflurane group, the P‑value 
for this pathway was P=0.002838. For the propofol group, 
the pathway that the most DEGs were associated with was 
the ‘signaling by TGF‑β receptor complex’, and the P‑value 
for this pathway was P=0.01213. However, although these 
two pathways had the highest number of DEGs that were 
associated with them, they did not exhibit the lowest P‑values 
in their respective treatment groups. In total, 157 dysregulated 
pathways with P<0.01 were identified in the sevoflurane group. 
Following ranking of the pathways by P‑value, the top 44 
pathways with the lowest P‑value (all P=0.000247) were listed 
in Table I. In the propofol group, 82 dysregulated pathways 
were obtained. Following ranking of the pathways by P‑value, 
the top 29 pathways with the lowest P‑value (all P=0.000375) 
were listed in Table II. Among these dysregulated pathways, 72 
dysregulated pathways were common between the two groups.

The dysregulated pathways were converted into a heatmap 
to help understand pathway aberrance in different samples. 
Heatmaps are commonly used in pathway analysis and are 
constructed as a visual aid to analyze dysregulated pathways. 
The heatmap of the dysregulated pathways in the sevoflurane 
group is illustrated in Fig. 3 and the heatmap of the dysregulated 
pathways in the propofol group is illustrated in Fig. 4, and two 
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Table I. The top 44 ranked dysregulated pathways in the sevoflurane group.

  		  DEG 
Pathway	 P‑value	 numbers	 Gene symbols

Activation of C3 and C5	 0.000247	 3	 C3, CFB, C2
Alternative complement activation	 0.000247	 2	 C3, CFB
Nicotinamide salvaging	 0.000247	 2	 NAMPT, PTGS2
Transcriptional activation of p53 responsive genes	 0.000247	 1	 CDKN1A
Vitamins B6 activation to pyridoxal phosphate	 0.000247	 1	 AOX1
Dissolution of Fibrin Clot	 0.000247	 3	 SERPINE1, PLAUR, PLAU
Activation of the AP‑1 family of transcription factors	 0.000247	 2	 FOS, JUN
Nicotinate metabolism	 0.000247	 2	 NAMPT, PTGS2
Tachykinin receptors bind tachykinins	 0.000247	 1	 TAC1
Transport of nucleosides and free purine and pyrimidine 	 0.000247	 1	 SLC28A3
bases across the plasma membrane
Vitamin D (calciferol) metabolism	 0.000247	 1	 LRP2
Growth hormone receptor signaling	 0.000247	 3	 SOCS3, CISH, SOCS2
Sema4D mediated inhibition of cell attachment 	 0.000247	 1	 RND1
and migration
Vitamin C (ascorbate) metabolism	 0.000247	 1	 SLC2A3
ATF4 activates genes	 0.000247	 3	 ATF3, IL8, CCL2
PERK regulates gene expression	 0.000247	 3	 ATF3, IL8, CCL2
Facilitative Na+‑independent glucose transporters	 0.000247	 1	 SLC2A3
Interleukin‑1 signaling	 0.000247	 3	 IL1RN, IRAK2, IL1B
MAP kinase activation in TLR cascade	 0.000247	 4	 IL6, FOS, JUN, IRAK2
SEMA3A‑Plexin repulsion signaling by inhibiting	 0.000247	 1	 RND1
Integrin adhesion
Tight junction interactions	 0.000247	 2	 CLDN15, CLDN1
MAPK targets/Nuclear events mediated by MAP kinases	 0.000247	 2	 FOS, JUN
SHC1 events in ERBB2 signaling	 0.000247	 2	 IL6, HBEGF
MyD88‑independent TLR3/TLR4 cascade	 0.000247	 5	 IL6, FOS, JUN, IRAK2, BIRC3
Toll Like Receptor 3 (TLR3) Cascade	 0.000247	 5	 IL6, FOS, JUN, IRAK2, BIRC3
TRIF‑mediated TLR3/TLR4 signaling	 0.000247	 5	 IL6, FOS, JUN, IRAK2, BIRC3
MyD88 cascade initiated on plasma membrane	 0.000247	 4	 IL6, FOS, JUN, IRAK2
Toll Like Receptor 10 (TLR10) Cascade	 0.000247	 4	 IL6, FOS, JUN, IRAK2
Toll Like Receptor 5 (TLR5) Cascade	 0.000247	 4	 IL6, FOS, JUN, IRAK2
TRAF6 mediated induction of NFκB and MAP	 0.000247	 4	 IL6, FOS, JUN, IRAK2
kinases upon TLR7/8 or 9 activation
MyD88 dependent cascade initiated on endosome	 0.000247	 4	 IL6, FOS, JUN, IRAK2
Toll Like Receptor 7/8 (TLR7/8) Cascade	 0.000247	 4	 IL6, FOS, JUN, IRAK2 
SHC1 events in EGFR signaling	 0.000247	 1	 IL6
Toll Like Receptor 9 (TLR9) Cascade	 0.000247	 4	 IL6, FOS, JUN, IRAK2
MyD88:Mal cascade initiated on plasma membrane	 0.000247	 4	 IL6, FOS, JUN, IRAK2
Toll Like Receptor 2 (TLR2) Cascade	 0.000247	 4	 IL6, FOS, JUN, IRAK2
Toll Like Receptor TLR1:TLR2 Cascade	 0.000247	 4	 IL6, FOS, JUN, IRAK2
Toll Like Receptor TLR6:TLR2 Cascade	 0.000247	 4	 IL6, FOS, JUN, IRAK2
SHC‑related events	 0.000247	 1	 IL6
Metabolism of steroid hormones and vitamin D	 0.000247	 1	 LRP2
HuR stabilizes mRNA	 0.000247	 0
Muscarinic acetylcholine receptors	 0.000247	 0
Regulation of insulin secretion	 0.000247	 0
Transport of nucleotide sugars	 0.000247	 0

DEG, differentially expressed gene.
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features are evident. First, with a few exceptions, the clinical 
samples can be divided into two major clusters in both figures, 
one representing normal samples, and the other representing 
anesthetic‑treated samples. In addition, dysregulated pathways 
varied significantly among the different anesthetic agents.

Analysis of DEGs in the dysregulated pathways. To analyze 
the DEGs involved in the dysregulated pathways, the genes 
were mapped into the corresponding co‑expression network, 
and then the interactive relationships and the topological 
characteristics of the DEGs were obtained. The interactive 
relationship networks are illustrated in Figs. 5 and 6 for the 
sevoflurane and the propofol groups, respectively.

For the sevoflurane group, 49 DEGs were constructed 
into a network (Fig.  5). In the network, only two genes 
were downregulated, Fanconi Anemia complementation 
group F and cingulin, but the two genes didn't relate with 
other DEGs (Fig. 5). All the other genes were upregulated 
at different extents. Amongst these, six genes, nuclear 
receptor subfamily 4 group A member 3 (NR4A3), MYC 
proto‑oncogene (MYC), tachykinin precursor 1 (TAC1), 
JUNB proto‑oncogene (JUNB), nicotinamide phospho-
ribosyltransferase (NAMPT) and interleukin 1 receptor 
antagonist (IL1RN), were central nodes of interactions, 
displaying the most complex relationships with the other 
DEGs.

Figure 1. Pathway statistics analysis in normal samples compared with 
sevoflurane samples. The x‑axis represents 10 sevoflurane‑treated atrial 
tissues and 10 matched non‑anesthetic‑treated atrial samples, and the y‑axis 
indicates the pathway statistics for normal and sevoflurane samples of 
the pathway that was associated with the highest number of differentially 
expressed genes, which was the ‘chemokine receptors bind chemokines’ 
pathway for sevoflurane. Pathway statistics values were calculated using the 
equation provided in the materials and methods.

Figure 2. Pathway statistics analysis in normal samples compared with 
propofol samples. The x‑axis represents 10 propofol‑treated atrial tissues and 
10 matched non‑anesthetic‑treated atrial samples, and the y‑axis indicates 
the pathway statistics for normal and propofol samples of the pathway that 
was associated with the highest number of differentially expressed genes, 
which was the ‘signaling by TGF‑β receptor complex’ for propofol. Pathway 
statistics values were calculated using the equation provided in the materials 
and methods. TGF, transforming growth factor‑β.

Figure 4. Pathway aberrance in the propofol group. Pathways (n=1,005) 
and samples (n=10 each for normal and sevoflurane‑treated samples) were 
clustered in the heatmap. Each column represents a sample and each row 
represents a pathway. The color intensity on the heat map corresponds to 
the absolute intensity of the gene expression. Red indicates lower expres-
sion levels; green indicates higher expression levels and white indicates the 
median value.

Figure 3. Pathway aberrance in the sevoflurane group. Pathways (n=1,005) 
and samples (n=10 each for normal and sevoflurane‑treated samples) were 
clustered in the heatmap. Each column represents a sample and each row 
represents a pathway. The color intensity on the heat map corresponds to 
the absolute intensity of the gene expression. Red indicates lower expres-
sion levels; green indicates higher expression levels and white indicates the 
median value.
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The topology properties of all the DEGs in the network 
were analyzed, including betweenness centrality, closeness 
centrality, degree and stress. Following ranking DEGs by 
their topology characteristics, the top five ranked genes were 
NR4A3, JUNB, MYC, TAC1 and NAMPT (Table III).

For the propofol group, 28 DEGs were constructed into 
the network, all of which were upregulated (Fig. 6). The genes 
encoding interleukin (IL) 6 and IL8 were the most highly 
upregulated compared with the other DEGs. The top five ranked 
genes by topology characteristics were NR4A3, suppressor of 
cytokine signaling 3 (SOCS3), cyclin dependent kinase inhibitor 
1A (CDKN1A), C‑C motif chemokine ligand 2 (CCL2) and 
C‑X‑C motif chemokine ligand 1 (CXCL1) (Table IV).

Discussion

In the present study, pathway aberrance induced by anesthetic 
treatment in patients who underwent cardiac surgery was 

analyzed. The microarray data used in the present study were 
based on a previously published study by Lucchinetti et al (4), 
and the aim was to identify altered pathways in individuals.

Sevoflurane and propofol were the experimental anesthetics 
involved in the data, as these are the most commonly used 
anesthetic agents in everyday clinical practice in several 
countries. Sevoflurane is a volatile anesthetic agent that is 
widely used by mask induction (25). Propofol is the intravenous 
anesthetic agent of choice in surgery, because of its favorable 
operating conditions and association with rapid recovery (26).

Pathway regulation patterns of samples treated with general 
anesthetic were distinct from those in the normal groups. 
With the iPAS method, anesthetic‑treated samples were 
analyzed for pathway aberrance. A total of 157 dysregulated 
pathways were obtained from the sevoflurane samples. There 
were 44 pathways significantly influenced (all P=0.000247) 
by sevoflurane treatment, such as the ‘activation of C3 and 
C5’ pathway, which participates in regulation of the immune 

Table II. The top 29 ranked dysregulated pathways in the propofol group.

 		  DEG
Pathway	 P‑value	 numbers	 Gene symbols

Nicotinamide salvaging	 0.000375	 2	 NAMPT, PTGS2
Transcriptional activation of p53 responsive genes	 0.000375	 1	 CDKN1A
Activation of the AP‑1 family of transcription factors	 0.000375	 2	 FOS, JUN
Nicotinate metabolism	 0.000375	 2	 NAMPT, PTGS2
Interleukin‑6 signaling	 0.000375	 2	 SOCS3, L6
ATF4 activates genes	 0.000375	 3	 ATF3, IL8, CCL2
ERK2 activation	 0.000375	 1	 IL6
PERK regulates gene expression	 0.000375	 3	 ATF3, IL8, CCL2
ERK1 activation	 0.000375	 1	 IL6
ERK activation	 0.000375	 1	 IL6
MAPK targets/Nuclear events mediated by MAP kinases	 0.000375	 2	 FOS, JUN
MAP kinase activation in TLR cascade	 0.000375	 4	 IL6, FOS, JUN, IRAK2
Regulation of IFNA signaling	 0.000375	 1	 SOCS3
MyD88 cascade initiated on plasma membrane	 0.000375	 5	 IL6, FOS, JUN, IRAK2, BIRC3
Toll Like Receptor 10 (TLR10) Cascade	 0.000375	 4	 IL6, FOS, JUN, IRAK2
Toll Like Receptor 5 (TLR5) Cascade	 0.000375	 4	 IL6, FOS, JUN, IRAK2
TRAF6 mediated induction of NFκB and MAP 	 0.000375	 4	 IL6, FOS, JUN, IRAK2
kinases upon TLR7/8 or 9 activation
MyD88 dependent cascade initiated on endosome	 0.000375	 4	 IL6, FOS, JUN, IRAK2
Toll Like Receptor 7/8 (TLR7/8) Cascade	 0.000375	 4	 IL6, FOS, JUN, IRAK2
Toll Like Receptor 9 (TLR9) Cascade	 0.000375	 4	 IL6, FOS, JUN, IRAK2
MyD88:Mal cascade initiated on plasma membrane	 0.000375	 4	 IL6, FOS, JUN, IRAK2
Toll Like Receptor 2 (TLR2) Cascade	 0.000375	 4	 IL6, FOS, JUN, IRAK2
Toll Like Receptor TLR1:TLR2 Cascade	 0.000375	 4	 IL6, FOS, JUN, IRAK2
Toll Like Receptor TLR6:TLR2 Cascade	 0.000375	 4	 IL6, FOS, JUN, IRAK2
MyD88‑independent TLR3/TLR4 cascade	 0.000375	 5	 IL6, FOS, JUN, IRAK2, BIRC3
Toll Like Receptor 3 (TLR3) Cascade	 0.000375	 5	 IL6, FOS, JUN, IRAK2, BIRC3
TRIF‑mediated TLR3/TLR4 signaling	 0.000375	 5	 IL6, FOS, JUN, IRAK2, BIRC3
Interleukin‑1 signaling	 0.000375	 3	 IL1RN, IRAK2, IL1B
ERKs are inactivated	 0.000375	 0	 0

DEG, differentially expressed gene.
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system. Three pathways involved in vitamin metabolism were 
also significantly altered, which was consistent with the fact that 
vitamin C supplementation offers significant protection against 
anesthetic‑induced neurotoxicity and behavioral alterations, 
as proposed by Xu et al (27). Seven pathways involving the 
Toll like receptor (TLR) were significantly altered, which is 
consistent with the report by Sun et al which demonstrated 

that sevoflurane exerts direct relaxant and anti‑inflammatory 
effects by inhibiting the TLR4/ nuclear factor‑κB pathway (28). 
The present results indicate that these identified pathways were 
closely related to sevoflurane treatment, and suggest that special 
attention should be given to patients with correlated diseases 
when administering sevoflurane anesthesia. In the propofol 
samples, there were 82 dysregulated pathways, of which 29 
pathways were significantly influenced (all P=0.000375), such 
as the ‘nicotinamide salvaging’ pathway, which is involved 
in nicotinamide utilization. Propofol administration reduces 
the heart rate and the baseline cerebral blood flow. These 29 
identified pathways in the present study were demonstrated to 
be closely related to propofol treatment. In the original study 
by Lucchinetti et al (4), the peroxisome proliferator‑activated 
receptor γ coactivator 1‑α pathway and the granulocyte‑colony 
stimulator factor survival pathway, integral components of the 
protective program in the heart, were proposed as potential 
therapeutic targets in perioperative cardioprotection.

A total of 72 pathways were common in both groups, 
indicating that, in some aspects, sevoflurane and propofol 
treatments caused similar effects. Previous studies have 
provided evidence that both sevoflurane and propofol enhance 
the function of the γ‑aminobutyric acid type A receptor 
(GABAAR) in neurons and in recombinant α1β2γ2 GABAAR 
systems  (29,30). The difference between sevoflurane and 
propofol is that they bind to separate sites and modulate 
receptor function via distinctly different mechanisms (31).

To visualize dysregulated pathways and provide a sensitive 
measurement of a patient's clinical features, heatmaps of 
the two anesthetic groups were constructed. In the heatmap, 
intuitive information of the comparison of pathways 
between anesthetic‑treated samples and normal samples was 

Figure 6. Interaction network of differentially expressed genes in the propofol 
group. Nodes and links represent human genes and gene interactions, respec-
tively. Color intensity corresponds to intensity of gene expression; the deeper 
the color the higher the expression value. All genes in the network were 
upregulated (green color).

Figure 5. Interaction network of differentially expressed genes in the sevoflurane group. Nodes and links represent human genes and gene interactions, 
respectively. In the network, red color indicates downregulated genes and green color indicates upregulated genes. Color intensity corresponds to intensity of 
gene expression; the deeper the color the higher the expression value.
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obtained. The differences between the normal samples and 
anesthetic‑treated samples are evident, and dysregulated 
pathways varied among the different anesthetic agents.

Networks were constructed for the DEGs involved in the 
dysregulated pathways. In the sevoflurane group, two genes 
were downregulated and 47 genes were upregulated. Six DEGs 
in the center of the interaction network were closely linked with 
other genes, so the corresponding pathways, nuclear receptor 
transcription and circadian clock pathways, may have been 
influenced by sevoflurane. In the propofol group, all the 28 
DEGs were upregulated, and several genes in the center of the 
interaction network were significantly altered, including IL6 
and IL8, which were also identified by Lucchinetti et al (4). 
As IL6 and IL8 participate in immune response, it is probable 
that administration of the anesthetic propofol may influence 
the immune system.

Following ranking genes by their topological characteristics, 
the top ranked gene in the sevoflurane group was NR4A3. In the 
interaction network, NR4A3 was a central node with a complex 
relationship with the other genes. NR4A3 is important in the 
regulation of cell proliferation, differentiation, metabolism (32) 
and apoptosis  (33). It is involved in the 'nuclear receptor 
transcription' pathway. These genes may potentially be targets 
for therapies to prevent anesthetic‑associated side effects in 
patients undergoing CABG surgery, and may contribute to 
the clinical action of sevoflurane and propofol. In the propofol 

network, the top ranked gene was SOCS3, which functions 
in the negative regulation of fetal liver hematopoiesis and 
placental development. SOCS3was involved in the pathway of 
‘growth hormone receptor signaling’, ‘interleukin‑6 signaling’, 
and ‘regulation of interferon γ signaling’.

In summary, the present study identified 157 dysregulated 
pathways in the sevoflurane group and 87 dysregulated pathways 
in the propofol group. Of these, 72 dysregulated pathways were 
common in both groups. Following ranking DEGs by topology 
analysis, the top 5 ranked DEGs in the sevoflurane group were 
NR4A3, JUNB, MYC, TAC1 and NAMPT, and in the propofol 
group, NR4A3, SOCS3, CDKN1A, CCL2 and CXCL1. These 
genes and pathways may be important in regulating the effects 
of sevoflurane and propofol administration. Among them, 
several have been reported previously, while others were 
reported in the present study for the first time. In conclusion, 
both types of anesthetic caused gene and pathway aberrance, 
and the present results may provide indicators of physical 
condition in patients that may aid in preventing complications 
from anesthetics. Further prospective studies will be required 
to validate the present results.
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Table III. Top five ranked differentially expressed genes in the sevoflurane group as identified by topology characteristics analysis.

	 Gene	 Value	 Gene	 Value	 Gene	 Value	 Gene	 Value
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Ranking	 Degree	 Stress	 Betweenness centrality	 Closeness centrality

1	 NR4A3	 92	 NR4A3	 7,720	 NR4A3	 0.0743174	 NR4A3	 0.6729323
2	 MYC	 80	 MYC	 5,800	 MYC	 0.0430654	 MYC	 0.6438848
3	 TAC1	 77	 TAC1	 5,446	 TAC1	 0.0372385	 TAC1	 0.6370106
4	 JUNB	 67	 JUNB	 4,140	 JUNB	 0.0259621	 JUNB	 0.6151202
5	 NAMPT	 34	 NAMPT	 1,172	 NAMPT	 0.0053048	 NAMPT	 0.5524691

NR4A3, nuclear receptor subfamily 4 group A member 3; MYC, MYC proto‑oncogene; TAC1, tachykinin precursor 1; JUNB, JUNB 
proto‑oncogene; NAMPT, nicotinamide phosphoribosyltransferase. 

Table IV. Top five ranked differentially expressed genes in the propofol group as identified by topology characteristics analysis.

	 Gene	 Value	 Gene	 Value	 Gene	 Value	 Gene	 Value
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Ranking	 Degree	 Stress	 Betweenness centrality	 Closeness centrality

1	 SOCS3	 114	 SOCS3	 10,774	 SOCS3	 0.1390861	 SOCS3	 0.967213
2	 CDKN1A	 106	 CDKN1A	 9,060	 CDKN1A	 0.093504	 CDKN1A	 0.907692
3	 CCL2	   90	 CCL2	 6,118	 CCL2	 0.051194	 CCL2	 0.808219
4	 CXCL2	   70	 CXCL2	 3,192	 CXCL2	 0.022919	 CXCL2	 0.710843
5	 NR4A3	   66	 NR4A3	 2,886	 NR4A3	 0.0196	 NR4A3	 0.694118

SOCS3, suppressor of cytokine signaling 3; CDKN1A, cyclin dependent kinase inhibitor 1A; CCL2, C‑C motif chemokine ligand 2; CXCL2, 
C‑X‑C motif chemokine ligand 1; NR4A3, nuclear receptor subfamily 4 group A member 3.



MOLECULAR MEDICINE REPORTS  16:  5312-5320,  20175320

References

  1.	 Forrest JB, Rehder K, Goldsmith CH, Cahalan MK, Levy WJ, 
Strunin L, Bota W, Boucek CD, Cucchiara RF, Dhamee S, et al: 
Multicenter study of general anesthesia. I. Design and patient 
demography. Anesthesiology 72: 252‑261, 1990.

  2.	Eger EI II: Characteristics of anesthetic agents used for induc-
tion and maintenance of general anesthesia. Am J Health Syst 
Pharm 61 (Suppl 4): S3‑S10, 2004. 

  3.	Marik PE: Propofol: Therapeutic indications and side‑effects. 
Curr Pharm Des 10: 3639‑3649, 2004. 

  4.	Lucchinetti E, Hofer C, Bestmann L, Hersberger M, Feng J, 
Zhu M, Furrer L, Schaub MC, Tavakoli R, Genoni M, et al: Gene 
regulatory control of myocardial energy metabolism predicts 
postoperative cardiac function in patients undergoing off‑pump 
coronary artery bypass graft surgery: Inhalational versus intra-
venous anesthetics. Anesthesiology 106: 444‑457, 2007. 

  5.	Ahn T, Lee E, Huh N and Park T: Personalized identification of 
altered pathways in cancer using accumulated normal tissue data. 
Bioinformatics 30: i422‑i429, 2014. 

  6.	Khatri P, Sirota M and Butte AJ: Ten years of pathway analysis: 
Current approaches and outstanding challenges. PLoS Comput 
Biol 8: e1002375, 2012. 

  7.	 Bradley EW, Ruan MM, Vrable A and Oursler MJ: Pathway cross-
talk between Ras/Raf and PI3K in promotion of M‑CSF‑induced 
MEK/ERK‑mediated osteoclast survival. J Cell Biochem 104: 
1439‑1451, 2008. 

  8.	Gerits N, Kostenko S, Shiryaev A, Johannessen M and Moens U: 
Relations between the mitogen‑activated protein kinase and the 
cAMP‑dependent protein kinase pathways: Comradeship and 
hostility. Cell Signal 20: 1592‑1607, 2008. 

  9.	 Wang Y, Fan X and Cai Y: A comparative study of improvements 
Pre‑filter methods bring on feature selection using microarray 
data. Health Inf Sci Syst 2: 7, 2014. 

10.	 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and 
Smyth GK: limma powers differential expression analyses for 
RNA‑sequencing and microarray studies. Nucleic Acids Res 43: 
e47, 2015. 

11.	 Croft D, O'Kelly G, Wu G, Haw R, Gillespie M, Matthews L, 
Caudy M, Garapati P, Gopinath G, Jassal B, et al: Reactome: A 
database of reactions, pathways and biological processes. Nucleic 
Acids Res 39: D691‑D697, 2011. 

12.	Diboun  I, Wernisch  L, Orengo  CA and Koltzenburg  M: 
Microarray analysis after RNA amplification can detect 
pronounced differences in gene expression using limma. BMC 
Genomics 7: 252, 2006. 

13.	 Tusher VG, Tibshirani R and Chu G: Significance analysis of 
microarrays applied to the ionizing radiation response. Proc Natl 
Acad Sci USA 98: 5116‑5121, 2001. 

14.	 Broberg  P: Statistical methods for ranking differentially 
expressed genes. Genome Biol 4: R41, 2003.  

15.	 Schwender H: Siggenes: Multiple testing using SAM and Efron's 
empirical Bayes approaches. R Package Version 1: 48, 2012.

16.	 Langfelder P and Horvath S: WGCNA: An R package for weighted 
correlation network analysis. BMC Bioinformatics 9: 559, 2008. 

17.	 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, 
Amin N, Schwikowski B and Ideker T: Cytoscape: A software 
environment for integrated models of biomolecular interaction 
networks. Genome Res 13: 2498‑2504, 2003. 

18.	 Shi DM: Concurrent versus sequential chemoradiotherapy in 
90 patients of esophagus cancer. China Modern Med 16: 37‑40, 
2009 (In  Chinese).

19.	 Irizarry  RA, Hobbs  B, Collin  F, Beazer‑Barclay  YD, 
Antonellis KJ, Scherf U and Speed TP: Exploration, normaliza-
tion, and summaries of high density oligonucleotide array probe 
level data. Biostatistics 4: 249‑264, 2003. 

20.	Bolstad BM, Irizarry RA, Astrand M and Speed TP: A compar-
ison of normalization methods for high density oligonucleotide 
array data based on variance and bias. Bioinformatics  19: 
185‑193, 2003. 

21.	 Rosner B and Glynn RJ: Power and sample size estimation for the 
clustered wilcoxon test. Biometrics 67: 646‑653, 2011. 

22.	Lazar  C, Taminau  J, Meganck  S, Steenhoff  D, Coletta  A, 
Molter C, de Schaetzen V, Duque R, Bersini H and Nowé A: 
A survey on filter techniques for feature selection in gene 
expression microarray analysis. IEEE/ACM Trans Comput Biol 
Bioinform 9: 1106‑1119, 2012. 

23.	Wasserman S and Faust K: Social network analysis: Methods and 
applications. Cambridge: Cambridge University Press, 1994.

24.	Freeman LC: Centered graphs and the construction of ego 
networks. Math Social Sci 3: 291‑304, 1982.

25.	Kreuzer I, Osthaus WA, Schultz A and Schultz B: Influence of 
the sevoflurane concentration on the occurrence of epileptiform 
EEG patterns. PLoS One 9: e89191, 2014. 

26.	Franceschini  MA, Radhakrishnan  H, Thakur  K, Wu  W, 
Ruvinskaya S, Carp S and Boas DA: The effect of different anes-
thetics on neurovascular coupling. Neuroimage 51: 1367‑1377, 
2010.

27.	 Xu KX, Tao J, Zhang N and Wang JZ: Neuroprotective prop-
erties of vitamin C on equipotent anesthetic concentrations of 
desflurane, isoflurane, or sevoflurane in high fat diet fed neonatal 
mice. Int J Clin Exp Med 8: 10444‑10458, 2015. 

28.	Sun XJ, Li XQ, Wang XL, Tan WF and Wang JK: Sevoflurane 
inhibits nuclear factor‑kB activation in lipopolysaccha-
ride‑induced acute inflammatory lung injury via toll‑like receptor 
4 signaling. PLoS One 10: e0122752, 2015. 

29.	 Hapfelmeier G, Schneck H and Kochs E: Sevoflurane potentiates 
and blocks GABA‑induced currents through recombinant alpha-
1beta2gamma2 GABAA receptors: Implications for an enhanced 
GABAergic transmission. Eur J Anaesthesiol 18: 377‑383, 2001. 

30.	Jenkins A, Franks NP and Lieb WR: Effects of temperature and 
volatile anesthetics on GABA(A) receptors. Anesthesiology 90: 
484‑491, 1999. 

31.	 Sebel LE, Richardson JE, Singh SP, Bell SV and Jenkins A: 
Additive effects of sevoflurane and propofol on gamma‑amino-
butyric acid receptor function. Anesthesiology 104: 1176‑1183, 
2006. 

32.	Pearen MA, Myers SA, Raichur S, Ryall  JG, Lynch GS and 
Muscat GE: The orphan nuclear receptor, NOR‑1, a target of 
beta‑adrenergic signaling, regulates gene expression that controls 
oxidative metabolism in skeletal muscle. Endocrinology 149: 
2853‑2865, 2008. 

33.	 Nomiyama T, Nakamachi T, Gizard F, Heywood EB, Jones KL, 
Ohkura  N, Kawamori  R, Conneely  OM and Bruemmer  D: 
The NR4A orphan nuclear receptor NOR1 is induced by 
platelet‑derived growth factor and mediates vascular smooth 
muscle cell proliferation. J Biol Chem 281: 33467‑33476, 2006. 


